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Abstract: It is well known that the scattering variables transform the transmission delays into
a passive virtual transmission line, hence, its interconnection with passive subsystems preserves
passivity of the overall system. However, wave reflections may occur. Using a symmetric velocity
controller, on the master and the slave, and by matching the impedances, the scattering
transformation reduces to a passive output synchronization scheme. In this paper we revisit
this relation and perform some experiments on this line.
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1. INTRODUCTION

Most bilateral teleoperators use a communication channel
that imposes a time-delay between data transfers. It is
well known that this time-delay affects the overall stability
of the teleoperator. The control of these systems has
become an highly active research field amongst engineering
scientists. The ground–breaking work of Anderson and
Spong [1989] has ever since dominated this field. They
proposed to send the scattering signals to transform the
transmission delays into a passive virtual transmission
line. The transmission line is then interconnected with
the master and slave robots, which define passive force
to velocity operators, while the human operator and the
contact environment constitute the terminations to the
transmission line. Since power–preserving interconnection
of passive systems is again passive L2–stability of the
overall system is ensured under the reasonable assumption
that the human operator and the environment define
passive (force to velocity) maps. Since then, the use of
scattering theory has been widely extended. The reader
is referred to Hokayem and Spong [2006] and Arcara and
Melchiorri [2002] for two detailed surveys regarding the
control of teleoperators.

Recently, Chopra and Spong have presented an interesting
control architecture, based on the passive output synchro-
nization of n-agents. In their work they have achieved
delay-independent output synchronization of the agents,
for any constant time-delay (Chopra and Spong [2007],
Chopra and Spong [2006]). They have shown that using a
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symmetric controller on the teleoperator and by matching
their impedances with the virtual transmission line, the
scheme reduces to the one used for the passive output
synchronization. The stability for both schemes is ana-
lyzed using the passivity property of the transmission line,
for the scattering transformation, and with a Liapunov-
Krasovskĭi functional, respectively. In this work we revisit
this analysis and present some teleoperation simulations
and experiments that show the stable behavior of the
overall system.

The paper is arranged as follows: modeling the n-DOF
teleoperator is shown in Section 2; Section 3 and Section 4
analyze the stability of the scattering transformation and
the passive output synchronization schemes, respectively;
some simulations are shown in Section 5 with the experi-
ments in Section 6; finally, the conclusions and future work
are outlined in Section 7.

2. MODELING THE N–DOF TELEOPERATOR

Before continuing, let us introduce the following notation.
R := (−∞,∞), R

+ := (0,∞), R
+
0 := [0,∞). λm{A} and

λM{A} represent the minimum and maximum eigenvalue
of matrix A, respectively. |·| stands for the Euclidean norm
and ‖ · ‖2 for the L2 norm. In order to keep equations
as clear as possible, the argument of all time dependent
signals will be omitted (e.g. q̇(t) ≡ q̇), except for those
which are time-delayed (e.g. q̇(t − T )). Following this
reasoning, the argument of the signals inside the integrals
will be omitted, and it is supposed that is equal to the
variable on the differential, unless otherwise noted (e.g.
∫ t

0
x(σ)dσ ≡

∫ t

0
xdσ).
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The master and the slave are modeled as a pair of n–degree
of freedom (DOF) serial links with revolute joints. Their
corresponding nonlinear dynamics are described by

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τ
∗

m − τh

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) = τ e − τ
∗

s, (1)

where q̈i, q̇i,qi ∈ R
n are the acceleration, velocity and

joint position, respectively. Mi(qi) ∈ R
n×n are the inertia

matrices, Ci(qi, q̇i) ∈ R
n×n the coriolis and centrifugal

effects, gi(qi) ∈ R
n represent the vectors of gravitational

forces, τ
∗

i ∈ R
n are the control signals and τh ∈ R

n,
τ e ∈ R

n are the forces exerted by the human operator and
the environment interaction, respectively. i = m represents
the master and i = s the slave.

These robot dynamic models have some important prop-
erties 1 :

P1. Due to the fact that all joints are revolute then
Mi(qi) is lower and upper bounded. i.e.

0 < λm(Mi(qi))I ≤ Mi(qi) ≤ λM (Mi(qi))I < ∞
P2. The Coriolis matrix Ci(qi, q̇i) is given by

C
jk
i (qi, q̇i) =

n∑

l=1

1

2

[

∂M
jk
i

∂ql
i

+
∂M

jl
i

∂qk
i

− ∂Mkl
i

∂q
j
i

]

︸ ︷︷ ︸

iΓj

kl
(qi)

q̇l
i

where iΓj
kl(qi) are the Christoffel symbols of the first

kind with the symmetric property that iΓj
kl(qi) =

iΓj
lk(qi), hence, the matrix Ṁi(qi) − 2Ci(qi, q̇i) is

skew-symmetric. i.e.

