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Abstract: Designing and analyzing controllers for underactuated systems with underactuation
degree greater than one is still an open and challenging problem. In this paper, we study an
unsolved problem of analyzing energy based swing-up control for a double pendulum on a cart,
which has three degrees of freedom and only one control input. We present an original analysis of
the convergence of the energy of the cart-double pendulum system. We show that for all initial
states of the cart-double pendulum system, if the convergent value of the energy is not equal to
the energy at the upright (up-up) equilibrium point, then the cart-double pendulum remains at
its up-down, down-up, and down-down equilibrium points. Moreover, we show that these three
equilibrium points are unstable. This shows that for almost all initial states of the cart-double
pendulum system, as time approaches infinity, the energy of the cart-double pendulum system
can be controlled to its energy at the upright equilibrium point. This paper provides insight
into the energy based control approach to underactuated systems with underactuation degree
greater than one.

1. INTRODUCTION

The recent years have witnessed an increasing interest in
studying underactuated mechanical systems, which pos-
sess fewer actuators than degrees of freedom. For a class
of underactuated systems with underactuation degree one,
that is, the number of control inputs is one less than that
of degrees of freedom, several approaches have been shown
effective for designing and analyzing controllers for these
systems, see e.g., Acosta et al. [2005], Grizzle et al. [2005],
Fantoni et al. [2000], Kolesnichenko and Shiriaev [2002].

However, designing and analyzing controllers for under-
actuated systems with underactuation degree greater than
one is still an open and challenging problem. Though the
energy based control approach developed in the seminal
works of Fantoni et al. [2000], Kolesnichenko and Shiriaev
[2002], Spong [1996] can be used to design controllers for
these systems, the analysis of the convergence of energy
or the analysis of the closed-loop solution of these systems
has not been reported much yet.

On the other hand, the control of pendulum(s) on a cart
has been studied greatly for investigating effectiveness of
various kinds of control schemes and demonstrating ideas
emerging in the area of nonlinear control, see e.g., Lin et
al. [1996], Wei et al. [1995]. Recently, the cart-pendulum
systems have been treated as underactuated systems.

In this paper, we investigate how to analyze energy based
swing-up control for a double pendulum on a cart, which
has three degrees of freedom and only one control input.

� This work was supported in part by a Grant-in-aid Scientific
Research (C) under grant no. 19560452.

Due to the cascade structure of two pendulums, to the best
of our knowledge, strict analysis has not been reported yet.

Before describing the main contribution of this paper, we
recall some existing results related to the swing-up control
of pendulum(s). For swinging up the pendulum(s), the
energy based control approach is often adopted, see e.g.,
Åström et al. [1999], Åström and Furuta [2000], Chung and
Hauser [1995], Lozano et al. [2000], Yamakita et al. [1995].
On the one hand, without controlling the displacement of
the cart, for the single pendulum-cart system, Åström and
Furuta [2000] designed an energy based control to drive
the energy of the pendulum to its potential energy at the
vertical; Xin and Kaneda [2005] extended the results of
Åström and Furuta [2000] to two parallel pendulums on
a cart and proved the convergence of the energy of each
pendulum to its desired value. On the other hand, for
the single pendulum-cart system, Lozano et al. [2000] and
Shiriaev et al. [2000] reported how to design and analyze
the energy based control to drive both the energy of the
pendulum-cart system to its potential energy of pendulum
at the vertical and the displacement of the cart to a desired
value.

In this paper, we apply directly the procedures in Lozano
et al. [2000], Kolesnichenko and Shiriaev [2002] to derive
an energy based swing-up controller for the cart-double
pendulum system. Different from Åström et al. [1999],
Zhong and Röck [2001], the main contribution of this
paper is the presentation of an original analysis of the
convergence of the energy of the cart-double pendulum
system. Specially, under the designed controller, we show
that for all initial states of the cart-double pendulum
system, if the convergent value of its energy is not equal
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to the energy at the upright (up-up) equilibrium point,
then the cart-double pendulum remains at its up-down,
down-up, and down-down equilibrium points. Moreover,
we show that these 3 equilibrium points are unstable. This
shows that for almost all initial states of the cart-double
pendulum system, as time approaches infinity, the energy
of the cart-double pendulum system can be controlled to
its energy at the upright equilibrium point.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

