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Abstract: A control technique based on Reinforcement Learning is proposed for controlling
thermal sterilization of canned food. Without using an a-priori mathematical model of the
process, the proposed Model-Free Learning Controller (MFLC) aims to follow a temperature
profile during two stages of the process: first heating by manipulating the saturated steam
valve and then cooling by opening the water valve) by learning. From the defined state-action
space, the MFLC agent learns the environment interacting with the process batch to batch and
then using a tabular state-action mapping. The results show the advantages of the proposed

technique for this kind of processes.
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1. INTRODUCTION

In the food industry, it is very important to reduce the
activity of harmful microorganisms for canned food, in
order to reduce the health risk and increase the durability
of the products. This is usually obtained through ther-
mal processing (sterilization) in pressurized retorts using
steam. Unfortunately, thermal processing also produces
the deterioration of the organoleptic properties of the
food. For this reason, appropriate control of the process
is fundamental to guarantee the safety and quality of the
product (Lewis [2006], Ramaswamy and Singh [1997]).

Thus, in the sterilization process the main control objec-
tive is to heat the canned food for a minimum time at a
given temperature: long exposures or high temperatures
deteriorate the product. This processing time and tem-
perature are selected according to the mandatory degree
of microorganism activity, measured off-line by estimating
the microbiological lethality of the process.

Different strategies for control of the sterilization process
have been proposed in the literature, such as adaptive con-
trol (Alonso et al. [1997]), online correction factor (Teix-
eira and Tucker [1997], Kuma et al. [2001]), optimal control
(Kleis and Sachs [1999]) and receding horizon optimal con-
trol (Chalabi et al. [1999]). However, these controllers are
difficult to design and need precise mathematical models
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of the process, so the most frequent control technique in
industry is manual supervision of proportional Integral
(PI) controllers.

To deal with problems of batch to batch variations and the
complexity of the models for control, techniques based on
learning would be adequate. From these, techniques that
use Reinforcement Learning have been selected, as they
provide a rigorous methodology for learning without de-
tailed mathematical models of the controlled plant, using
a simple algorithm suitable for real-time implementation
(Sutton and Barto [1998]).

In particular, the MFLC approach, previously proposed by
the authors (Syafiie et al. [2007a,b]), will be used to control
the thermal processing, as it corresponds to a feasible
implementation of Reinforcement Learning algorithms for
Process Control. This technique is used because it is a
simple technique that does not need a precise a priori
model of the process, but incorporates basic knowledge
of the process behavior. The MFLC controllers are based
on Reinforcement Learning algorithms, so the control
objective is the optimization of a desired performance
index by learning to apply appropriate control actions
through interaction with the plant. Learning is performed
without requiring an explicit model of the plant: instead,
the system’s dynamics are learned and represented in
action and reward functions.

The approach is based on @-learning (Sutton and Barto
[1998], Bertsekas and Tsitsiklis [1996]). However, the idea
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can be easily augmented to improve learning speed by
applying other methodologies in the literature, such as lazy
learning (Atkenson et al. [1997a,b]), near optimal closed-
loop control (Ernst [2003]) and neural fitted g-iteration
(Timmer and Riedmiller [2007]).

The problem at hand can be represented as a series of
single-input single-output systems. However, the proposed
approached can be extended to multiple-input multiple-
output system using the ideas presented in Martin Ried-
miller [1997].

It must be pointed out that no explicit mathematical
model is used to design the control algorithm. However,
basic knowledge of the process is used to fix control param-
eters (information from output range, control limitations,
loop interactions, etc).

This article is organized as follows: First, a short presenta-
tion of the Thermal Sterilization Process is given in Section
2. The proposed technique to control the process by using
MFLC is given in Section 3. The MFLC application in
the sterilization process is given in Section 4. Finally,
conclusions are given in Section 5.

2. BATCH THERMAL STERILIZATION PROCESS

The thermal sterilization processes for prepackaged food
can be carried out in continuous or batch units (Lewis
[2006], Ramaswamy and Singh [1997]). From a control
point of view, the most challenging is the operation in
batch units, which is the most frequent approach in
industry, and is the one studied in this paper. It is now
briefly described. For details of the process see (Alonso
et al. [1997, 1998)).

In general, the sterilization process is carried out in batch
steam retorts as depicted in Fig. 1.
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Fig. 1. Schematic of control equipment for batch steriliza-
tion.