Ṁi(qi) = Ci(qi, q̇i) + CT
i (qi, q̇i) (2)

2.1 General Assumptions

A1. Following standard considerations, we assume the
human operator and the environment define passive
(force to velocity) maps, that is, there exists κi ∈ R

+
0

s.t.
∫ t

0

q̇⊤

mτhdσ ≥ −κm, −
∫ t

0

q̇⊤

s τ edσ ≥ −κs, (3)

for all t ≥ 0.
A2. In order to simplify some calculations and to focus

on the main idea of this article, we will assume that
the gravitational forces are precompensated by the
controllers τ

∗
m, τ ∗

s (i.e. τ
∗
m = τm + gm(qm) and

τ
∗
s = τ s − gs(qs)). Hence, the dynamical models (1)

are reduced to
Mm(qm)q̈m + Cm(qm, q̇m)q̇m = τm − τh

Ms(qs)q̈s + Cs(qs, q̇s)q̇s = τ e − τ s
(4)

A3. We assume that the time-delay imposed by the com-
munication channel is constant on each direction, but
it may differ from one to another. The total round
trip time-delay is equal to Tm + Ts ≥ 0.

3. SCATTERING TRANSFORMATION

The scattering transformation is given by

1 The reader may refer to Kelly et al. [2005] and Spong et al. [2005]
for a complete guide on advanced robot modeling.

um =
1√
2b

[τmd − bq̇md] us =
1√
2b

[τ sd − bq̇sd]

vm =
1√
2b

[τmd + bq̇md] vs =
1√
2b

[τ sd + bq̇sd]
(5)

where b is the virtual impedance of the transmission line.
The master and the slave are interconnected, for constant
time-delays in the forward and the backward paths (Tm

and Ts, respectively), as

us = um(t − Tm) vm = vs(t − Ts) (6)

Proposition 1. Consider the teleoperator given by (4) con-
trolled by

τm = τmd − Bmq̇m

τ s = τ sd + Bsq̇s
(7)

where
τmd = −Kdm[q̇m − q̇md]
τ sd = Kds[q̇s − q̇sd],

(8)

with the communications governed by (5) and (6). The
control gains 2 b,Bi,Kdi ∈ R

+. Under the assumptions
A1 and A3

i. The system velocities asymptotically converge to the
origin for any time-delay Ti ≥ 0.

ii. By matching the impedances (i.e. Kdm = Kds = b),
wave reflections do not occur, and the system velocity
error, defined by e = q̇m − q̇s(t−Ts), asymptotically
converges to the origin for any time-delay and any
b > 0.

Proof. Let us propose the following Liapunov function
V (qi, q̇i) given by

V =
1

2
q̇⊤

mMm(qm)q̇m +
1

2
q̇⊤

s Ms(qs)q̇s + κm + κs + (9)

+

∫ t

0

[q̇⊤

mτh − q̇⊤

s τ e]dσ +

∫ t

0

[q̇⊤

sdτ sd − q̇⊤

mdτmd]dσ,

relying on the assumption A1, the property P1 of robot
manipulators, and the well known fact that

t∫

0

[q̇⊤

sdτ sd − q̇⊤

mdτmd]dσ =
1

2

t∫

t−Tm

|um|2dσ +

+
1

2

t∫

t−Ts

|vs|2dσ

≥ 0

which is the main contribution of the scattering trans-
formation, we show that the Lyapunov candidate (9) is
positive definite and radially unbounded.

Using the property P2, the resulting time derivative of V
is given by

V̇ = q̇⊤

mτm − q̇⊤

s τ s + q̇⊤

sdτ sd − q̇⊤

mdτmd (10)

Substituting the expressions (7) and (8) we get

V̇ =−Bm|q̇m|2 − Bs|q̇s|2 − Kdm|q̇m − q̇md|2 −
−Kds|q̇s − q̇sd|2 (11)

≤ 0
2 The use of scalar gains is made for simplicity. When these gains
are positive definite diagonal matrices can be treated with slight
modifications to the proof.
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From which can conclude that the system velocities q̇m

and q̇s asymptotically converge to the origin (part i, of
the proposition). Moreover, invoking LaSalle Theorem for
time-delayed systems (Hale [2006]), all solutions of (4),
(7) and (6) converge to M , the largest invariant set in