The cart-double pendulum system shown in Fig. 1 consists
of two-linked pendulums on a cart. For pendulum i, θi is
the angle between pendulum i and the vertical, Ii is the
inertia moment with respect to the center of mass (COM),
lci is the distance between the COM and joint i, li is its
length, and mi is its mass. For the cart, mc is its mass,
and x is its displacement; f is a force to move the cart
which is the control input.

lc2

lc1 l1

l

Passive Joint 

Center of Mass

mC

Fig. 1. A double pendulum on a cart.

With notations shown in Fig. 1, the motion equation of
the double pendulum on a cart is:

M(θ)q̈ + C(θ, θ̇)q̇ +G(q) = Bf, (1)

where

q =

[
x
θ1
θ2

]
, θ =

[
θ1
θ2

]
, B =

[ 1
0
0

]
, (2)

and

M(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α0
β1

g
cos θ1

β2

g
cos θ2

β1

g
cos θ1 α1 α3 cos(θ1 − θ2)

β2

g
cos θ2 α3 cos(θ1 − θ2) α2

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3)

C(θ, θ̇) =

⎡
⎢⎢⎣

0 −β1

g
θ̇1 sin θ1 −β2

g
θ̇2 sin θ2

0 0 α3θ̇2 sin(θ1 − θ2)
0 −α3θ̇1 sin(θ1 − θ2) 0

⎤
⎥⎥⎦ , (4)

G(θ) =

[ 0
−β1 sin θ1
−β2 sin θ2

]
, (5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α0 = mc +m1 +m2,
α1 = m1l

2
c1 +m2l

2
1 + I1,

α2 = m2l
2
c2 + I2,

α3 = m2l1lc2,

β1 = (m1lc1 +m2l1)g,
β2 = m2lc2g,

(6)

and g is the acceleration of the gravity.

The energy of the cart-double pendulum system is

E(q, q̇) =
1
2
q̇TM(θ)q̇ + P (q), (7)

where P (q) is the potential energy and is defined as
P (q) = β1 cos θ1 + β2 cos θ2. (8)

Since in (1) and (7) each θi (i = 1, 2) only appears as an
argument of periodic functions of period 2π, this paper
takes θi modulo 2π, i.e., θ1 × θ2 is defined over a torus
S1 × S1, where S1 denotes a unit circle.

We recall the following lemma presented in Xin and
Kaneda [2007] which is important in analyzing the energy
based swing-up control of the cart-double pendulum sys-
tem.
LEMMA 1. α1, α2, α3, β1, and β2 in (6) satisfy the
following relations:

α2β1 > α3β2, (9)
α3β1 ≥ α1β2. (10)

2.2 Problem Formulation

Consider the following upright (up-up) equilibrium point:
q = 0, q̇ = 0. (11)

The objective of this paper is to design and analyze a
control law such that

lim
t→∞E(q, q̇) = Euu, lim

t→∞ ẋ = 0, lim
t→∞x = 0, (12)

where Euu := β1 + β2 is the energy of the cart-double
pendulum system at the upright equilibrium point.

3. DESIGN OF SWING-UP CONTROLLER

In this section, we apply directly the procedures in Lozano
et al. [2000], Kolesnichenko and Shiriaev [2002] to derive
an energy based swing-up controller for the cart-double
pendulum system.

Define the following Lyapunov function candidate:

V =
1
2
(E − Euu)2 +

1
2
kDẋ

2 +
1
2
kPx

2, (13)

where kD and kP are positive constants.
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Taking the time derivative of V along (1) and using
Ė = q̇TBf = ẋf , we obtain

V̇ = ẋ((E − Euu)f + kDẍ+ kPx).

