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Abstract: Driving safety can be enhanced by better understanding of risk situation, which can
be achieved by the knowledge of vehicle dynamic states as well as the road geometry. Among
the parameters of the road that have an influence on vehicle dynamics, one can find the bank
angle, which can not however be measured by low cost onboard sensors. In this paper, a new
method of road bank angle and vehicle roll estimation using an unknown input proportional
integral (PI) observer is proposed. To reach this goal, first a bicycle vehicle model is chosen.
This model is quite simple but well appropriate for the considered application. Thereafter, an
Extended Kalman Filter (EKF) is developed in order to estimate the sideslip angle which is
also difficult to measure with low cost sensors. This estimate is then used as an input of the PI
observer in order to estimate vehicle roll angle and the road bank angle (road attribute). Testing
on measurements obtained with a prototype vehicle shows the good behavior the proposed
estimation scheme.

1. INTRODUCTION

Over the last ten years, research on driving assistance
systems increased and aims to avoid accidents by giving
help to the driver in critical situations. A common used
assumption related to the road geometry consider that the
is an horizontal plan. Most of the time, this assumption
consists in a safety margin, as road is generally designed in
order to report a part of the lateral acceleration in curves
due to its non zero bank angle. However, it is also well
known that some black spots sections exist on rural roads
and badly shaped curves, with inadequate bank angle de-
crease vehicle stability. For example the maximum driving
velocity in a curve is constrained by the bank angle of the
road. Thus, driving assistance systems can take advantage
of such road attributes knowledge. These attributes are
unfortunately difficult to measure with commonly low cost
technology sensors used in automotive industry. In this
case, the development of virtual sensors are of primary
importance. Software system make use of available sensor
to provide an estimation of the non directly available
variable. In this paper an observer based estimation of
the vehicle state and the road bank angle is proposed. It
uses the concept of unknown input Proportional-Integral
(PI) observer. The PI observer is a generalized version of
the Luenberger observer [2, 5]. It was introduced by Wo-
jciechowski in 1978 for nonsingular monovariable systems
and then generalized for multivariable systems by Shafai
and Caroll in 1985. Thereafter and according to [6], Koeing
and Mammar generalize the application of the PI observer
while proposing to apply it to singular systems. Marx in [1]
provides certain necessary assumptions for the synthesis
of the PI observer and applies it in the field of robust
diagnosis and singular systems.

Several research works have been conducted for road bank
angle and unknown input estimation using unknown input
PI observers [4, 7, 11, 14]. In [14] an unknown input PI
observer was developed for the reconstruction of vehicle
lateral dynamics state while the road bank angle and the
wind lateral force are considered as signal faults acting as
unknown inputs. In [4], the study has been extended to
vehicle roll movement, but the roll angle is assumed to be
measured. This consideration is not so real, because its
measure is still not easy.

The goal of this paper is to overcome this limitation by
proposing a new design methodology for road bank angle
and vehicle roll angle estimation.
The used structure is similar to that developed in [1].
We show how to determine the parameters of the ob-
server as solutions of optimization problem under Linear
Matrix Inequalities (LMI) constraints. The improvement
of the observer performances in particular regarding the
convergence speed of the estimation error towards zero is
examined.

The remainder of the paper is organized as follows: In
section 2, the vehicle model used to develop the un-
known inputs PI observer is presented. Model equations,
road kinematics and sensors used are described. Section
3 describes the sideslip angle estimation method using
Extended Kalman Filter (EKF). The synthesis of the
unknown input PI observer is presented in section 4,
where the structure and the associated LMI constraints
are detailed. Parameters adaptation for the observer gain
computation are presented in section 5. In section 6, some
experimental validation results are discussed, while section
7 wraps with some conclusions.
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2. VEHICLE MODEL

2.1 Model equations

Several models of road vehicles have been developed in the
literature [4, 9], The vehicle lateral dynamics are modeled
by considering a three degree-of-freedom bicycle vehicle
model including slip, yaw and roll motions [10]. This model
uses the assumption of symmetry of the vehicle and is
sufficiently accurate to approximate lateral dynamics (see
Fig. 1).

Fig. 1. bicycle vehicle model

In normal driving situation, lateral tire forces can be
modeled as proportional to slip angles of each axle. The
front and rear tire forces (Fyf , Fyr) and tire slip angles
(αf , αr) are defined as follow:
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Csf and Csr are the cornering stiffness of the front and
rear tires respectively, lf and lr are the distances between
center of gravity and the front and rear axles respectively,
and the control input δ represents the front wheels steering
angle.

