
Scheduling of a LQ Control Algorithm for

Efficient FPGA Implementation ⋆

Přemysl Š̊ucha ∗ Zdeněk Hanzálek ∗

∗ Department of Control Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, Czech Republic

(Tel: 420-2-2435-5714; e-mail: {suchap,hanzalek}@fel.cvut.cz)

Abstract: This paper deals with the speed optimization of iterative algorithms with matrix
operations or nested loops for hardware implementation in Field Programmable Gate Arrays
(FPGA). The presented scheduling algorithm use Integer Linear Programming (ILP) while
complex algorithm structure is modeled by system of linear inequalities. The method is
demonstrated on a LQ control algorithm. An advantage of the presented scheduling method
is its suitability for algorithms with longer iteration period.

1. INTRODUCTION

This paper deals with the scheduling of iterative control
algorithms, where K iterations have to be executed each
sampling period in order to achieve the desired sampling
period. Such control algorithms usually contain rather
complex data computations, usually expressed in the form
of matrix operations and implemented as nested loops.
In this paper we deal with a target hardware based on
FPGA (constituted by several pipelined specialized arith-
metic units). The presented method is aimed to schedule
described control algorithms on FPGA architectures. We
solve the scheduling problem by Integer Linear Program-
ming (ILP), while achieving the optimal schedule, i.e.
schedule with minimal sampling period. Thanks to an
efficient representation of imperfectly nested loops we are
able to handle scheduling problems of significant size as
demonstrated on LQ control algorithm.

The FPGA design gets complicated, due to the represen-
tation of real numbers. One solution is to use an arith-
metic library implementing a 32-bit floating point num-
ber system, compliant with IEEE standards Cel [2004].
An alternative solution is to use the logarithmic number
system arithmetic, where a real number is represented as
the fixed-point value of base two logarithm of its abso-
lute value Matoušek et al. [2002]. In each case, rather
complex arithmetic is required. Therefore, scheduling of
such dedicated HW resources has to carefully consider the
algorithm structure, in order to achieve the desired per-
formance of applications. Scheduling also helps to choose
the appropriate arithmetic library prior to the algorithm
implementation.

1.1 Related Work

An iterative algorithm can be seen as a computation loop
performing an identical set of operations repeatedly (one

⋆ This work was supported by the Ministry of Education of the
Czech Republic under research programme MSM6840770038 and by
the ARTIST2 Network of Excellence on Embedded Systems Design
IST-004527.

repetition of the loop is called an iteration). When the
number of iterations is large enough, the optimization can
be performed by cyclic scheduling while minimizing the
completion time of the set of K iterations (within sampling
period). If operations belonging to different iterations
interleave, the schedule is called overlapped Sindorf and
Gerez [2000]. Efficient exploitation of the schedule overlap
and pipelining is rather difficult to achieve in manual
design.

The periodic schedule is given by a schedule of one iteration
that is repeated with a fixed time interval called a period
(also called initiation interval). The aim is to find a
periodic schedule with a minimum period. If the number
of processors is not limited, a periodic schedule can be
built in polynomial time Hanen and Munier [1995]. For
a fixed number of processors the problem becomes NP–
hard Hanen and Munier [1995]. The general solution
to this problem is shown e.g. in Fimmel and Müller
[2001]. Cyclic scheduling presented in Š̊ucha et al. [2004]
is not dependent on the period length and with respect
to Fimmel and Müller [2001] it leads to simpler problem
formulation with less integer variables. Moreover, this
model allows to reduce number of interconnections by
minimization of the data transfers as shown in Pohl et al.
[2005]. Modulo scheduling and software pipelining [Rau
and Glaeser, 1981] are related terms to cyclic scheduling,
which are usually used in the compiler community.

For practical reasons, we usually do not want to expand
matrix operations inside iterative loop into scalar opera-
tions, since we want to achieve regularity of the schedule
(efficiently implemented in the form of the nested loops)
and we want to prevent enormous growth in the number of
the scheduled tasks (i.e. to prevent the growth of computa-
tion time required by the scheduling algorithm). Therefore,
we intend to schedule matrix operations in the form of
nested loops.

