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Abstract: The capabilities of a tri-tethered aerostat positioning system are investigated using
simulations of a comprehensively validated dynamics model. The physical system studied
consists of a payload supported by a helium filled aerostat and attached to three anchored
ground tethers actuated using winches. Closed-loop control is achieved by feeding back the
position of a payload located at the confluence point of the tethers. The dynamics model of
the system is used to simulate the behavior of the closed-loop system. In a comparison of PID
and optimal LQG control, a 50% improvement is achieved with the LQG controller. Both the
LQG and PID feedback controllers were shown to benefit considerably from the addition of a
feedforward control term that exploits measurements of the system’s main disturbance force.

1. INTRODUCTION

Tethered aerostats are commonly used for hoisting aerial
communication, surveillance and atmospheric sensing plat-
forms. Typically, these systems use only a single cable to
tether the aerostat to the ground. The precision of the
tethered aerostat’s station-keeping abilities can be greatly
enhanced by attaching the platform to a series of tethers
fixed to the ground in a spatial arrangement, Leclaire
and Rice [1973], Nahon [1999]. When three tethers with
equidistant terminations are used, the tethers form a tri-
pod, which upon loading from the lifting force of the
aerostat, form a light-weight tension structure as shown
in Figure 1. Additionally, the tethers may be actuated
on the ground to enhance the system’s stability further
and to guide the payload along a specified path, Nahon
et al. [2002]. This work presents a study of the con-
trolled disturbance-rejection capabilities of this type of
tri-tethered aerostat system. Simulations of a previously
developed and validated dynamics model are used to
compare controllers that use proportional, integral, and
derivative (PID) and optimal feedback alone and with a
feedforward component.

Early experimental investigations of a tri-tethered aerostat
system with fixed tether lengths were performed for the
US Air Force, Leclaire and Rice [1973], and by Russian
meteorologists, Masterskikh [1978]. Recently, astronomers
in France performed tests on an actuated aerostat system
consisting of six tethers in a double-tripod arrangement
for a proposed optical telescope, Coroller et al. [2004].
Although no quantitative results for the motion of the
payload were presented, the concept proved feasible as
astronomical observations were recorded.

⋆ This work was supported in part by Canada’s Natural Science
and Engineering Research Council and Canada’s National Research
Council.

The multi-tethered aerostat system of the current work
may be viewed as a large-scale cable-driven robotic ma-
nipulator, similar to other systems that have been studied
previously. Starting with Robocrane in the early 1990s, Al-
bus et al. [1993], a new class of parallel manipulators
has emerged that employ cable actuators instead of tra-
ditional rigid members. The tri-tethered aerostat, which
is essentially a 3-degree of freedom parallel manipulator,
differs from conventional cable manipulators as it is in-
verted, relying on buoyancy to tension the tethers instead
of gravity. Significant research has been conducted into
the kinematics, dynamics and control of cable manipula-
tors, Roberts et al. [1998], Kossowski and Notash [2002],
Oh et al. [2005], Barrette and Gosselin [2005], however,
the size of their workspace is generally limited to several
meters which is about two orders of magnitude less than
our tethered system. Due to the drastic difference in the
length of the cables, which are the primary actuators,
the modeling and experimental analysis techniques of the
smaller mechanisms do not include all the important cable
dynamics that affect the much larger aerial positioning
system.

Researchers in China have studied a cable manipulator
that is at a similar scale to our system, Duan [1999], which
is designed as a receiver positioning device for a large
radio telescope. The main difference of the Chinese concept
is that instead of using an aerostat for lift, its receiver
is suspended from multiple cables extending radially to
tall tower supports. A fuzzy controller was developed
to control cable length, Su et al. [2005], however, the
cables were modeled as a pure time delay, which is an
oversimplicification that ignores known cable oscillatory
modes and performance variability due to loading.

Theoretical studies of a multi-tethered aerostat system
involving discretized tethers that overcome the limitations
of simple cable models, were initiated for a tri-tethered
system with a spherical aerostat, Nahon [1999]. Unlike all
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Fig. 1. a) Schematic diagram of proposed tri-tethered
aerostat positioning system, b) overhead view.

previous studies of multi-tethered aerostat systems which
assume passive tethers, an analysis was presented using
actuated tethers with a PID feedback control scheme.
Simulation results predicted that the station keeping per-
formance of the aerostat positioning system could be
drastically improved using basic feedback control. This
study was expanded to include a comprehensive model
of a streamlined aerostat and to investigate slewing ma-
neuvers, Nahon et al. [2002]. To corroborate the simula-
tion results with experimental data, a tri-tethered aero-
stat position system was constructed at the Dominion
Radio Astrophysical Observatory (DRAO) in Penticton,
B.C., Lambert et al. [2003]. The dynamics model of the
aerostat positioning system was shown to agree favorably
with experimental results without control, Lambert et al.
[2006a], and with control, Lambert et al. [2006b].