The state-space form of the four-state linear model can be
written as follow:

ẋ = Ax+Bδ +Bw1
φr +Bw2

fg (2)

where :
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where lg is the distance between the centre of gravity
and the dot of application of the lateral wind force. The
coefficients C0, C1 and C2 are given by:











C0 = Csf + Csr
C1 = lfCsf − lrCsr
C2 = l2fCsf + l2rCsr
Ie = Ix +mh2

r

The state vector of the linear model is :

x =
[

β ψ̇ φv φ̇v
]T

where φv is the vehicle roll angle and φ̇v is the vehicle roll
rate. Derivation of the model equations can be found in
[11]

Table 1 shows the nomenclature of the used vehicle model.

Table 1. Nomenclature of the vehicle model

v vehicle speed m.s−1 [3 30]

m vehicle mass kg 1560

Iz
moment of inertia about the

yaw axis
kg.m2 2200

Ix
moment of inertia about the

roll axis
kg.m2 380

kr roll stiffness coefficient N.m.rad−1 75545

br roll damping coefficient N.m.s.rad−1 4475

β sideslip angle rad -

ψ̇ yaw rate rad.s−1 -

g gravity acceleration m.s−2 9.81

2.2 Road kinematics

In this subsection, we will model the banked road on which
the vehicle is drived. Fig. 2 shows a rolling movement of the
vehicle in the presence of the road bank angle. The vehicle
body rotates around the roll center of the vehicle. The
distance hr represents the height of the center of gravity
G from the roll center. φr is the road bank angle.

3. VEHICLE STATE ESTIMATION USING EKF

The implementation of an unknown input PI observer for
the estimation of the road bank angle which is considered
as a potential fault in presence of disturbance input
requires the observability of the system which is only
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Fig. 2. vehicle roll angle and road bank angle.

obtained under the assumption of the availability of the
sideslip angle β. As the variable is not directly available
as measurement, a preliminary estimation procedure for
the lateral and longitudinal speed of the vehicle center of
gravity is developed using a discrete time version of the
Extended Kalman Filter (EKF) [12].

The nonlinear discrete time model used in this case has
for state vector xek constituted by the longitudinal and
lateral speed and the yaw rate. The vehicle roll motion is
neglected.

xek = [Vx Vy ψ̇]

Model input is constituted by the front wheels steering
angle and the four tires rotational velocities wi, (i =
1, ..., 4).

uek = [δ ω1 ω2 ω3 ω4]

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(3)

For the extended Kalman filter, we use the linear model
of the forces to reduce the complexity of the filter. The
Longitudinal and lateral forces are then calculated using
Dugoff forces model [8] represented below:






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Fxi = Cxxi
λi

1 − λi
ki

Fyi = Cyyi
tanαi
1 − λi

ki
(4)

with

ki =

{

(2 − σi)σi if σi < 1
1 if σi ≥ 1

(5)

and

σi =
(1 − λi)µiFni

2
√

C2
x0λ

2
i + C2

y0 tan2 αi
(6)

Cx0
and Cy0 are respectively longitudinal and lateral

stiffness Coefficient, and µi is the friction coefficient for

each tire considered equal to 1.
Fni, λi and αi are respectively normal force, longitudinal
slip and lateral slip of each tire:


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λi =
Rωi − Vxi

max(Rωi, Vxi)

α̂i = δi − arctan(
V̂yi
Vxi

)

(7)

where R is the wheel radius. The yaw rate is measured
using a gyrometer. The vehicle longitudinal speed is com-
puted as the mean of two rear wheels speeds which are
less subject to slip. From where the formulation of the
equations the discrete time nonlinear model used for the
Extended Kalman Filter design is given by:







xek(k + 1) = f(xek(k), uek(k))

y =

[

1 0 0
0 0 1

]

xek(k)
(8)

Figure 3 shows the results obtained with the use of
measurements collected using a vehicle prototype running
on the Satory test track located near Versailles (France).
All state variable are well estimated. Particularly, Fig.
3-d demonstrates that the estimated sideslip angle is
sufficiently close to the measure provided by the high cost
Correvit sensor mounted of the prototype vehicle.
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Fig. 3. Longitudinal speed, lateral speed, yaw rate and
sideslip angle estimation.