A great deal of work in this field has been focused
on perfectly-nested loops (i.e. all elementary operations
are contained in the innermost loop). For example, one
of the often used optimization approaches called loop

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5770 10.3182/20080706-5-KR-1001.2917

shifting (operations from one iteration of the loop body
are moved to its previous iteration) was recently extended
in Gupta et al. [2004], Darte and Huard [2000]. Another
approach is the unroll-and-jam (also called unfolding or
unwinding) Carr et al. [1996], which partially unrolls one
or more loops higher in the nest than the innermost loop,
and fuses the resulting loops back together. Improvement
by unroll-and-squash technique has been shown in Petkov
et al. [2002].

In the case of LQ controller, the loops are imperfectly-
nested (i.e. some elementary operations are not con-
tained in the innermost loop). Existing compilers usu-
ally use heuristics transforming them into perfectly-nested
loops Wolfe [1995]. The tiling method, extended for
imperfectly-nested loops, is discussed in Ahmed et al.
[2000]. Loop tiling is a transformation technique, which
divides the iteration space of loop computations into tiles
(or blocks) of some size and shape, so that traversing the
tiles results in covering the whole iteration space Wolfe
[1995]. However, such approaches can greatly expand the
code size, which is unacceptable with respect to the limited
size of FPGAs as well as to the number of interconnections
in the design.

In paper Š̊ucha et al. [2007], we presented a method for
scheduling of iterative algorithms with imperfectly-nested
loops on the set of pipelined dedicated processors. The
method is based on cyclic scheduling of iterative algo-
rithms where matrix operations are modeled by “united
edges” and “processing time fusion”. The method is based
on the construction of an abstract model, which models
the nested loops, and which is optimally scheduled using
integer linear programming (ILP).

A lot of research has been done in scheduling of nested
loops as mentioned above. Our method differs in mathe-
matic formulation of the scheduling problem which leads to
simpler code and therefore more efficient FPGA implemen-
tation. Applications requiring matrix operations usually
lead to schedules with long period. Therefore classical
(time-indexed) ILP formulations of cyclic scheduling (e.g.
Sindorf and Gerez [2000]), where the number of inte-
ger/binary variables (and also time complexity) depends
on the period length, are inconvenient in this framework.
Number of integer/binary variables of our ILP model is
independent of period length.

1.2 Outline

In this paper we show, how to apply our method Š̊ucha
et al. [2007] on the LQ control algorithm. To achieve
an acceptable computational performance and precision,
the iterative algorithm has to be implemented using
floating-point arithmetics. We consider two libraries of
arithmetic units (Celoxica pipelined floating-point library
(FP32) Cel [2004] and High-Speed Logarithmic Arith-
metics (HSLA) Matoušek et al. [2002]) and we show that
by using the presented method, the optimal architecture
can be chosen for a given algorithm prior to its implemen-
tation.

The paper is organized as follows: in the next section the
LQ control algorithm is briefly outlined. Section 3 surveys
the scheduling of iterative algorithms (considering only

scalar variables) on the set of dedicated processors by
Integer Linear Programming. Section 4 presents scheduling
of iterative algorithms with imperfectly-nested loops, illus-
trated by the parallelization of the LQ control algorithm.
Section 5 presents experimental results and the last section
concludes the work.

2. LQ CONTROL PROBLEM

The LQ (linear-quadratic) control problem, initiated
by Kalman [1960], is one of the most important classes of
optimal control problems, in both theory and applications.
The problem, finding the optimal infinite-horizon LQ con-
troller, lies in determination of the optimal state-feedback
gain (Kalman gain K) through the discrete-time algebraic
Riccati equation. The Kalman gain can be evaluated as
shown in Figure 1.

for t=K downto 1 do

K(t) =
(

R + BT
· P(t − 1) · B

)

−1

· BT
· P(t − 1) · A;

//Kalman gain
P(t) = AT

· P(t − 1) · A + Q − AT
· P(t − 1) · B · K(t);

//Riccati equation
end

Fig. 1. LQ control algorithm.

T is time horizon of control and t is discrete time. Matrices
A and B describes the state-space representation of the
controlled system. The weighting matrices Q and R are
user specified and define the trade-off between regulation
performance (how fast goes to zero) and control effort.
Matrix P is a solution of the discrete-time algebraic
Riccati equation.