If we can choose f such that
(E − Euu)f + kDẍ+ kPx = −kV ẋ, (14)

where kV is a positive constant, then
V̇ = −kV ẋ

2 ≤ 0. (15)

In what follows, we study when (14) is solvable with
respect to f . To this end, we obtain ẍ from (1) as

ẍ = BTq̈ = BTM−1(Bf − Cq̇ −G). (16)

Putting (16) into (14), we have
λ(q, q̇)f = kDB

TM−1(Cq̇ +G) − kPx− kV ẋ, (17)

where
λ(q, q̇) := E(q, q̇) − Euu + kDB

TM−1B. (18)

If
λ(q, q̇) �= 0, for ∀q, ∀q̇ (19)

holds, then we can derive f from (17) as
f =

(
kDB

TM−1(Cq̇ +G) − kPx− kV ẋ
)
/λ. (20)

Since M(θ) > 0, we obtain
BTM−1B =

(
α1α2 − α2

3 cos(θ1 − θ2)
)
/det(M) > 0.

Thus, (19) is equivalent to
kD �= (

Euu − E(q, q̇)
)
(BTM−1B)−1, for ∀q, ∀q̇. (21)

Using E(q, q̇) ≥ P (θ), Euu ≥ P (θ), and kD > 0, we can
see that (19) holds if and only if

kD > max
θ1,θ2

(Euu − P (θ)) (BTM−1B)−1. (22)

Now, we use LaSalle’s theorem, see e.g., Khalil [2002],
to analyze the motion of the closed-loop system. Suppose
(22) holds. Under the controller (20), owing to V̇ ≤ 0 in
(15), V is bounded. Define

Ψ = {(q, q̇) | V (q, q̇) ≤ c}, (23)

where c is a positive constant. Then any closed-loop
solution (q(t), q̇(t)) starting in Ψ remains in Ψ for all t ≥ 0.
Let W be the largest invariant set in

Γ = {(q, q̇) | V̇ = 0}. (24)

Using LaSalle’s theorem, we know that every (q(t), q̇(t))
starting in Ψ approaches W as t→ ∞. Since V̇ = 0 holds
identically in W , therefore, V and x are some constants in
W . Moreover, using (13), we know that E is also a constant
in W . Therefore,

lim
t→∞E = E∗, lim

t→∞ ẋ = 0, lim
t→∞x = x∗, (25)

where E∗ and x∗ are some constants. In W , substituting
x ≡ x∗ and E ≡ E∗ into (7) yields

1
2
α1θ̇

2
1 +

1
2
α2θ̇

2
2 + α3θ̇1θ̇2 cos(θ1 − θ2)

+β1 cos θ1 + β2 cos θ2 ≡ E∗. (26)

The largest invariant set W can be expressed as:
W = {(q, q̇) | (θ, θ̇) satisfies (26) and x ≡ x∗}. (27)

The obtained results in this section are summarized by the
following proposition.
Proposition 1. Consider the cart-double pendulum system
in (1). Suppose that kP > 0, kD > 0 and kV > 0 hold.
Then the control law (20) has no singular point for the
cart-double pendulum system starting from any initial state
if and only if kD satisfies (22). In this case, (25) holds for
some constants E∗ and x∗, and every closed-loop solution
(q(t), q̇(t)) approaches the invariant set W defined in (27)
as t→ ∞.

4. CONVERGENCE OF ENERGY OF THE
CART-DOUBLE PENDULUM SYSTEM

Comparing our objective expressed in (12) and our ob-
tained result in (25), we need to study the convergent value
of the energy E∗ and the displacement of the cart x∗.

In the invariant set W , substituting E ≡ E∗ and x ≡ x∗

into (14) yields
(E∗ − Euu)f + kPx

∗ ≡ 0. (28)

We address two cases of E∗ = Euu and E∗ �= Euu,
separately.