A typical operation cycle involves several stages, namely
venting, heating and cooling:

e Venting: In the first stage, steam is used to eliminate
the air from the retort. At this stage, bleeder and
drain valves are open. When the pressure in the
retort, P,., matches that corresponding to saturated
steam at that temperature, Ps, it can be assumed that
there is no air in the retort and heating can start.

e Heating: The objective of this stage is to follow a
given temperature profile, prescribed by the desired
microbiological lethality. At the critical point (the
coldest point inside the product), lethality is defined

as follows:
t Tfef—T(ro)
FO:/ 10 z dt (1)
0

where z represents a kinetic parameter, T 5 refers to

temperature, T'(rg) is the temperature at the critical
point (see Ramaswamy and Singh [1997], Alonso et al.
[1997]) and t is time. Since the lethality is affected by
even small variations in the temperature, automatic
control is required during this stage.

e Cooling: Once the heating stage concludes, the prod-
uct is cooled with water down to room temperature.
At the same time, air is injected into the vessel to
avoid sudden pressure drops that could result in the
bursting of product containers (cans). Pressure con-
trol during this stage is especially important for glass
containers or conduction heated-type products where
the existence of sharp temperature gradients between
the inside and the outside of the product induces high
differential pressure (Alonso et al. [1997, 1998]).

3. MFLC DESIGN TECHNIQUE

The MFLC technique (Syafiie et al. [2007a,b]), proposed
to control the sterilization process, is a methodology based
on learning using the Reinforcement Learning approach
(Sutton and Barto [1998], Bertsekas and Tsitsiklis [1996]).
In particular, it gives a feasible implementation of Rein-
forcement Learning for process control problems, by giving
a precise but simple definition of symbolic states and
actions, based on control objectives and the constraints
on input and output variables. MFLC has been presented
in detail by three of the authors in Syafiie et al. [2007a,b],
so only a brief presentation is given here.

3.1 MFLC Architecture

The MFLC architecture is represented in Fig. 2: it is
modular, based on a simple selection of states, actions
and control signals, with the objective of being easily
understood by the final user. At each sample time, the
agent uses the ”Policy” to select one action a; from those
available in the actual state s;. Then, the selected action
is converted to a control signal u; in the ”Calculation U”
block. Based on the measured output, the ”Situation”
block estimates the next state and the corresponding
reward. From this reward the so-called (-value, which
reflects the adequacy of the action, is updated in the
”Critic” block.

As time goes by, actions are selected by the agent, and
learning is carried out by criticizing them as ”good” or
”bad” depending on the resulting state. Every action that
drives the system into the goal state is considered a good
action and receives reward. However, actions that do not
drive the system into the goal state are punished. A central
part of the learning algorithm is the estimation of the
@-value, which gives numerically the benefit of applying
action a; when the system is in state s;. This function is
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Fig. 2. MFLC architecture.

stored in a matrix Q(s, at), called @-matrix. To calculate
the @-values, it is necessary to take into account the
current and future benefits: As it has been mentioned,
when action a; has been selected and applied to the plant,
the system moves to a new state St4+1 and receives a
reinforcement signal r.1,. The value function for state-
action pairs, Q(s¢,at), is updated by the basic learning
rule:

Q(st,at) — (1 —)Q(s¢, a¢) +freqr +7bHI}‘aX Q(st+1,b)]

St41
(2)
where:

- Ag, ., is the set of possible actions in the new state.

- The learning rate, « € (0,1], is a tuning parameter
used to optimize the speed of learning (Large learning
rates make learning faster, but might induce oscilla-
tions).

- The discount factor, v € (0, 1], is used to weight near-
term reinforcements more than distant-future ones: If
~ is small, the agent learns to respond only to short-
term rewards; the closer v is to 1 the greater the
weight assigned to long-term reinforcements.

3.2 State Representation

A central issue in Reinforcement Learning algorithms is
the definition of the states. In MFLC the states are defined
based on the control objective and control constraints, as
follows:

In a SISO implementation of the MFLC framework, the
control objective is considered to maintain the desired
output inside the band r — d and r + d, as shown in
Fig. 3. The width of this band is defined based on the
tolerance of the system (which depends on measurement
noise, disturbances and system specifications). This band
is defined as the goal band, and corresponds to the goal
state, where the agent should go and remain (it is now
assumed, without loss of generality, that this is exactly in
the middle of the working range).

h states goal state h states
A 1 A
4 A Lol A}
|1
1]
-+ -drd f

Fig. 3. Symbolic states definition in MFLC.