3. FORMULATION AND SOLUTION OF THE
SCHEDULING PROBLEM

The iterative procedure, as the one mentioned in the
previous section, can be implemented as a computation
loop performing an identical set of operations repeatedly.
Therefore our work, dealing with an optimized implemen-
tation of such procedures, is based on cyclic scheduling.

3.1 Cyclic Scheduling Problem

Operations in a computation loop can be considered as a
set of n generic tasks T = {T1, T2, ..., Tn} to be performed
K times where K is usually very large. One execution of T
labeled with integer index k ≥ 1 is called an iteration. The
scheduling problem is to find a start time si(k) of every
occurrence Ti Hanen and Munier [1995]. Figure 2 shows
an illustrative example of a simple computation loop with
corresponding processing times of operations executed
using HSLA arithmetic library (see table in Figure 2(b)).

Data dependencies of this problem can be modeled by a
directed graph G = (T , E). Each task Ti ∈ T (node in G)
is characterized by the processing time pi. Edge eij ∈ E
from the node i to j is weighted by a couple of integer
constants lij and hij . Length lij represents the minimal
distance in clock cycles from the start time of the task Ti

to the start time of Tj and is always greater than zero.

The notions of the length lij and the processing time pi are
useful when we consider the pipelined processors used in

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5771

for k=1 to K do
T1: a(k) = c(k − 3) · IN(k)
T2: b(k) = a(k) · OUT (k − 2)
T3: c(k) = b(k − 2) + 1
T4: OUT (k) = b(k) · 0.5

end

HSLA / FP32 (XCV2000E-6)
Max clock frequency: 50 / 93 MHz

Unit Processing Input-output
time [clk] Latency [clk]

ADD 1 / 1 9 / 11
MUL 1 / 1 2 / 8
DIV 1 / 1 2 / 28
SQRT 1 / 1 2 / 27

(a) (b) (c)

Fig. 2. (a) Illustrative example of the iterative algorithm. (b) Parameters of HSLA and FP32 arithmetic library (c) The
corresponding data dependency graph G.

both arithmetic libraries HSLA and FP32. The processing
time pi represents the time to feed the processor (i.e. new
data can be fed to the pipelined processor after pi clock
cycles) and length lij represents the time of computation
(i.e. the input–output latency). Therefore, the result of a
computation is available after lij clock cycles. On the other
hand, the height hij specifies a shift of the iteration index
(dependence distance) related to the data produced by Ti

and consumed by Tj .

Assuming a periodic schedule with the period w (i.e. the
constant repetition time of each task), each edge eij in
graph G represents one precedence relation constraint

sj − si ≥ lij − w · hij , (1)

where si denotes the start time of task Ti in the first
iteration. Figure 2(c) shows the data dependence graph
of the computation loop shown in Figure 2(a).

The aim of cyclic scheduling Hanen and Munier [1995] is
to find a periodic schedule while minimizing the period
length w. The scheduling problem is simply solved when
the number of processors is not limited, i.e. is sufficiently
large. Thereafter, the minimal feasible period w is given
by the critical circuit c in graph G, maximizing the ratio

w = max
c∈C(G)

∑

eij∈c lij
∑

eij∈c hij

, (2)

where C(G) denotes a set of cycles in G. Critical circuit
can be found in polynomial time, O(n3 · log(n)) Hanen and
Munier [1995], and we use this value to determine lower
bound of the period length w in our scheduling problem.

MUL

ADD

0 2 4

T1 T2

T3

T4

t

w

6 8

T1 T2

T3

T4

1st iteration 2nd iteration

Fig. 3. An optimal schedule.

Two iterations of the optimal schedule to the loop from
Figure 2(a) are shown in Figure 3.

3.2 Solution of Cyclic Scheduling on Dedicated Processors
by ILP

When the number of processors m is restricted, the cyclic
scheduling problem becomes NP–hard Hanen and Munier
[1995]. Unfortunately, in our case the number of processors

is restricted and the processors are dedicated to execute
specific operations (see table in Figure 2). Due to the
NP–hardness it is meaningful to formulate the scheduling
problem as a problem of Integer Linear Programming
(ILP), since various ILP algorithms solve instances of
reasonable size in reasonable time.