Case 1: E∗ = Euu

For this case, x∗ = 0 follows directly from (28). From (26),
this yields

1
2
α1θ̇

2
1 +

1
2
α2θ̇

2
2 + α3θ̇1θ̇2 cos(θ1 − θ2)

+β1 cos θ1 + β2 cos θ2 = β1 + β2. (29)

Thus, as t → ∞, the closed-loop solution (q(t), q̇(t))
approaches the following invariant set:

Wr = {(q, q̇) | (θ, θ̇) satisfies (29) and x ≡ 0}. (30)

Case 2: E∗ �= Euu

For this case, we present the following proposition, which
is a main result of this paper.
Proposition 2. Consider the cart-double pendulum system
in (1). Suppose that kD satisfies (22), kP > 0 and kV > 0
hold. If E∗ �= Euu, then

1) invariant set W in (26) contains only the following
three equilibrium points:
Up-down equilibrium point: (0, 0, π, 0, 0, 0),
Down-up equilibrium point: (0, π, 0, 0, 0, 0),
Down-down equilibrium point: (0, π, π, 0, 0, 0);

2) these three equilibrium points are unstable.

We only present the proof of Statement 1); due to page
limitations, we omit the proof of Statement 2) which is
similar to that of Theorem 4 in Xin and Kaneda [2005].

Proof. Using E∗ �= Euu, it follows from (28) that f is a
constant f∗ satisfying

(E∗ − Euu)f∗ + kPx
∗ ≡ 0. (31)
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In the invariant set W , by using x ≡ x∗ and defining

a =
β1

β2
, b =

α1

α3
, d =

β2

α3
, e =

α2

α3
, (32)

we can rewrite (1) as

aθ̈1 cos θ1 + θ̈2 cos θ2 − aθ̇21 sin θ1 − θ̇22 sin θ2 ≡ f∗g
β2

, (33)

bθ̈1 + θ̈2 cos(θ1 − θ2) + θ̇22 sin(θ1 − θ2) − ad sin θ1 ≡ 0, (34)

θ̈1 cos(θ1 − θ2) + eθ̈2 − θ̇21 sin(θ1 − θ2) − d sin θ2 ≡ 0. (35)

By exploiting (33)-(35), we carry out the proof via the
following four steps:

Step 1: Show that both the constant force f∗ acting on
the cart and the displacement of the cart x∗ are 0, i.e.,

f∗ = 0, x∗ = 0. (36)

Step 2: Show

aθ̇1 cos θ1 + θ̇2 cos θ2 ≡ 0 (37)

and

a sin θ1 + sin θ2 ≡ 0. (38)

This means that the COM of two-linked pendulums is on
the vertical line.

Step 3: By using the properties of mechanical parameters
shown in Lemma 1, we show the following relationship
about the angular accelerations between two pendulums:

θ̈2 ≡ hθ̈1, (39)

where

h =
a(a− b)
ae− 1

=
β1(α3β1 − α1β2)
α2β1 − α3β2

≥ 0. (40)

Step 4: By contradiction, we prove

θ̇1 ≡ 0, and θ̇2 ≡ 0. (41)

On the contrary, if (41) does not hold, then

a = 1 and h = 1 (42)

must hold. We show a contradiction by proving that the
both equations in (42) can not hold simultaneously for any
double pendulum.

In what follows, we present some details of Steps 1 to 4. As
to Step 1, integrating (33) with respect to time t yields

aθ̇1 cos θ1 + θ̇2 cos θ2 =
f∗g
β2

t+ γ1, (43)

where γ1 is a constant. Since E∗ is bounded, from in (26),
we can see that θ̇1 and θ̇2 are bounded; this shows that
the left-hand side of (43) is bounded. Thus, f∗ = 0 must
hold; otherwise, the absolute value of the right-hand side
of (43), that is, |f∗gt/β2+γ1|, will go to infinity as t→ ∞.
From (31), we show x∗ = 0.

As to Step 2, using f∗ = 0 and integrating (43) with
respect to time t gives

a sin θ1 + sin θ2 ≡ γ1t+ γ2. (44)

Thus γ1 = 0 must hold; otherwise, the absolute value of
the right-hand side of (44) will go to infinity as t → ∞,
this contradicts the fact that the left-hand side of (44) is
bounded for all t. This completes the proof of (37).

