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Abstract: The problem of torque tracking PI-controller design for switched reluctance motor
(SRM) drive is discussed, where SRM magnetization characteristics are highly nonlinear, and
torque is a complex and coupled function of phase current and rotor position. A distinctive
feature of the control system designed is that two-time-scale motions are artificially forced in
the closed-loop system by the selection of control law parameters. Hence, singular perturbation
method is used to analyze the closed-loop system properties. Stability conditions imposed on
the fast and slow modes, and a sufficiently large mode separation rate, can ensure that after
fast ending of the fast-motion transients, the torque tracking error dynamics are as desired
by the control system design specifications and they are insensitive to SRM nonlinearities.
An accurate polynomial model of a prototype SRM magnetization characteristics is used for
simulation studies of the proposed controller. However, only a simple trapezoidal profile for
SRM inductance is used for calculation of the control voltage. Simulation results for constant
motor torque at different speeds show that motor peak-to-peak torque ripples are minimized to
about 5% of the average torque, especially for low speed operation.

Keywords: switched reluctance motor, direct torque control, robust tracking control, singular
perturbation method

1. INTRODUCTION

SRM has a robust mechanical structure and many advan-
tages over other electromagnetic motors. These include:
windings only on stator poles facilitate ease of cooling, ab-
sence of permanent magnets or winding on rotor makes it
suitable for high speed operation, no shoot-through fault in
power converter adds to over all drive system robustness.
However, excessive torque ripples due to the difficulty in
torque control has made it unpopular for high-performance
drive applications. Torque ripples are particularly critical
at low speed operation when these may cause speed ripples
and lead to degradation in the product quality.

Many researchers have proposed SRM torque controllers
similar to other drives as shown by Husain [2002], by
converting torque reference into current reference and then
using current controllers to realize the currents in the
phase windings. However, due to the highly nonlinear
and complex nature of SRM magnetization characteristics,

torque-to-current conversion becomes quite complex and
prone to error.

Alternatively, direct torque control (DTC) scheme does
not need to convert the torque reference to equivalent
current reference. The defining characteristics of DTC are:
1) no need for torque-to-current conversion to obtain phase
current reference for a given motor torque, and 2) no
need for current controllers. Instead, the motor torque is
estimated and compared with the reference torque, and
the torque error is used for obtaining the control voltage
directly.

2. NONLINEAR STATE EQUATIONS FOR DTC
SCHEME

In DTC scheme, phase torque is the plant output whereas
phase voltage v is the control input. Motor torque T (i, θ)
being a function of both phase current i and rotor position
θ, torque dynamics can be written as:
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Rewriting(1) in the form of general nonlinear state equa-
tion:

Ṫ = f + bu, (2)
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u= v. (3)

The phase flux-linkage ψ(i, θ) is a nonlinear function as
SRM is commonly operated in deep magnetic saturation.
It can be seen from preceding equations that the toque
dynamics are highly nonlinear and time-varying. Linear
control design methods would not be able to provide high-
performance.

A hysteresis type DTC for SRM had been reported by
Inderka et al. [2002]. Hysteresis controller applies full DC
link voltage to the phase winding and hence requires very
high sampling frequency to keep the output torque within
a narrow band of the reference. Any digital controller
implementation requires an anti-aliasing filter, which is
basically a low pass filter. This filter adds a phase lag to
the feedback signal, and hence the change in current may
not show in the feedback immediately. Due to this reason,
a bang-bang type controller will give rise to an oscillatory
output.