The aim of this subsection is to outline ILP formulation
for simple loops. Fore more details see Š̊ucha et al. [2004].
This approach is used in next section to schedule nested
loops.

The ILP model introduce new variables marked by “̂ ”. Let
ŝi be the remainder after division of si by w and let q̂i be
the integer part of this division. Then si can be expressed
as follows

si = ŝi + q̂i · w, ŝi ∈ 〈0, w − 1〉 , q̂i ≥ 0. (3)

This notation divides si into q̂i, the index of the execution
period, and ŝi, the index within the execution period. The
schedule has to obey two kinds of restrictions. The first
kind of restriction is given by the precedence constraint (4)
corresponding to Inequality (1).

The second kind of restriction are processor constraints (5).
They are related to the processor restriction, i.e. at maxi-
mum one task is executed at a given time on the dedicated
processor Pd. The constraint uses a binary decision vari-
able x̂ij (x̂ij = 1 when Ti is followed by Tj and x̂ij = 0
when Tj is followed by Ti).

Using ILP formulation we are able to test the schedule
feasibility for a given value of w. In addition, we minimize
one of the following objective criterions. One of the sim-
plest objectives is to minimize the iteration overlap by the
objective function min

∑n

i=1 q̂i.

The summarized ILP model, using variables ŝi, q̂i, x̂ij is
shown in Figure 4. It contains 2n +

∑m

d=1(n
2
d − nd)/2 +

ne integer variables and ne +
∑m

d=1(n
2
d − nd) constraints

(where ne is the number of edges in graph G and nd is the
number of tasks on one dedicated processor Pd).

Please notice that w is assumed to be a constant in the ILP
model (in order to avoid multiplication of two variables).
Optimal period w∗, the shortest period resulting in a
feasible schedule, can be found by formulating one ILP
model for each w between the lower and upper bound
(explained in Š̊ucha et al. [2004]). Moreover, the interval
bisection method can be used, since w∗ is not preceded
by any feasible solution (i.e. no w ≤ w∗ − 1 results in
a feasible solution). Therefore, there are, at maximum,
log2 (wupper − wlower) iterative calls of ILP, where wlower

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5772

min

n
∑

i=1

q̂i

subject to
ŝj + q̂j · w − ŝi − q̂i · w ≥ lij − w.hij ,

∀eij ∈ E (4)
pj ≤ ŝi − ŝj + w · x̂ij ≤ w − pi ,

∀i, j : i < j and Ti, Tj ∈ Td (5)
where

ŝi ∈ 〈0, w − 1〉; q̂i ≥ 0; x̂i ∈ 〈0, 1〉,
ŝi, q̂i, x̂ij are integers.

Fig. 4. ILP model.

and wupper are the lower and upper bound of w, respec-
tively.

4. PARALLELIZATION OF ALGORITHMS WITH
MATRIX OPERATIONS

The data dependencies corresponding to LQ control algo-
rithm (see Section 2) represented as condensed graph Gc

are shown in Figure 5. A single node of the condensed
graph Gc represents the set of tasks performing e.g. vector
addition, vector multiplication, scalar addition, With
respect to further efficient implementation, we do not want
to simply expand these nodes into scalar operations but we
want to keep them in a vector form intending to implement
them as computation loops. The presented approach is
based on the expansion of Gc to graph G (see Figure 6),
where the first level of nesting is modeled by, so called,
united edges and the second and higher level of nesting
(for matrix operations) is modeled by the processing time
fusion while fully utilizing the corresponding arithmetic
unit. Furthermore, G can be scheduled by ILP from Figure
4 while partially fixing the precedence constraints.

4.1 Processing Time Fusion

For example, task T1 in Gc computes matrix-matrix multi-
plication M = P ·A. When the multiplication is evaluated
in a common form, i.e. row-wise with respect to matrix
P, the efficiency of the resource utilization is relatively
small. This is caused by the relatively big input-output
latency of the twin-adder with respect to the row length.
We propose to compute the multiplication in column-wise
form Heřmánek et al. [2004], where all the elements of the
kth column of P are multiplied by a kth row of A. The
partial sums are stored in the memory.

for k=1 to 3 do
for i=1 to 3 do

for j=1 to 3 do
Mij = Pik · Akj

end
end

end

Processing time fusion models second and higher level of
nesting (loops over i and j in this example). With respect
to implementation in FPGAs (complexity of control logic)
the elementary operations of these loops should be pro-
cessed sequentially without a preemption. Therefore these
loops are modeled by one task (T1,1 in G in Figure 6) with

processing time equal to length of serialized elementary
operations.