Next, using γ1 = 0 and (44), we obtain
a sin θ1 + sin θ2 ≡ γ2. (45)

To show γ2 = 0, we write the sum of (34) and (35) as
d

dt
(bθ̇1 + eθ̇2 + (θ̇1 + θ̇2) cos(θ1 − θ2)) = dγ2. (46)

Integrating (46) with respect to time t, we have

bθ̇1 + eθ̇2 + (θ̇1 + θ̇2) cos(θ1 − θ2) ≡ dγ2t+ γ3. (47)

From the boundedness of the left-hand side of the above
equation, we can see γ2 = 0. This together with (45) shows
(38).

As to Step 3, putting γ2 = 0 into (47) gives

bθ̇1 + eθ̇2 + (θ̇1 + θ̇2) cos(θ1 − θ2) = γ3. (48)

For the simplicity of notations in what follows, we denote
S1 := sin θ1, S2 := sin θ2, C1 := cos θ1, C2 := cos θ2,

C12 := cos(θ1 − θ2), S12 := sin(θ1 − θ2).

To simplify (48), by using (37) and (38), we have

(θ̇1 + θ̇2) cos(θ1 − θ2) = (θ̇1 + θ̇2)(C1C2 + S1S2)

= (θ̇1C1C2 + θ̇2S1S2) + (θ̇1S1S2 + θ̇2C1C2)

= −(θ̇2C2
2 + θ̇2S

2
2)/a− a(θ̇1S2

1 + θ̇1C
2
1 )

= −θ̇2/a− aθ̇1. (49)
This reduces (48) to

(ae− 1)θ̇2 − a(a− b)θ̇1 = aγ3. (50)

Using Lemma 1, we have

ae− 1 =
α2β1α3β2

α3β2
> 0, a− b =

α3β1 − α1β2

α3β2
≥ 0.

which yields
θ̇2 ≡ hθ̇1 + γ, (51)

where
γ =

aγ3

ae− 1
. (52)

Differentiating (51) yields (39).

As to Step 4, first, we show that (42) does not hold for
any pendulum system. On the contrary, suppose that (42)
holds. From h in (40), using a = 1 and h = 1 yields
b+ e = 2. However, this contradicts

b+ e =
α1

α3
+
α2

α3
≥ 2

√
α1α2

α2
3

> 2.

owing to the fact that α1α2 > α2
3 which can be checked

directly using (6).
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Second, to complete Step 4, we now only need to show by
contradiction that if (41) does not holds, then (42) holds.

By using (37), we know that θ̇1 ≡ 0 is equivalent to θ̇2 ≡ 0;
therefore, if (41) does not hold, then

θ̇1 �≡ 0 and θ̇2 �≡ 0. (53)

We proceed the proof by treating γ in (51) by the case
γ = 0 and the case γ �= 0 separately.

Case 2.1 γ = 0 in (51)

In this case, from (37) and (53), we obtain
aC1 ≡ −hC2. (54)

This with (38) yields
(h2 − 1)C2

2 + 1 − a2 ≡ 0.

Owing to (53), we can see that C2 (cos θ2) is not a constant.
This, with the fact that θ2 is continuously differentiable,
implies that the above equation has infinite number of
solutions. Thus, h2 = 1 and a2 = 1. With a > 0 and
h ≥ 0, we know that (42) must hold.

Case 2.2 γ �= 0 in (51)

To start with, by using (38) and (51), we eliminate θ̈1 and
θ̈2 from the motion equations of two-linked pendulums (34)
and (35), and we obtain the following new and key relation
about the angular velocities between two pendulums:

(b+ hC12)θ̇21 + (eh+ C12)θ̇22 ≡ d(aC1 + hC2). (55)

The detail derivation of (55) is omitted due to page
limitations.