The proposed aerostat system, shown schematically in
Figure 1, was based on the conceptual design for a
novel radio telescope termed the Large Adaptive Reflector
(LAR), Fitzsimmons et al. [2000]. The LAR concept uses
a tethered aerostat system to position a receiver during
operation of the radio telescope. During telescope opera-
tion the antenna/feed package housed at the confluence
point of the tethers must be positioned at points on a
hemisphere down to a zenith angle, θze, of 60◦ as shown in
Figure 1. The tracking of the desired position and a certain
level of disturbance rejection can be realized by actively
adjusting the lengths of the ground tethers using winches
operating under closed-loop control. The current study
involves only three actuated tethers as only the position of
the confluence point is to be controlled, but future efforts
will likely involve at least six tethers to achieve some level
of orientation control.

Fig. 2. 2-D representation of discretized dynamics model
with one tether element expanded to show visco-
elastic elements.

2. DYNAMICS MODEL

A dynamics model of the tethered aerostat system was
developed to simulate the behavior of the system, Na-
hon [1999], Nahon et al. [2002]. The dynamics model is
achieved by discretizing the system into a series of inter-
connected lumped masses. The tethers are split into nodes
or lumped-masses connected by visco-elastic elements as
shown in Figure 2. The strength of this tether model
is its relatively simple numerical implementation and its
ability to accurately represent long cables whose profiles
and dynamics behavior change with loading, Driscoll et al.
[2000], Lambert et al. [2006a]. The mass of each tether
element is equally distributed to its two connected nodes
and the internal forces or tension, T applied to the each
node is based on the following linear relationships with the
strain, ε and strain rate ε̇ of each element:

Ti = AEε + bε̇, ε =
Li − L0

L0

(1)

where Li and L0 are the stretched and unstretched length
of the i-th element, A is its cross sectional area, E is
the effective Young’s modulus of the cable, and b is the
viscous damping coefficient of the cable. The stiffness of
each tether element, ki is related to Young’s modulus using
ki = EA/L0.

The model shown in Figure 2 does not contain the aero-
stat, which is instead represented by an experimentally
obtained forcing function, w(t), applied to the platform.
This simplified approach reduces the uncertainty with
modeling the aerostat’s aerodynamics by applying the
force developed in the aerostat’s leash during actual flight
tests. When a controller is active, this approach neglects
any aerostat dynamics induced by the control input, but
the magnitude of the control input is much smaller than
the wind induced forcing input. The magnitude of the
leash force was measured using an inline load cell and its
direction was estimated using GPS measurements of the
aerostat and the platform.

The tether actuation system (performed by ground winches
with the experimental system, Lambert et al. [2006b]) is
incorporated with the dynamics model by actively adjust-
ing the length of the bottom most tether element according
to the desired controller output, L̇i. This discrete step
change to the tether length approximates the continuous
length change achieved by the real winching system. Typ-
ically, the iteration time step of the simulation is 1 ms or
less, which provides a smooth response and small length
changes. Also included in the overall dynamics is a second-
order model for the winch actuators whose parameters
were estimated using test data, Lambert [2006].
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2.1 Linear Model

The original dynamics model is nonlinear, Nahon [1999],
Nahon et al. [2002], but for the purposes of controller de-
velopment, a linear model was obtained using a numerical
finite difference technique. The linear time invariant (LTI)
model of the system in state-space form is as follows:

ẋ = Ax + Bu + Gw

y = Cx
(2)

where x is the state vector, which includes the veloci-
ties and positions of each discretized node, starting at
the bottom of tether 1 up to the platform node, x =
[ẋ1 x1 ẏ1 y1 ż1 zl...ẋp xp ẏp yp żp zp]

T ; u is the control
input vector, which includes the three tether velocities,
u = [L̇1 L̇2 L̇3]

T ; w is the disturbance force applied to the
platform; and y is the output, which contains the position
vector of the instrument platform y = [xp yp zp]

T .