4. SYNTHESIS OF UNKNOWN INPUT
PROPORTIONAL INTEGRAL OBSERVER

4.1 Structure and existence conditions of the PI observer

The synthesis of the proportional integral observer, is
made in the framework of the H∞ control. It aims to
minimize and limit a priori the influence of the unknown
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inputs on the estimation error [1].
Let the linear system defined by:

{

Eẋ (t) = Ax (t) +Bu (t) + E1w (t) +R1f (t)
y (t) = Cx (t) +Du (t) +R2f (t) (9)

Where x(t) ∈ ℜn is the state vector, f(t) ∈ ℜnf is the
fault vector, w(t) ∈ ℜnw is the unknown inputs vector,
u(t) ∈ ℜnu is the input vector and y(t) ∈ ℜm represents
the output vector of the system.
The matrices E and A ∈ ℜl∗n are not necessarily square,
the other matrices and vectors defined above are of com-
patible size with E. The rank of E is noted nr.
The unknown inputs PI observer given by equation 10,
was proposed to estimate the dynamic states of the model
as well as the faults which affect it.















ż = Fz + (L1 + L2) y + Ju+Hf̂

ḟ = L3 (y − ŷ)
x̂ = M1z +M2y +M3u

ŷ = Cx̂+Du+Kf̂

(10)

The existence conditions of this observer are given by three
assumptions [1]:

• rank [E E1] = rank(E).
• (E,A,C) is imp-observable.

• ḟ(t) = 0.

The diagram of the unknown input PI observer structure
is represented in Fig. 4.

Fig. 4. PI observer structure diagram

To be able to express the estimation errors in the form of
a usual dynamic system, a matrix P ∈ ℜl×l is introduced.
This matrix ensures the compression of the lines of E in

order to obtain a matrix
[

ET CT
]T

of full row column.
The following new system is then obtained :
{

Eẋ (t) = Ax (t) +Bu (t) + E1w (t) +R1f (t)
y (t) = Cx (t) +Du (t) +R2f (t)

(11)

where E ∈ ℜnr×n is full row. Dimensions of the other
matrices are defined as follows :

PE =

[

E
0

]

PA =

[

A
Ab

]

PB =

[

B
Bb

]

PR1 =

[

R1

R1b

]

PE1 =

[

E1

0

] (12)

y (t) =

[

−Bb u (t)
y (t)

]

C =

[

Ab
C

]

D =

[

0
D

]

R2 =

[

R1b

R2

] (13)

Once the existence conditions of the PI observer checked,
it remains now to determine the various parameters which
constitute it. They are defined according to the vector :

L̄ =

[

L2

L3

]

4.2 Observer gain calculation using LMI

The dynamics of the errors are written in the following
matrix form :

[

ėx
ėf

]

=
[

A− L C
]

[

ex
ef

]

+Bw
[

ex
ef

]

= D

[

ex
ef

] (14)

where A, B, C, and D are defined by :

A =

[

T1A T1R1

0 0

]

B =

[

T1E1

0

]

C = [C R2 ] D =

[

In 0
0 Inf

] (15)

T1 and T2 are given by :
{

T1 =
(

ETE + CTC
)−1

ET

T2 =
(

ETE + CTC
)−1

CT
(16)

Theorem 1 is used to determine the vector L̄ in order to
minimize the H∞ norm of the disturbances transfer w on
the states and faults estimation errors ex = x − x̂ and
ef = f − f̂ respectively. The PI observer exists if and only

if the matrix
[

A− LC
]

is a matrix of Hurwitz. It is then

necessary to find a vector L̄ which ensures the following
condition [1]:

∥

∥

∥
D
(

sI −
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A− LC
))−1

B
∥

∥

∥

∞

< γ (17)

where γ is the smallest possible positive real.

Theorem 1 The robust PI observer defined by (10) for the
system (9) is obtained by minimization of γ under the fol-
lowing LMI constraints : γ > 0 ∈ ℜ, X ∈ ℜ(n+nf )×(n+nf )

and Y ∈ ℜ(n+nf )×(m+n−nr).
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In order to avoid a possible low convergence rate of the
observer towards the actual values, it is possible to add
an LMI constraint given by(19), which forces the speed of
convergence while imposing that the poles of A − LC are
in the complex left half-plane defined by {z |Re (z) < −λ},
and λ > 0.