Next, with (37), (38), and (51), this equation helps us to
eliminate θ̇1 and θ̇2, we obtain a 7th-order polynomial of
C1 as follows:

7∑
j=0

ψjC
j
1 ≡ 0, (56)

where ψj (0 ≤ j ≤ 7) are constants. The detail expression
of each ψj is omitted due to page limitations. Owing to
(53), we can see that C1 (cos θ1) is not a constant. This,
with the fact that θ1 is continuously differentiable, implies
that the above equation has infinite number of solutions.
Thus,

ψj = 0, for 0 ≤ j ≤ 7. (57)

We can show (57) holds if and only if (42) holds.

In conclusion, if (53) holds, then for both Case 2.1 of γ = 0
and Case 2.2 of γ �= 0 (42) must hold. Since we have
proved that (42) does not hold for any double pendulum,
this raises a contradiction. Thus, (41) holds. From (34)
and (35), we have

sin θ1 ≡ 0, sin θ2 ≡ 0.

With E∗ �= Euu, we obtain
(θ1, θ2) ≡ (0, π), (θ1, θ2) ≡ (π, 0), (θ1, θ2) ≡ (π, π).

This completes the proof of Statement 1).

We give the following proposition to summarize the ob-
tained results for Cases 1 and 2.
Proposition 3. Consider the cart-double pendulum system
in (1). Suppose that kD satisfies (22), kP > 0 and kV > 0
hold. Under the controller (20), as t → ∞ the closed-
loop solution (q(t), q̇(t)) approaches either the invariant
set Wr defined in (30) or one of the three equilibrium
points described in Proposition 2. Moreover, these three
equilibrium points are unstable.

5. SIMULATION RESULTS

The validity of the developed theoretical results was ver-
ified via numerical simulation investigation for a cart-
double pendulum system with following mechanical pa-
rameters m1 = 1.0 [kg], m1 = 0.5 [kg], m2 = 0.5 [kg],
l1 = 1 [m], l2 = 1.0 [m], lc1 = 0.5 [m], lc2 = 0.5 [m],
I1 = m1l

2
c1/3, I2 = m2l

2
c2/3. We took the gravity acceler-

ation g = 9.81 [m/s2].

For an initial condition q(0) = [ 1, 0, π/2, 0, π, 0.1 ]T,
we chose kD = 27.3, kP = 47.2, and kV = 65.0. The
simulation results are shown in Figs. 2 and (3), where
we took θ1 and θ2 modulo 2π. We observe that V is
non-increasing and approaches 0, and E and x approach
Euu and 0, respectively. The double pendulum moved
close to (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0) at about t = 9.8 [s].
When the cart-double pendulum moved close to q =
[ 0, 0, 0, 0, 0, 0 ]T, we switched the swing-up controller to
a local stabilizing controller designed by the LQR method,
to stabilize them about the vertical. See the simulation
results of the swing-up and stabilizing control shown in
Fig. 4.

0 5 10 15
0

50

100

0 5 10 15

-10

-5

0

 
V

E
 -

 E
 uu

Time t [s]

Fig. 2. Time responses of V and E−Euu under the swing-
up control.

6. CONCLUSIONS

In this paper, we analyzed energy based swing-up control
for a double pendulum on a cart. We presented an original
analysis of the convergence of the energy of the cart-double
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0
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d
]

Time t [s]

−π

−π

π

π

x
 [

m
]

θ
θ

Fig. 3. Time responses of x, θ1 and θ2 under the swing-up
control.
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1

x
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]

0 5 10 15

0

θ 1 [
ra

d
]

0 5 10 15
 

0

θ 2 [
ra

d
]

Time t [s]

π

π

−π

−π

Fig. 4. Time responses of x, θ1 and θ2 under the swing-up
and stabilizing control.

pendulum system. We showed that for all initial states
of the cart-double pendulum system, if the convergent
value of the energy is not equal to the energy at the
upright (up-up) equilibrium point, then the cart-double
pendulum remains at its up-down, down-up, and down-
down equilibrium points. Moreover, we showed that these
three equilibrium points are unstable. This shows that
for almost all initial states of the cart-double pendulum
system, as time approaches infinity, the energy of the cart-
double pendulum system can be controlled to its energy at
the upright equilibrium point. This paper provided insight
into the energy based control approach to underactuated
systems with underactuation degree greater than one.
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