Instead of applying either −Vdc, +Vdc or zero only, the
controller should apply a variable voltage between −Vdc
and +Vdc to track the torque reference smoothly, as
shown by Neuhaus et al. [2006]. A pulse-width-modulated
(PWM) converter is used to supply the variable voltage
to the SRM. Neuhaus et al. [2006] have proposed to use
flux-linkage as the control variable and use predictive,
dead-beat control to achieve instantaneous torque con-
trol. However, conversion of phase torque to phase flux-
linkage using a look-up table is not a direct torque con-
trol scheme as such. Secondly, estimation of flux-linkage
from phase voltage integrating the volt-seconds is prone
to error. Model-based nonlinear control technique such as
feedback linearization used by Panda et al. [1996] requires
an accurate plant model. As modelling of SRM magneti-
zation characteristics is difficult and prone to error due to
manufacturing tolerances, the controller should be robust
to model inaccuracies.

A control design method has been proposed in this pa-
per where two-time-scale motions are artificially forced
in the closed-loop system by proper selection of control
law parameters. Hence, control system properties are ana-
lyzed using singular perturbation method. A PI controller
results from this method which is implemented using a
digital controller. The following sections show the pro-
posed torque controller structure, design methodology and
simulation results.

Fig. 1. Block diagram of speed control system using an
SRM: ω∗-speed reference; ωfb-speed feedback; T ∗

is the motor torque reference, T fb is motor torque
feedback from the torque estimator, d is duty cycle
from torque controller, v phase winding voltages from
the converter, θ is position feedback from the encoder

Fig. 2. Four PI torque controllers for the four phase
windings

Table 1. Specifications of Prototype SRM

Rated Power 1 hp

No. of poles 8/6

Max speed 4000 rmin

Rated Torque 1.78 N.m

3. SRM BASED MOTION CONTROL SYSTEM

The block diagram of a speed control system using
switched reluctance motors is shown in Fig.1. The speed
controller generates the motor torque reference T ∗ for the
torque controller. Fig.2 shows the internal details of the
torque controller for SRM.

Due to limited available DC-link voltage and finite phase
winding inductance; the phase currents, and therefore
phase torques can not be commutated instantaneously.
First, a torque sharing function (TSF) distributes the
motor torque among the phase windings so that phase
torque references do not change instantaneously. For the
laboratory prototype SRM given in Table 1, Fig.3 shows
the TSF that distributes the demanded torque T ∗ among
two neighboring phases, T ∗inc and T ∗dec; thereby ensuring
a smooth and trackable growth and fall of the torque
demand for each phase. The phase just entering into the
torque producing region has to produce T ∗inc whereas the
phase nearing the aligned position has to produce T ∗dec.
As infinitely many TSFs can satisfy this requirement;
additional constraints like efficiency and operating speed
range should be considered for deciding the TSF. A TSF
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Fig. 3. Cubic torque sharing function with the phase
torque shares; θon is the starting point of the overlap
region; θv the width of the overlapping region when
two nearby phases actually share the total motor
torque

with a cubic segment as defined in (5)-(6) has been used in
this work as cubic polynomials are the simplest functions
to provide smooth phase torque references.

T ∗inc = f(θ)

T ∗dec = T ∗ − T ∗inc. (4)

f(θ) = A+B(θ − θon) + C(θ − θon)2 +D(θ − θon)3 (5)
where,

A = 0 ; B = 0 ; C =
3T ∗

θ2v
; D = −2T ∗

θ3v
, (6)

with θon is the starting point for phase current conduction
and θv is the width of the overlapping region of conduction
between two neighboring phases.

The next task is to realize the phase torque references by
applying suitable control techniques. An accurate closed-
loop torque controller needs the actual motor torque as
feedback. The phase currents and rotor position are given
as feedback to the torque estimator for estimation of
motor torque. The following section discusses the torque
estimator used for torque feedback.

Fig. 4. Matching of measured static torque data (–) with
the torque predicted by the torque estimator(+) de-
rived from the polynomial flux-linkage model.