X
(

A+ λI
)

+
(

A+ λI
)T
X − Y C − C

T
Y T ≺ 0 (19)

The matrix L is then defined by :

L =

[

L2

L3

]

= X−1Y (20)

and
F = T1A− L2C, L1 = FT2, J = T1B − (L1 + L2)D,
H = T1R1 − L2R2, M1 = In, M2 = T2, M3 = −T2D,

K = R2

(21)

The representation in the state space form of PI observer
having for inputs, the control signal u and the output y of
the equivalent system, and for output, the estimated state

x̂ and faults f̂ , is given by :
[

ż
ˆ̇f

]

=

[

F H
−L3C −L3R2

] [

z

f̂

]

+

[

L1 + L2 J
L3 (Im − CT2) L3 (CT2 − Im)D

] [

y
u
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and

[

x̂

f̂

]

=

[

In 0
0 Inf

] [

z
f

]

+

[

T2 −T2D
0 0

] [

y
u

]

5. STATE AND ROAD BANK ANGLE ESTIMATION

5.1 System adaptation for the observer design

In this section, we present the necessary matrices adapta-
tion for the application of the PI Observer to the vehicle
model given by equation 2.

One can establish that by choosing: A = A, B = B, E =

I4, R1 = Bw1, E1 = Bw2 and the other matrices equal
to zero, the vehicle model fits to the PI observer design
framework developed above. The measurement vector y
and the matrix C are given by:

y =
[

β ψ̇ φ̇v
]T
, C =

[

1 0 0 0
0 1 0 0
0 0 0 1

]

5.2 Simulation results

This part presents the simulation results obtained for the
vehicle state and the road bank angle.

The steering angle applied to the vehicle model, the con-
sidered road bank angle are provided respectively in Fig.
5 and Fig. 8-a. The vehicle forward speed is maintained
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Fig. 6. Estimated and simulated states: Sideslip angle
(a), Yaw rate (b), Roll angle (c) and Roll rate (d).
(estimated (dashed) and simulated (solid))
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Fig. 8. Road bank angle

constant and approximately equal to 20m/s (72km/h).

Figure 6 represents respectively the sideslip angle (a), the
yaw rate (b), the vehicle roll angle (c) and the roll rate (d).
The estimation errors are represented in Fig. 7, we can see
clearly that these errors are very small. The estimate of
the road attribute (bank angle) is given in Fig. 8-a and
the estimation errors are in Fig. 8-b. All the figure confirm
the adequate behavior of the model and the observers.

6. EXPERIMENTAL RESULTS

In this part, the vehicle velocity is considered as the mean
of the two translational velocity of the two rear wheels
which are the less subjected to the slips. As the speed is
a varying paramter, the system (2) can be considered as
a Linear Parameter Varying (LPV) system. However, in
order to reduce the computing time and to avoid the calcu-
lation of the LMI each time, velocity intervals for which the
PI observer gain can be considered as constant are defined
under the condition that the matrix

[

A− LC
]

remains
an Hurwitz matrix. The γ parameter which minimizes the
influence of the unknown inputs on estimates is also fixed
for each interval. And with an aim of accelerating the
convergence of PI observer, we have fixed the λ parameter
at 10.
The experimental vehicle is equipped with a optical steer-
ing angle sensor, inertial sensor (INS), wheel angular ve-
locity sensors (ABS) and lateral speed sensor (Correvit).
The steering angle of the front wheels is shown in Fig. 9-a,
while the estimation result for the state vector is provided
in Fig. 9-b, 9-c and 9-d, for the sideslip angle, the yaw rate
and the roll angle respectively. Finally, estimation results
for the roll angle and road bank angle are shown in Fig.
10.

All the figures confirm that the PI observer is able to
estimate state-space vector components and road bank
angle accurately.
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Fig. 9. Steering angle(a) and estimated states: Sideslip
angle (b), Yaw rate (c) and Roll rate (d), (estimated
(solid) and measured (dashed))
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Fig. 10. Roll angle and Road bank angle estimation

7. CONCLUSIONS

In this paper an estimation method for the roll angle as
well as for the reconstruction of the bank angle which is
one of most relevant curved road attribute. This attribute
is estimated by considering it as an input fault applied
to vehicle bicycle model. An unknown input PI observer is
thus able to achieve a sufficiently accurate estimation. LMI
constraints used for the synthesis of the observer matrices
offer flexibility for controlling observer convergence speed
and the attenuation of the effect of the unknown input
on the estimates. Results obtained when the observer
is applied to measurements collected with a prototype
vehicle show that the estimation procedure performs well.
Vehicle roll angle and road bank angle are accurately
estimated. This work is designed to improve, at low cost,
the controllability vehicle roll, optimize the speed limits
around a curve and avoid critical situations.
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