When the operations on second and higher level of nesting
requires different types of processors (arithmetic units) the
elementary operations related to one processor are fussed
into one task. Then precedence constraints between these
tasks are not longer given by the inequality (1), but they
are given by the equation sj − si = lij − w · hij . Such an
edge, represented by a dashed line, is called a fixed edge in
the rest of this text.

First level of nesting is modeled using united edges,
explained below.

matrix-matrix multiplication

scalar/vector-vector multiplication

matrix-vector multiplication

scalar operation

matrix addition/subtraction

B ·(...)
T

P B·

A ·(...)
T

(...)+Q

(...)+(...)

R+(...)

(...)
-1

P A·

A (...)
T
· B ·(...)

T

(...)·(...)

(...)·(...)

X X X
X X X
X X X

X X X
X X X
X X X

X X X
X X X
X X X

X
X
X

X
X
X

X
X
X

X X X
X X X
X X X

X X X
X X X
X X X

X X X
X X X
X X XX X X

X X X
X X X

X X X
X X X
X X X

A P Q, ,

X
X
X

B

X

X

X

X X X

X X X

X X X K

X R

T1 T2

T4
T8

T5

T12

T6

T9

T3T7

T11

T10

Fig. 5. Data dependencies of the LQ control algorithm
represented by the condensed graph Gc.

4.2 United Edges

The first level of nesting is modeled by loop expansion. In
order to keep regularity of the loop implementation, the
time delay between consequent iterations of the column
loop must be the same. Therefore, we use a new kind of
edge - united edges. For example, when the united edge
from T1,1 to T1,2 belongs to the same group g as the
united edge from T1,2 to T1,3 then s1,2 − s1,1 = s1,3 − s1,2.
The equivalent precedence constraints are expressed by
equalities:

s1,2 − s1,1 − zg = lg,

s1,3 − s1,2 − zg = lg,

where zg is one variable of ILP, such that zg ≥ 0, and
constant lg is the length of the united edge. Both zg and lg

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5773

P Ai1 1j·
9

+
9

(2,0)

(9,0)

P Ai2 2j·
9

+
9

(2,0)

(9,0)

P Ai3 3j·
9

+
9

(2,0)

P bi1 1·
3

+
3

(2,0)

(9,0)

Pi2·b2

3

+
3

(2,0)

(9,0)

Pi3·b3

3

+
3

(2,0)

b1 1i·()
3

+
3

(2,0)

(9,0)

b2 2i·()
3

+
3

(2,0)

(9,0)

b3 3i·()
3

+
3

(2,0)

A i1 1j·()
T

9

+
9

(2,0)

(9,0)

9

+
9

(2,0)

(9,0)

9

+
9

(2,0)

A i2 2j·()
T

A i3 3j·()
T

A i1 1·()
T

3

+
3

(2,0)

(9,0)

3

+
3

(2,0)

(9,0)

3

+
3

(2,0)

A i2 2·()
T

A i3 3·()
T

bi i· ()
3

+
3

(2,0)

R+()
1

()
-1

1

(9,0)
(9,0)

() · ()
3

(9,0) (2,0)

()i · Kj

9

() +ij Qij

9

() + ()
9

(2,0)

(9,0)

(9,0)

(9,0)

(2,0)

(9,0)

(9,0)

(9,1)
(9,1)

united edge (group 1)

fixed edge

edge

united edge (group 2)
united edge (group 3)

united edge (group 4)

united edge (group 5)

K

for k=1 3to do

for

for

·

i
j

=1 3
=1 3

+=

to do

to do

end

end

end

temp P Aij ik kj

T*1,1 T*1,2 T*1,3

T+1,1 T+1,2 T+1,3

T*2,1 T*2,2 T*2,3

T+2,1 T+2,2 T+2,3

T*3,1 T*3,2 T*3,3

T+3,1 T+3,2 T+3,3

T*7,1 T*7,2 T*7,3

T+7,1 T+7,2 T+7,3

T*8,1 T*8,2 T*8,3

T+8,1 T+8,2 T+8,3

T*4

T+4

T5

T12T12

T*6

T*10

T+9

T+11

(9,0)(9,0)

P A·

Fig. 6. Abstract model of the LQ algorithm by the graph G with fixed edges and united edges on HSLA library.