3.1 Torque feedback

Commonly, a strain-gauge type of torque transducer is
used for measurement of torque. However, this is bulky,
expensive and needs space for installation. An accurate
torque estimator in terms of phase current and rotor
position is developed from a flux-linkage model ψ(i, θ).
First, the flux-linkage had been measured at different
rotor position from 00 − 300 and phase current values
from 1A − 9A. This range of rotor position and phase
current were divided into four regions: 1) for small currents
near unaligned position, 2) for small currents near aligned
position, 3) for large currents near unaligned rotor position
and, 4) for large currents near aligned position. Fifth
order polynomials are used for capturing the variation
of flux-linkage with rotor position with current being
constant. Then, variation of the polynomial coefficients for
different currents is again captured by another fifth order
polynomial in current. Finally, the torque estimator is
derived from flux-linkage model using co-energy principle
i.e. T (i, θ) = ∂

∂θ

∫ i
0
ψ(ι, θ)dι. The torque estimator is given

as:

T (i, θ) =
5∑
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(
5∑
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im+1

m+ 1

)
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=
5∑
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m+ 1

)
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(
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s

m+ 1
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(
5∑

m=0

N2,k,2,m
im+1 − im+1

s
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(for is ≤ i ≤ imax and θh ≤ θ ≤ θa,

where

T1(is, θ) =
5∑
k=1

(
5∑

m=0

N1,k,1,m
im+1
s

m+ 1

)
kθk−1,

T2(is, θ) =
5∑
k=1

(
5∑

m=0

N2,k,1,m
im+1
s

m+ 1

)
kθk−1. (7)

The estimator was verified by comparing with the phase
torque measured under locked rotor condition. As can
be seen in Fig.4, the matching between the estimated
torque and the measured torque is quite accurate. Hence,
this torque estimator has been used for accurate torque
feedback. However, the proposed two-time scale DTC
scheme can be used for any other method of torque
feedback as well.
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4. TORQUE TRACKING PI-CONTROLLER DESIGN

4.1 Continuous-time PI-Controller

Let the tracking error be defined as e = T ref − T , where
the torque behavior is governed by (2), and the torque
dynamics is given by (1). The controller is being designed
so that the desired tracking error behavior given by

ė = −λe (8)
holds, where λ > 0.

In accordance with the design methodology Yurkevich
[2004], let us consider the torque tracking error controller
given by

µu̇ = k[λe+ ė], (9)
where µ is a small positive parameter, k is a gain selected
in accordance with the induced fast-motions stability
requirement as shown below. Note that the control law
(9) may be expressed in terms of transfer functions, of a
conventional PI-controller

u(s) =
[
kλ

µs
+
k

µ

]
e(s).

4.2 Two-time-scale motion analysis

In accordance with (2) and (9), consider the equations of
the closed-loop system given by

ė =Ṫ ref − f − bu, (10a)
µu̇ =k[λe+ ė]. (10b)

By substituting of (10a) into (10b), the system (10) can
be rewritten as

ė =Ṫ ref − f − bu, (11a)

µu̇ =k[λe+ Ṫ ref − f − bu]. (11b)
Since µ is the small positive parameter, the closed-loop sys-
tem equations (11) has the standard singular perturbation
form and, accordingly, the singular perturbation method
(see Tikhonov [1952], Kokotović et al. [1999], Naidu [2002])
may be used to analyze the closed-loop system properties.
Hence, from (11), we obtain the fast-motion subsystem
(FMS) given by

µu̇ = −kbu+ k[λe+ Ṫ ref − f ], (12)

where e, f , b and Ṫ ref are treated as the frozen variables
during the transients in (12) (that assumption can be
provided by µ → 0, that leads to increase of time-scale
separation degree between fast and slow modes in the
closed-loop system).

Let the gain k is selected such that kb > 0, then the
FMS is stable. Hence, after the rapid decay of transients
in (12), we have the steady state (more precisely, quasi-
steady state) for the FMS (12) , where u(t) = us(t) and

us = uid = b−1[λe+ Ṫ ref − f ], (13)
where uid is the nonlinear inverse dynamics solution.
Substitution of (13) into (10a) yields the slow-motion
subsystem (SMS) equations in the form (8). Hence, after

the damping of fast transients, the desired tracking error
behavior is fulfilled despite that f and g are unknown
complex and coupled functions of phase current and rotor
position.