To describe the rest of the symbolic states, it is considered
that the agent has h states from the goal state to the
maximum positive or minimum negative error of the
system, f (Selecting h is a trade-off: this number must be

large enough to describe all the different behaviors of the
process, but small enough to reduce computational time
and the size of the @Q-matrix).

If needed, the ”length” of each state can be calculated as
follows: Fd
=< . 3
=1 3)
Thus, the vector of symbolic states can be presented as
follows:
_Je—wjIFe<uw
97 =\ wj —e OTHERWISE ~
where e is the tracking error at instant ¢ and the bound
parameter w; can be presented as:
wi=d+ (i —1)e,i €[1,..., ] (5)
(For negative errors, the bound parameter is trivial by
changing signs).

[1,..2h+1], (4)

The symbolic current state s;, can then be evaluated by
just:
s¢ = argmax(g;). (6)

3.3 Action Representation

In the single-input single-output version of MFLC, which
is the one used in this paper, the control signal u, € R
is calculated by varying the previous control signal in a
magnitude calculated from the difference of the numerical
values of the selected optimal action, a; € N, with
respect to the wait action, a, (action corresponding to
maintaining the previous control signal). That is,

ur = Up—1 + k(aw — at). (7)
This gives a Pl-like structure, which simplifies initializa-
tion and tuning for the end user (kK € R is the tuning
parameter). At each state there is only a finite set of
possible actions (see Fig. 4), that are selected based on
the system description. In particular, from the limitations
on the minimum and maximum variations of the control
signal, as follows:

If the incremental control is known to be bounded as
follows: L

Au < |Au| < Ru. (8)
The number of total actions needed to satisfy the con-
straints can be calculated by:

N, =2h <r0und (Auk—hAu>) +1. (9)

Rounding up is used, to satisfy the maximum bound (8).
From (7), (8) and (9), the value corresponding to the wait
action a,,, can be calculated as follows:
N, +1
Gy = ——5—-
If there is no ovelapping, the number of actions in each
state, n,, are given by the following expression
N, —1
N = —5—- (11)
However, in practice, it is necessary to increase the number
of available actions, by including some overlapping (see
Fig. 4.), so that nonlinear action-to-space relations can be
represented. As it is logical, not all the actions are available
at each state: a state has only a subset of possible actions
(only those that are physically reallistic). For example,

(10)
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in our application, if the measured temperature is very
low, the only actions available are those that increase the
temperature. Thus, the number of actions in each state is
nlg :na(l"’_ﬁ)v (12)
where [ is a parameter that gives the degree of overlapping
with neighboring states (always selected such that n? is
integer).
Then, the available actions for every state go from a{; to

aj (except in the goal state, where there is only the wait

action). The idea is presented in Fig. 4. Those available
actions can be calculated as
i il (i1
ay = ap +ﬁ(] v, (13)
a, =ap,+n, —1,
s )
where v = ﬁ% and a;{j_l is the first action in the state j,
calculated as
1, WHEN j =1

j—1 .
@ {Qaw—ai_Q,WHENj:h—i-Q' (14)

4. THERMAL CONTROL OF PREPACKAGED FOOD

This section explains the application of the MFLC strategy
presented in section 3, to control the thermal sterilization
process in a batch unit presented in section 2. In this
study the application of MFLC is implemented on a
detailed simulation of the sterilization process based on
the mathematical model in partial differential equations
developed and validated on some industrial plants by some
of the authors (Alonso et al. [1997, 1998]). The first part
of this section discusses the control strategy and continues
with the system definition used in MFLC.

4.1 Control Strategy

As discussed in section 2, there are three crucial stages in
controlling the sterilization process: Venting, Heating and
Cooling.

The control strategy for these stages is shown in Fig. 5.
As the venting stage can be controlled using a simple tech-
nique (keeping bleeder and drain valves fully open until the
pressure inside the retort reaches the steam pressure), the
proposed control application therefore concentrates on the
heating and cooling stages. In fact the approaches are sim-
ilar in these stages (although with different manipulated
inputs and tuning parameters), so for lack of space only
the design for the heating stage is discussed in detail.

During the heating stage, the control objective is to main-
tain the temperature inside the goal band by manipulating
the steam valve. To evacuate the condensed water from the
retort, the drain valve is open. Also, the bleeder valve is
slightly open.