The state matrix, A, and the control matrix, B, are
obtained numerically while the input matrix, G, and the
output matrix, C, are obtained intuitively. Typically, the
tethers are discretized into 10 elements each which leads
to 168 state variables (6× 28 nodes–nine nodes for each of
the three tethers and one for the platform). The nonlinear
model contains additional state vector for the leash and
aerostat nodes above the platform, but because the leash
force is applied as the disturbance, all nodes above the
platform are disregarded.

It was observed during the model validation process that
nearly all the platform deflections during tests resulted
directly from the disturbance force applied by the aero-
stat’s leash, Lambert et al. [2006a]. Therefore, to apply
a realistic disturbance to the linear model, the measured
leash tension, resolved into Cartesian coordinates is used
as w(t). To apply w directly to the equations of motion
of the platform, the matrix G has three non-zero terms
corresponding to the platform’s velocity state variables,
i.e. G163,1 = G165,2 = G167,3 = 1/mp, where mp = 17.9 kg
is the mass of the platform.

To determine the fidelity of the linear model, a comparison
of linear and nonlinear simulation results are presented
in Figure 3. Matlab’s Simulink is used to simulate the
response of the LTI system. The disturbance w(t) was
obtained from a flight on May 27, 2005. This case was
chosen because of its high wind speed (≈ 4 m/s) relative
to the other closed-loop flights. The results in Figure 3 are
for an uncontrolled case in the symmetric configuration
(θze = 0◦). The plots show that the linear model slightly
underestimates the motion in the horizontal directions
while slightly overestimating the motion vertically. The
discrepancies in the linear results may be attributed to the
omission of certain nonlinear effects such as aerodynamic
drag; however, the difference between the two sets of
results is not significant enough to discourage usage of this
linear model to develop and test controllers.

3. CONTROL SYSTEM

The control approach for the multi-tethered positioning
system is to adjust the length of each tether independently
using, originally, feedback of readily measurable quanti-
ties. Figure 4 shows the tether controller using position
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Fig. 3. Comparison of nonlinear and linear simulation
results for platform position with no control.

Fig. 4. Block diagram of control system with position
feedback.

feedback of the platform. Because of its simplicity for
implementation and tuning, a PID controller was inves-
tigated first, followed by an optimal LQG approach. Both
types of feedback controllers were then augmented by the
introduction of a feedforward control term based on the
leash forcing function, which is also readily measurable.

3.1 PID Control

The general equation for the PID controller, which spec-
ifies the the tether velocity, L̇i, for the i-th tether is as
follows:

L̇i = KDėi + KP ei + KI

∫

eidt (3)

where ei is the instantaneous error of the corresponding
tether length and KD, KP , and KI are the derivative,
proportional and integral gains respectively. The error for
each tether is calculated using:

ei = ‖rd − rWi‖ − ‖r − rWi‖ (4)

where r is the measured position of the payload, rd is
the desired position and rWi is the position of the i-th
ground termination or virtual winch. A 2-D representation
of the geometry is shown in Figure 5. The idea behind this
approach is that the only payload location at which ei =
0 for i = 1,...,3 is where r = rd. Thus, we can rely on an
individual control for each tether, acting together, to bring
the payload to its desired location.

Although satisfactory closed-loop performance was ob-
served with the PID controller, its performance is limited
by the following three factors: 1) the manually tuned
PID gains are sub-optimal, 2) it does not exploit any
knowledge of the system dynamics, 3) it uses only position
measurements for feedback and does not take advantage
of other measured parameters. Therefore, to improve the
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Fig. 5. 2-D representation of tether geometry showing the
payload’s current position and desired position.

positioning performance of the aerostat system, it is essen-
tial to study the potential enhancements of utilizing more
advanced control techniques that overcome the major lim-
itations of the PID controller. In this study, both optimal
and feedforward control algorithms will be developed and
compared to PID results. The control development and
testing use a previously developed dynamics model of the
system.

3.2 LQG Control

Designing a practical optimal controller is typically a two-
stage process where the optimal gain matrix and state
estimator or observer are obtained independently. The
gain matrix, K is obtained by solving an algebraic Riccati
equation that minimizes the following objective function:

J =

∫

(yT Qy + uTRu)dt (5)

where Q and R are 3×3 weighting matrices corresponding
to the output and input respectively. In general, we are
concerned more with minimizing the output, which is the
platform error, so the elements of Q >> R (Q = 1×106R,
where R is an identity matrix). Matlab’s lqry function was
utilized to solve the ARE and determine K for our LTI
system.