The control law parameters Ts, µ, k, and λ should be
selected such that it would provide: first, the FMS sta-
bility; second, the desired degree of time-scale separation
between fast and slow motions in the closed-loop system
(11). Note that the degree of time-scale separation η can
be estimated by the ratio of SMS time constant to the
FMS time constant, that is η = kb/(λµ).

4.3 Digital PI-Controller

For implementation of the torque tracking error con-
troller, let us consider a Z-transform of (9) preceded by
a ZOH. Hence, the pulse-transfer function of the digital
PI-controller

Hu/e(z) =
k

µ

[
1 +

λTs
z − 1

]
follows, where Ts is a sampling period.

Note that for small Ts the ZOH can be approximated by
a time delay τ = Ts/2 (see Åström and B. Wittenmark
[1997]), then in order to consider the effect of controller
discretization on the closed-loop system properties, instead
of (10), a nonlinear pseudo-continuous-time model

ė(t) =Ṫ ref (t)− f(t)− b(t)u(t− τ), (14a)
µu̇(t) =k[λe(t) + ė(t)]. (14b)

with the delay τ = Ts/2 taken into account (see Yurkevich
[2004], Yurkevich et al. [1997]). Then, from (14), we obtain
the FMS given by

µu̇(t) = −kb(t)u(t−τ)+k[λe(t)+Ṫ ref (t)−f(t)], (15)

where e(t), f(t), b(t) and Ṫ ref (t) are treated as the
constant values during the transients in (15).

From (15), the corresponding transfer function of the open-
loop FMS with pure time delay

GoFMS(s) =
kb exp (−Tss/2)

µs
, (16)

results. Then the crossover frequency ωc and the phase
margin PM on the Nyquist plot of (16) are given by
ωc = kb/µ and PM = [π−ωcTs]/2, accordingly. It is clear
to see, an increase of b leads to decrease of PM given
that the sampling period Ts is fixed. Hence, in order to
maintain the constant value of the fast-motion subsystem
phase margin PM , take k = b̂−1, where b̂ is an estimate
of the parameter b.

Assume that the sampling period Ts is fixed and Ts = 2 ·
10−4 s. Take, for example, the desired phase margin PMd

given by PMd = 1 rad, and the desired degree of time-
scale separation given by ηd = 60. Then, from the above,
the parameters µ and λ

µ =
Ts

2(π/2− PMd)
≈ 1.75 · 10−4 s, λ =

1
ηdµ

≈ 95 s−1

(17)
result given that the condition kb = 1 holds.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3325



Value of b̂ is obtained using a trapezoidal profile for
phase inductance i.e. assuming that inductance is directly
proportional to the overlap between stator and rotor
poles. The analytical expression for the nominal model is
ψ(i, θ) = L(θ)i and L(θ) is given by

L(θ) =Lu, for 00 < θ ≤ θ1

=Lu +K θ
′
; θ

′
= (θ − θ1), for θ1 < θ ≤ θ2

=La, for θ2 < θ ≤ 300, (18)
where Lu is the phase inductance at the unaligned rotor
position, K = dL

dθ is the slope of the assumed phase
inductance variation vs. rotor position, θ = 0 is the
unaligned rotor position and θ = 300 is the aligned rotor
position. For the prototype motor, Lu = 0.01H, La =
0.04H, θ1 = 70, θ2 = 270, K = 0.09Nm/A2. Then, using
T = 1

2Ki
2, ∂ψ

∂i = Lu + Kθ
′

and ∂T
∂i = Ki. Finally, b̂ is

obtained as:
b̂ =

Ki

Lu +Kθ′ (19)

The selection of controller parameters in accordance with
the desired phase margin PMd of the fast-motion subsys-
tem (15) provides a guarantee of FMS stability on con-
troller discretization. These control parameters are used
in simulation of the controller. The simulation results and
their analysis are provided in the next section.