4.2 System Definition

During the heating stage, the objective is to maintain the
retort temperature around r = 121C, with a tolerance of
+1C. Thus, the goal band is r —1 = 120C to r+1 = 122C.
The output range is considered to be +40C from the
selected reference. Thus, following the ideas presented in

States

S1 208y |i|ﬁq_|s"_2|mm .............. m
m:
S 3
-4-- |
S
S,

goal state has only ay

suonoy

Shea

Fig. 4. State-Action space of @-matrix
in MFLC.

the previous section, there are 81 symbolic states, where
state #41 corresponds to the goal state.

The actions are defined based on the possible control
variations: it is known that at each sample time the signal
must vary within the following bounds:

0.0001 < |Au| < 0.001. (15)

The tuning parameter is selected to be k = 1079, based
on the control constraints and previous experience on
the process. Thus, the total number of different available
actions is 1831, where the wait action is action #1001.
As there is some overlapping, the number of actions in
every symbolic state is 878. Therefore, in state number
1 the actions are #1,--- , #3878; similarly, in state 2 the
actions are #2,--- #879, and so on, following (13).

From those available actions, the strategy for selecting
one action is by exploration and exploitation. The agent
explores those available actions to know the optimal value
function by executing trial actions, following the e-greedy
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Fig. 5. Control logic

policy (Sutton and Barto [1998]). This means that the
action which has maximum @-value will be selected with
1 — ¢ probability.

The goal of the control task is to maintain the process in
the goal state (or drive it to the goal state if there has
been any disturbance or change of reference). To achieve
this, maximum reward is introduced for the action causing
the process to be in the goal state. Actions that move the
system away from the goal band are punished. Therefore,
the reward is given as:

1.0 for actions causing the next state to be the goal state,
0.0 for actions moving the next state towards the goal
state,
—2.0 for actions not changing the state, or moving the next
state away from the goal state.

Of course, more complex reward functions can be used, but
this particularly simple reward function has been selected
following the ideas by Smart [2002], which recommends

not giving the agent a detailed path to achieve the goal,
but only the goal, as the path assumed to be the most
adequate might not be really the best (learning takes care
of finding the most adequate approach).

4.8 Cooling Control Strategy

In this paper, the state-action space has been discussed in
detail for the heating stage. For controlling temperature
during the cooling stage the water valve is manipulated
following the same strategy, although with a different Q-
matrix, and changing the sign of the gain & in (7), because
in this case the input/output gain is negative. The state-
action space for maintaining pressure inside the retort is
defined as in the heating stage.

5. RESULTS AND DISCUSSION

The temperature responses for controlling the sterilization
process with 100 cans inside the retort using the proposed
MFLC are shown in Fig. 6, showing the learning process
after several batches. After venting, the first 5000 seconds
correspond to the heating process, where the steam valve
is manipulated. When the process is switched from heating
to cooling, the pressure inside the retort is maintained. In
this transition phase, the steam valve is closed and the air
valve is open to maintain the pressure. Then, for cooling
over the next 80 minutes, the water valve is open.

It is possible to see that the proposed controller correctly
regulates the temperature inside the retort during the
heating process, without affecting the cooling process.
Moreover the main variable (temperature within the cans,
estimated using simulation), remains within the desired
bound over the required minimum time. The pressure
inside the retort is shown in Fig. 8. Clearly, the RL agent
is able to handle the pressure drop inside the retort.
Moreover, the control signals, shown in Fig. 7, are smooth
and fulfil the control constraints.
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Fig. 6. Temperature responses for heating and cooling for
one cycle, after learning.
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Fig. 7. Control signals: opening of saturated steam valve
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Fig. 8. Pressure inside the retort.

To summarize, we can conclude that the MFLC manages
the process satisfactorily, without needing a precise math-
ematical model of the process.

6. CONCLUSIONS

An alternative procedure to the control of the sterilization
process of cans in the food industry has been presented,
based on regulation using the proposed MFLC algorithm,
which is based on Reinforcement Learning ideas. The
proposed MFLC automation strategy is appealing for this
kind of process: since they are very uncertain, it is not
practical to use a precise model of the process for control,
and the batch operations are specially adequate for learn-
ing controllers. The preliminary results presented show
that the proposed controller makes possible to maintain
the temperature inside the cans within specifications, al-
lowing safe consumption of the contents.
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