T*11 T*12 T*13T*21 T*22 T*23 T*4 T*31 T*32 T*33T*71 T*72 T*73 T*81T*82T*83 T*6 T*10

T+4T+11 T+12 T+13T+21 T+22 T+23 T+31T+71 T+32 T+33T+72 T+73 T+81T+82T+83 T+91

T+5

T+11

0 10 20 30 40 50 60 70 80 90 100

w* = 105

t [clk]

MUL

ADD

w1 = 12

w2 = 12

w3 = 12

w4 = 12

w5 = 3

Fig. 7. Resulting schedule of the LQ algorithm (w∗ = 105; inner periods w1 = 12, w2 = 12, w3 = 12, w4 = 12, w5 = 3)
on two dedicated processors (adder and multiplier).

are common for all united edges belonging to the group g.
Then wg = zg +lg is a period of the column loop belonging
to group g.

4.3 Paralelization of the LQ control algorithm

In the example of LQ control we consider linear SISO
(single-input single-output) controlled system of third or-
der. This system can be represented by a three-by-three
matrix A and a column vector B of length three. Then
weight matrix Q is three-by-three matrix and R is a scalar.
Kalman gain K is a row vector of length three and P is
three-by-three matrix.

The data dependencies of the LQ control algorithm are
shown in Figure 5. Single nodes in the figure represent
the set of tasks (performing e.g. scalar-vector multiplica-
tion, matrix-matrix multiplication, ...) processed in nested
loops. This condensed graph Gc is further expanded by
the method shown in two previous subsections, i.e. the

first level of nesting is modeled by using united edges and
second and higher levels are modeled by processing time
fusion. The resulting abstract model of the LQ control al-
gorithm is shown in Figure 6. Finally, the optimal schedule
with respect to the abstract model was obtained by ILP
from Section 3.2.

5. RESULTS OF SCHEDULING

The resulting schedule assuming HSLA architecture is
shown in Figure 7. The presented scheduling technique
was tested on an Intel Pentium 4 at 2.4 GHz using the
commercial ILP solver CPLEX ILOG Inc. [2005]. The
abstract model of the LQ algorithm in Figure 6 consists
of 38 tasks on two dedicated processors (19 on the ADD
unit, 18 on the MUL unit). DIV unit is not considered as a
shared resource since there is only one task T12 processed
on this unit.

The upper bound of q̂i was given a priory equal to 1
for all tasks. The lower bound of period w, wlower =

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5774

103 [clock cycles] is given by the maximum of sum of
processing time on each processor. The upper bound
wupper = 160 [clock cycles] was calculated from condensed
graph Gc (in Figure 5), where all tasks in the inner loops
are supposed to be executed simply, in sequence.

The optimal schedule with period w∗ = 105 [clock cycles]
was obtained by the interval bisection method in 7 it-
erative calls of the ILP. The corresponding ILP model
contains 366 variables. The time required to compute the
optimal solution without elimination of redundant proces-
sor constraints, given as a sum of iterative calls of the
ILP solver was 36.1 s. This time does not include the
construction of the ILP model, since it is negligible from
the complexity point of view. The time required to com-
pute the optimal solution with elimination of redundant
processor constraints Š̊ucha et al. [2007] was 21.4 s. In
this case, as many as 148 variables were eliminated (the
number of eliminated redundant inequalities is twice as
big).

HSLA library and FP32 library differ only in input-output
latency of used units. The scheduling model stays the same
(except constants corresponding to input-output latency)
and scheduling results are similar to results with HSLA
library.

6. CONCLUSION

The objective of the paper is to demonstrate the use
of the scheduling method Š̊ucha et al. [2007] on a con-
trol algorithm. We show, how a scheduling method can
be used to optimize the computation speed of real-time
iterative algorithms with matrix operations running on
FPGA architectures. The method is demonstrated on LQ
control algorithm. An advantage of the method is that a
suitable hardware architecture can be chosen prior to time
consuming implementation.