Since K presumes full-state feedback (u = −Kx), when
realistically only the position of the platform is available
for feedback, the remaining states must be estimated using
a state observer. An optimal approach to state estimation
is achieved using a Kalman filter (KF). Combining a KF
with the optimal feedback gain K is known as the linear
quadratic Gaussian (LQG) problem. The term Gaussian
refers to the statistical distribution of the plant noise, n
and measurement noise, v represented in the following
description of the system:

ẋ = Ax + Bu + Gn

y = Cx + v
(6)

The Kalman filter provides an estimate of the state, x̂
and it requires the system matrices A, B, G, and C as
well as the estimated covariance matrices of both v and
n, which are assumed to be zero-mean white Gaussian
(ZMWG) processes. In our system, the exogenous input,
w, which corresponds to the plant noise of the Kalman
filter, is not ZMWG, and therefore it was required to add
a shaping filter to the plant model that would color a
ZMWG process to give it the general stochastic properties
of the input, w, Maybeck [1979]. For specific details of the
state estimation and controller development see Lambert
[2006]. The covariance of the measurement noise, n, was

Fig. 6. LQG regulator with Kalman filter state estimation
and LQR feedback.
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Fig. 7. Comparison of simulation results for platform
position using PID and LQG feedback control.

estimated based on observed noise of our DGPS system
during static tests, which had a variance of σ2 = 5mm2.
A block diagram showing the LQG controller is given in
Figure 6.

Simulation results comparing PID and LQG controllers
are given in Figure 7 with the leash forcing function
w(t) obtained during a flight on May 27, 2005. This
flight was chosen because the wind speed (≈ 4m/s) was
higher than other flights where the control system was
activated. The RMS error for the platform position along
with the maximum deflection for the two controllers are
given in Table 1. Results are also included for the passive
system with no controller, and it is observed that even
the PID controller offers considerable improvement. The
effectiveness of controlled system using both the PID
and LQG controller is encouraging considering that the
actuators are connected to the platform by flexible tethers
several hundred meters in length.

The objective function optimized by the LQG controller
minimizes the total error, which in this case is reduced
approximately in half compared to what is achieved with
PID, despite the fact that the PID controller is slightly
more effective in the horizontal x and y-directions. These
results are encouraging as it implies that precision of the
system can be improved, but it should be mentioned that
the LQG controller design presumed perfect knowledge
of the plant model and the stochastic properties of the
disturbance, while PID control requires no information a
priori. The robustness of the optimal controller to model
and disturbance uncertainties must be analyzed before
a comprehensive comparison between controllers can be
performed.
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Fig. 8. Block diagram of control system with feedback and
feedforward control input.

3.3 Feedforward Control

Recognizing that the vast majority of motion disturbances
to the platform are caused by the aerostat’s leash, whose
tension is a measured quantity in the experimental system,
leads us to consider feedforward (FF) control strategies
that exploit the knowledge of disturbance force, as shown
in Figure 8. Revisiting the LTI model for the system from
eq. (2) it becomes apparent that to completely cancel the
disturbance, w, the input, u, must satisfy:

Bu = −Gw (7)

Exact cancellation of the disturbance is not possible for
our system because of the non-collocation of the actuators
and the disturbance force (B and G are sparse matrices
that give their respective inputs, u and w, direct influence
over different states). Alternatively, this is observed by
considering the Moore-Penrose pseudoinverse solution of
eq. (7):

u = B+Gw (8)
where B+ is a left pseudoinverse of B. The Moore-
Penrose pseudoinverse yields the trivial solution u = 0. An
alternative pseudoinverse can be calculated that gives a
non-trivial solution to eq. (8), by coordinating the efforts
between the feedforward and feedback control, Friedland
[1986].

Expressing the control input u as the sum of both feedfor-
ward and feedback control gives:

u = −Kffw − Kx (9)

where Kff is the feedforward gain given by:

Kff = B+G (10)

and K is the feedback gain. This controller development
assumes the full-state vector, x, is used for feedback, but
when implemented it can use the estimated state x̂.

To solve for Kff and eventually B+, it is assumed that the
feedback gain, K, is already determined (using optimal or
other techniques). The development starts by substituting
eq. (9) into the state equation.