S. Where S = {q̇i ∈ R
n, i = {m, s} : V̇ = 0} s.t.

{q̇m = q̇md, q̇s = q̇sd}.
In order to prove part ii, from (7) and (8) we can find that

q̇md =
Kds

b + Kdm

q̇s(t − Ts) +
Kdm

b + Kdm

q̇m +

+
b − Kds

b + Kdm

q̇sd(t − Ts)

q̇sd =
Kdm

b + Kds

q̇m(t − Tm) +
Kds

b + Kds

q̇s +

+
b − Kdm

b + Kds

q̇md(t − Tm) (12)

note that, by matching the impedances, the terms q̇id(t−
Ti) on (12) disappear, and so do wave reflections. Using
these new expressions the controllers become

τm =
b

2
[q̇s(t − Ts) − q̇m] − Bmq̇m

τ s =
b

2
[q̇s − q̇m(t − Tm)] + Bsq̇s

(13)

and the time derivative of V given by (11) transforms into

V̇ =−Bm|q̇m|2 − Bs|q̇s|2 −
b

4
|q̇m − q̇s(t − Ts)|2 −

− b

4
|q̇s − q̇m(t − Tm)|2 (14)

Similarly by LaSalle, q̇m − q̇s(t− Ts) → 0 as t → ∞. 2

4. OUTPUT SYNCHRONIZATION

The control laws for the teleoperator are given by

τm = K[q̇s(t − Ts) − q̇m] − Bmq̇m

τ s = K[q̇s − q̇m(t − Tm)] + Bsq̇s
(15)

where K > 0 is the controller gain. Ti ≥ 0, i ∈
{m, s}, is the time delay in the forward and backward
paths, respectively. It is assumed that the initial conditions
q̇i(θ) ∈ Cε

n,r for θ ∈ [−Ti, 0].

Proposition 2. (Chopra and Spong [2006]). Consider the
teleoperator system (4) controlled by (15). Assume that
τh and τ e verify (3). Then all signals are bounded and
the system velocity error, defined by e = q̇m − q̇s(t− Ts),
asymptotically converges to the origin, for any K > 0 and
all Ti ≥ 0.

Proof. Consider the following Lyapunov-Krasovskĭi func-
tional, V (t, q̇i, q̇i(t − Ti)), given by 3

V = q̇⊤

mMm(qm)q̇m + q̇⊤

s Ms(qs)q̇s +

+

∫ t

0

[q̇⊤

mτh − q̇⊤

s τ e]dσ + κm + κs +

+ K

∫ t

t−Tm

|q̇m(θ)|2dθ + K

∫ t

t−Ts

|q̇s(θ)|2dθ (16)

3 For a complete description of Liapunov-based analysis for time-
delay systems, the reader should refer to Niculescu [2001].

Taking the time derivative of V and using the property P2
of robot manipulators, we obtain

V̇ = 2q̇⊤

mτm − 2q̇⊤

s τ s + K|q̇m|2 − K|q̇m(t − Tm)|2 +

+ K|q̇s|2 − K|q̇s(t − Ts)|2 (17)

The last four terms come from the Krasovskĭi-functional,
and can be written as:

K[q̇m − q̇s(t − Ts)]
⊤[q̇m + q̇s(t − Ts)] +

+K[q̇s − q̇m(t − Tm)]⊤[q̇s + q̇m(t − Tm)] (18)

using the expressions (15) and some algebraic manipula-
tions, it is easily seen that (17) becomes

V̇ =− 2Bm|q̇m|2 − 2Bs|q̇s|2 − K|q̇m − q̇s(t − Ts)|2 −
−K|q̇s − q̇m(t − Tm)|2 (19)

≤ 0

Towards this end, the Liapunov-Krasovskĭi functional
only ensures uniform stability, but, using an extension
of LaSalle’s Invariance principle for FDE, we can obtain
uniform asymptotic stability of the V̇ signals.

Note that, the function V (t, q̇i, q̇i(t − Ti)) is positive

definite, and V̇ ≤ 0 any arbitrary initial level set is
positively invariant, hence, all signals in (4) are bounded.
Now, consider the set S = {q̇i ∈ R

n, i = {m, s} :

V̇ = 0} characterized by all trajectories s.t. {q̇s(t −
Ts) = q̇m, q̇m(t − Tm) = q̇s}. Let M ⊂ S be the largest
invariant set in S. Using LaSalle Theorem (Hale [2006]),
all solutions of (4) and (15) converge to M as t → ∞. This
implies that the velocity error e asymptotically converges
to the origin for all Ti ≥ 0 and all positive definite gain
K. 2

5. SIMULATIONS

This section presents a simulation of the teleoperator sys-
tem. The master and slave are two link manipulators with
revolute joints. Their corresponding nonlinear dynamics
follow (1). The inertia matrix Mi(qi) is given by

Mi(qi) =

[
αi + 2βi cos(q2i

) δi + βi cos(q2i
)