Important advantage of the scheduling algorithm is its
independence of period length. Common approaches based
on ILP (e.g. K.-I. Kum [2001]) uses a time indexed binary
decision variables xit determining whether a computation
of node i starts at time step t. Unfortunately, the size of
such an ILP model (corresponding to time complexity)
depends on the period length.

REFERENCES

N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-
nested loop nests. In Proceedings of the IEEE/ACM
SC2000 Conference, Dallas, Texas, November 2000.

S. Carr, C. Ding, and P. Sweany. Improving software
pipelining with unroll-and-jam. In Proceedings of the
29th Hawaii International Conference on System Sci-
ences (HICSS’96), January 1996.

Platform Developers Kit: Pipelined Floating-point Library
Manual. Celoxica Ltd., 2004. http://www.celoxica.com.

A. Darte and Guillaume Huard. Loop shifting for loop
compaction. International Journal of Parallel Program-
ming, 28(5):499–534, 2000. ISSN 0885-7458.

Dirk Fimmel and Jan Müller. Optimal software pipelining
under resource constraints. International Journal of
Foundations of Computer Science, 12(6):697–718, 2001.

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Loop
shifting and compaction for the high-level synthesis of

designs with complex control flow. In Design, Au-
tomation and Test in Europe Conference and Exhibition
(DATE’04), Paris, France, February 2004.

C. Hanen and A. Munier. A study of the cyclic scheduling
problem on parallel processors. Discrete Applied Math-
ematics, 57:167–192, February 1995.

A. Heřmánek, J. Schier, and P. A. Regalia. Architecture
design for FPGA implementation of Finite Interval
CMA. In Proc. European Signal Processing Conference,
pages 2039–2042, Wiena, Austria, September 2004.

ILOG Inc. CPLEX Version 9.1, 2005.
http://www.ilog.com/products/cplex/.

W. Sung K.-I. Kum. Combined word-length optimization
and high-level synthesis of digital signal processing sys-
tems. IEEE Transactions on Computer–Aided Design of
Integrated Circuits and Systems, 20(8):921–930, August
2001.

R. E. Kalman. Contributions to the theory of optimal
control. Bol. Soc. Mat. Mexicana, 5(2):102–119, 1960.

R. Matoušek, M. Tichý, Z. Pohl, J. Kadlec, and C. Softley.
Logarithmic number system and floating-point arith-
metics on FPGA. In M. Glesner, P. Zipf, and M. Renov-
ell, editors, Field-Programmable Logic and Applications:
Reconfigurable Computing Is Going Mainstream, volume
2438 of Lecture Notes in Computer Science, pages 627–
636, Berlin, 2002. Springer.

D. Petkov, R. Harr, and S. Amarasinghe. Efficient pipelin-
ing of nested loops:unroll-and-squash. In 16th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS’02), Fort Lauderdale, California, April 2002.

Z. Pohl, P. Š̊ucha, J. Kadlec, and Z. Hanzálek. Per-
formance tuning of iterative algorithms in signal pro-
cessing. In The International Conference on Field-
Programmable Logic and Applications (FPL’05), Tam-
pere, Finland, August 2005.

B. R. Rau and C. D. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for
high performance scientific computing. In MICRO 14:
Proceedings of the 14th annual workshop on Micropro-
gramming, pages 183–198, Piscataway, NJ, USA, 1981.
IEEE Press.

S. L. Sindorf and S. H. Gerez. An integer linear pro-
gramming approach to the overlapped scheduling of
iterative data-flow graphs for target architectures with
communication delays. In PROGRESS 2000 Workshop
on Embedded Systems, Utrecht, The Netherlands, 2000.

P. Š̊ucha, Z. Pohl, and Z. Hanzálek. Scheduling of iterative
algorithms on FPGA with pipelined arithmetic unit.
In 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2004), Toronto,
Canada, 2004.

P. Š̊ucha, Z. Hanzálek, A. Heřmánek, and J. Schier.
Scheduling of iterative algorithms with matrix opera-
tions for efficient FPGA design–implementation of finite
interval constant modulus algorithm. Journal The Jour-
nal of VLSI Signal Processing, 46(1):35–53, January
2007. Springer.

M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995. ISBN 0805327304.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5775