5. SIMULATION RESULTS

The controller performance has been verified through nu-
merical simulation using MATLAB-SIMULINK. Simula-
tion is carried out for full motor torque of 1.8Nm, at two
speeds 40 rpm and 240 rpm. Other important parameters
were on-angle θon = 50, overlap angle θv = 50, sampling
time Ts = 200µs and DC-link voltage Vdc = 200V . The
sampling time is chosen based on the typical execution
time on our laboratory prototype controller.

First, a bang-bang type DTC scheme has been simulated.
The hysteresis bandwidth was set at 0.1Nm. Due to the
limited sampling frequency, the phase torque does not stay
within the hysteresis band. This results in excessive torque
ripples, almost up to 50%, as can be seen in Fig.5. Next,
the bang-bang type controller had been simulated with
Vdc = 48V (typical voltage for electric vehicle system) and
Ts = 50µs. Fig.6 shows that torque ripples are much less
at about 5 %. These two results indicate that bang-bang
type controller can be used for low DC-link voltage and
if the sampling time of the controller can be kept low.
In SRM controller, the main computation involves that of
the torque sharing function (TSF) and estimation of phase
torque. The sampling time can be kept low with a faster
processor, but that solution will be expensive. However,
the proposed PI controller gives equivalent performance for
the available DC-link voltage and for the same sampling
time.

Fig.7 shows the motor torque and two phase torques with
motor operating at 1.8Nm and 40 rpm. It can be seen that
torque tracking ripples are negligible. Next, simulations
are carried out for 240 rpm. Fig.8 shows the motor torque
with two phase torques. The peak-to-peak ripples have
increased to about 0.1Nm, which is about 5% of the
average torque. This result is very promising considering

the fact that the controller design is quite simple. Fig.9
shows the torque reference and corresponding estimated
torque for one phase winding. The phase torque tracking
error is shown to be within ±0.15Nm. Corresponding
phase current and phase voltages are shown in Fig.10,
which show that phase current stays controlled for the
proposed DTC scheme. The phase voltage is high during
the increasing and decreasing part of the phase torque
reference, as expected.

It can also be noted that the phase torque tracking error
and motor torque ripples increase with increasing speed.
This is explained by the fact that bandwidth of the
controller (λ) is fixed, whereas the bandwidth of the phase
torque references increases with motor speed.

Fig. 5. Simulation results for a bang-bang type DTC
scheme: actual motor torque showing the torque rip-
ples and two phase torques, with motor speed 40
rpm, motor torque at 1.8 Nm, with Vdc = 200V and
Ts = 200µs

Fig. 6. Simulation results for a bang-bang type DTC
scheme: actual motor torque showing the torque rip-
ples and two phase torques, with motor speed 40
rpm, motor torque at 1.8 Nm, with Vdc = 48V and
Ts = 50µs
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Fig. 7. Simulation results for proposed PI based DTC:
actual motor torque showing the torque ripples and
two phase torques, with motor speed 40 rpm, motor
torque at 1.8 Nm

Fig. 8. Simulation results for proposed PI based DTC:
actual motor torque showing the torque ripples and
two phase torques, with motor speed 240 rpm, motor
torque at 1.8 Nm
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K.J. Åström, B. Wittenmark. Computer-controlled sys-
tems: theory and design, 3rd ed., Prentice-Hall infor-
mation and system sciences series, Upper Saddle River,
N.J. : Prentice Hall, 1997, 557 p.

V. D. Yurkevich, M. J. B lachuta, and K. Wojciechowski.
Design of digital controllers for MIMO non-linear time-
varying systems based on dynamic contraction method.
Proc. of European Control Conf. (ECC’97), Brussels,
Belgium, 1997.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3327