δi + βi cos(q2i
) δi

]

qki
, k ∈ {1, 2} is the articular position of each link,

αi = l22i
m2i

+ l21i
(m1i

+ m2i
), βi = l1i

l2i
m2i

and δi =

l22i
m2i

. The lengths for both links l1i
and l2i

, in each
manipulator, are 0.38m. The mass of each link correspond
to m1m

= 3.9473kg, m2m
= 0.6232kg, m1s

= 3.2409kg and
m2s

= 0.3185kg, respectively. These values are the same
of those used by in Lee and Spong [2006]. Coriolis and
centrifugal forces are modeled as the vector Ci(qi, q̇i)q̇i

which are

Ci(qi, q̇i)q̇i =

[
−βi sin(q2i

)q̇2
2i
− βi sin(q2i

)q̇1i
q̇2i

βi sin(q2i
)q̇2

1i

]

q̇1i
and q̇2i

are the respective revolute velocities of the two
links. The gravity effects (gi(qi)) for each manipulator are
represented by

gi(qi) =

[
1

l2i

gδi cos(q1i
+ q2i

) + 1
l1i

(αi − δi) cos(q1i
)

1
l2i

gδi cos(q1i
+ q2i

)

]
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Note that this vector is precompensated following Assump-
tion 2. τh and τ e are the operator and environmental
torques. At this point, it should be addressed that the
human exerts a force fh on the master manipulator’s tip,
and the slave interaction force with the environment fe is
also measured at the manipulator’s tip. Hence, for the sim-
ulations the following expressions are used τh = J⊤

m(qm)fh
and τ e = J⊤

s (qs)fe, where J⊤

i (qi) is the Jacobian trans-
posed of the robot manipulator. The controllers for these
simulations are given by (15), with K = 5 and Bi = 0.5.
The time delay is Tm = 2.5s and Ts = 3.5s. The simulation
has been carried out using MatLab SimuLink TM.

Two simulations were carried out: on the first, the human
exerts a force on the master and the slave moves freely
on the environment (Fig. 1); on the second, the human
moves the master and the slave touches a high-stiffness
virtual wall on the environment (Fig. 2). This virtual wall
has been located in cartesian coordinates at y = 0.25m.
The stiffness of the wall was set to 20000 N

m
with 10 Ns

m
of damping. We assume that the system is frictionless. On
Fig. 1 the system moves freely, velocity error converges to
the origin and it is clearly seen that the teleoperator is
stable. Moreover, if touching a high-stiff wall, around 6s
on Fig. 2, the system remains stable, but, position drift
arises.

6. EXPERIMENTS

The experimental test-bed mainly consists of two direct-
drive two DOF nonlinear manipulators. These manipu-
lators are made of aluminium and are actuated by two
pairs of Compumotor DM1015-B brushless DC motors.
Optical encoders are used to measure the joint position,
the joint velocity is digitally estimated and filtered. Two
JR3 force-torque sensors, located at the manipulators end-
effectors, are used to measure the force interaction with the
human operator and environment, respectively. The con-
trollers are implemented using WinCom 3.3 that enables
SimulinkTM models to interact with external hardware in
real time. The sampling time is set to 4ms. An aluminium
wall is located at one side of the slave in order to test
the stability while interacting with an stiff environment.
This setup is located at the CSL, UIUC, and is depicted
in figure 3.

There are two experiments, the teleoperator moves freely
on Fig. 4 and touches an aluminium wall around 12s on
Fig. 5. The static friction has caused the teleoperator to
exhibit a position error, although moving freely (q1, q2 on
Fig. 4). However, the system is stable despite touching the
aluminium wall. In order to set the control gain K it can be
used a model-based tuning method such as the one on pp.
213 of Kelly et al. [2005]. The master and slave controllers
follow (15) and the gains were set to K = 10, Bi = 2, for
both experiments. The two 2 DOF manipulators move on
a parallel plane tangential to the earth surface, hence, the
gravity vector is zero.

7. CONCLUSIONS AND FUTURE WORK

Chopra and Spong [2006] introduced the passive output
synchronization, which has been the base platform for this
paper. Using a symmetric controller with the scattering
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Fig. 1. Simulation of the teleoperator system with Tm =
2.5s and Ts = 3.5s.
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Fig. 2. Simulation of the teleoperator system touching a
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Fig. 3. Experimental teleoperator at CSL, UIUC.

transformation and matching the impedances, one can
reduce the system to a passive output synchronization
scheme. Both schemes ensure stability for any arbitrary
constant time-delay. However, under velocity control, both
schemes do not provide position synchronization. Future
steps on this line are the study of the effects of variable
time-delays and the analysis of position drift free schemes.
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Fig. 4. Experiments with Tm = 2.5s and Ts = 3.5s.
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Fig. 5. Experiments touching the aluminium wall, with
Tm = 2.5s and Ts = 3.5s.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12702