ẋ = (A− BK)x − (BKff − G)w (11)

The desired controller should attempt to eliminate plat-
form displacement, y = Cx ≡ 0 and system dynamics
ẋ ≡ 0. Satisfying both conditions, eq. (11) becomes:

C(A − BK)−1(BKff − G)w = 0 (12)

The disturbance w can be removed from the equation be-
cause the controller should be independent of w, resulting
in:

C(A − BK)−1(BKff − G) = 0 (13)
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Fig. 9. Comparison of simulation results of platform po-
sition for controllers using feedforward and feedback
control.

Table 1. Summary of RMS error and maximum
displacement (in mm) of the platform for var-

ious controllers.

Controller σx σy σz xmax ymax zmax

No control 4.2 9.7 66.1 14.3 26.3 189
PID 1.8 3.3 37.7 5.3 7.7 92.4
PID+FF 0.8 1.1 6.8 2.9 3.3 20.3
LQG 3.4 7.9 19.9 11.7 21.3 57.9
LQG+FF 0.4 0.5 1.7 1.3 1.3 6.7

which can be rewritten as:

C(A − BK)−1BKff = C(A − BK)−1G (14)

Finally, the feedforward gain can be solved for by:

Kff =
[

C(A − BK)−1B
]

−1
C(A− BK)−1G (15)

The collection of terms in front of G is recognized as a left
pseudo-inverse of the input matrix B.

B+ =
[

C(A − BK)−1B
]

−1
C(A − BK)−1 (16)

It can be shown that the matrix C(A − BK)−1B will
possess an inverse if A is nonsingular and |CA− B| 6=
0, Friedland [1986]. The specific value of the inverse clearly
depends on the feedback gain K, but the existence of an
inverse is independent of K.

When designing the LQG feedback controller with state
estimation, the Kalman filter must include knowledge of
the feedforward control term. This is accomplished by
modifying the state-space model originally given by eq.(2)
to reflect the changes represented in the state equation of
eq.(11).

Results are presented in Figure 9 that compare the perfor-
mance of feedforward controllers with both LQG and PID
feedback. The FF gain, Kff , used for the PID case is cal-
culated following the same procedure as for the LQG case,
but because PID does not use full-state feedback and its
actual gains can not be easily incorporated into the state
equation eq. (11), a suitable full-state feedback matrix,
K, was approximated using trial and error. An optimal
gain matrix, K, was found by increasing the terms of the
matrix R relative to Q until the gains matched the general
responsiveness of the PID controller. This controller design
process is able to produce favorable results, but it is noted
that Kff is calculated from an optimal feedback gain that
is obtained heuristically.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

783



The results in Figure 9 show that the PID+FF and
LQG+FF produce a similar response in the horizontal
directions, but vertically the LQG outperforms the PID
by more than a factor of three. A statistical comparison
of all four controllers tested in simulation is given in
Table 1 . Both feedfoward controllers succeed in limiting
the RMS error of the platform to less than 1 cm and
the maximum error to less than 3 cm. The exceptional
precision obtained with LQG+FF indicates that it should
be studied further, as issues related to robustness and
model uncertainty were not addressed in this investigation.
The PID+FF controller is an attractive option as it is easy
to implement and should be less sensitive to model uncer-
tainties. Unfortunately the operational life of our aerostat
expired shortly after the test flights conducted in 2005,
and the testing program is currently suspended. Therefore
it is not currently possible to test these controllers in the
field, but because the dynamics model was extensively
validated, Lambert et al. [2006a],Lambert [2006], we have
confidence in the simulation results presented.

4. CONCLUSION

Control of a multi-tethered aerial positioning system was
studied using simulations of a previously validated dy-
namics model. The effective disturbance-rejection capabil-
ities of the system were demonstrated by PID controller
that limited the RMS position error to less than 4 cm.
An optimal LQG controller was developed using a linear
model of the system and produced about a 50% reduction
over the PID controller. Both the LQG and PID feedback
controllers were shown to benefit considerably from the ad-
dition of a feedforward control term that exploits measure-
ments of the system’s main disturbance force. Although
the PID + feedforward controller does not perform as well
as the LQG + feedforward controller, it limits the RMS
error of the platform to less than 1 cm and may be an
attractive option due to simplicity and reduced sensitivity
to model uncertainty.
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