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1. INTRODUCTION

Model predictive control (MPC) has become a standard
control strategy for multivariable constrained systems
(Maciejowski [2002], Morari and Lee [1999], Kwon [2005],
Richalet et al. [1978]). In MPC, future behavior of a plant
is predicted by employing a model of the plant and an
optimal control sequence over a finite prediction horizon
is computed based on an optimization problem. At each
sampling time, the computation is repeated based on a
new measurement and a shifted horizon and only the first
control of an optimal control sequence is applied to the
plant. Although this feature of MPC allows handling sys-
tem constraints in a systematic manner, the requirement of
the on-line optimization limits the applicable area of MPC
especially for large-scale systems or plants with sufficiently
large prediction horizon. Recently, design methods for re-
ducing on-line computational complexity have been stud-
ied in some literature (Bemporad et al. [2002a,b], Rojas
et al. [2004], Kojima and Morari [2004], Cagienard et al.
[2007], Hara and Kojima [2007a,b]). Explicit solutions
to constrained linear MPC, which are computed off-line,
have been developed by multi-parametric programming
(Bemporad et al. [2002a,b]). In Rojas et al. [2004], Kojima
and Morari [2004], MPC methods based on a simplified
predictive model have been reported by singular value
decomposition approach for both continuous and discrete-
time constrained systems. More recently a reduced order
model predictive control has been derived based on a sys-
tem decomposition approach (Hara and Kojima [2007a,b]).
Although this approach enables us to obtain an MPC law
via a low-dimensional on-line optimization problem, sta-
bility of the resulting closed-loop system is not necessarily
guaranteed.

The advantage of the reduced order MPC is that the MPC
law, especially with long prediction horizon, can be ob-
tained from a reduced order on-line optimization problem,
while the traditional MPC formulation requires solving
the computationally expensive optimization problem on-
line. In our previous work (Hara and Kojima [2007a]), we

developed the system decomposition method for discrete-
time linear systems, and based on this method, a reduced
order MPC law is derived. Further, by exploring unforced
dynamics of a plant, an alternative reduced order MPC
law, which is improved in terms of control performance and
feasibility, is obtained (Hara and Kojima [2007b]). In this
paper, by employing the system decomposition method,
we derive an alternative stabilizing reduced order MPC
law such that feasibility and stability of the closed-loop
system are guaranteed. Furthermore, we clarify a set of
initial states for which the stability of the reduced order
MPC is ensured.

The paper is organized as follows. In Section 2, we pro-
vide a fundamental idea of the system decomposition and
formulate the problem. In Section 3, we introduce the sys-
tem decomposition of discrete-time linear systems, which
clarifies dominant input-output relations of the plant. In
Section 4, we present a stabilizing reduced order model
predictive control law, which guarantees feasibility and
stability of the control law. In Section 5, numerical exam-
ples are provided to illustrate the obtained reduced order
MPC law.

2. PROBLEM FORMULATION AND
FUNDAMENTAL IDEA

Consider a discrete-time linear time-invariant system with
constraints

Σ : xk+1 = Axk + Buk (1)

uk ∈ U := {u ∈ R
m | GUu ≤ EU} (2)

xk ∈ X := {x ∈ R
n | GXx ≤ EX} (3)

GU ∈ R
m̄×m, EU ∈ R

m̄, GX ∈ R
n̄×n, EX ∈ R

n̄

where xk ∈ R
n, uk ∈ R

m are the state and input
respectively. We make the following assumptions for the
system Σ:

(A1) A is nonsingular.
(A2) (A,B) is stabilizable and B has column fullrank.
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(A3) The sets U, X are bounded and 0 ∈ int(U), 0 ∈
int(X).

Define the constrained finite-time LQ control problem

PLQ : min
u0,··· ,uN−1

J(x0, u0, · · · , uN−1) (4)

s.t. uk ∈ U, xk ∈ X, (1), k = 0, 1, · · · , N − 1 (5)

J(x0, u0, · · · , uN−1) := xT
NPxN

+
N−1
∑

k=0

{

xT
k Qxk + uT

k Ruk

}

, Q > 0, R > 0 (6)

where N is the time horizon and P > 0 is the stabilizing
solution to the Riccati equation

P = ATPA + Q − ATPB(R + BTPB)−1BTPA. (7)

The control problem PLQ can be reformulated as a
quadratic programming problem (QP-problem). In the
traditional MPC, a control law is obtained by solving the
QP-problem at each sample time. However, the compu-
tational complexity increases as the prediction horizon N
grows since the dominating factor of the complexity of the
optimization problem depends on the number of decision
variables. In order to attack the constrained LQ control
problem, we introduce the system decomposition of finite-
horizon discrete-time systems (Hara and Kojima [2007a]).
This approach is based on the following fundamental idea.
When no constraints are imposed on the system, the un-
constrained LQ control and state response are given by

uk = KLQAk
cx0, (8)

xk = Ak
cx0 (9)

KLQ := −(R + BTPB)−1BTPA, (10)

Ac := A + BKLQ. (11)

Let us now decompose the initial state x0 into

x0 =
n

∑

i=1

αi · w
0
i , αi ∈ R (12)

where {w0
i ∈ R

n : i = 1, 2, · · · , n} is a basis of R
n, the LQ

control (8) and the response (9) are equivalently written
as follows:

uk =
n

∑

i=1

αi · w
1
i k, k = 0, · · · , N − 1 (13)

xk =
n

∑

i=1

αi · w
2
i k, k = 0, · · · , N (14)

w1
i :=











w1
i 0

w1
i 1
...

w1
i N−1











, w2
i :=











w2
i 0

w2
i 1
...

w2
i N











,
w1

i k := KLQAk
cw0

i

w2
i k := Ak

cw0
i .

The decomposition (12),(13),(14) characterizes the system
behavior of the unconstrained LQ control by the triplets
Wi := (w0

i , w1
i , w2

i )(i = 1, 2, · · · , n), which are denoting
the initial states(w0

i ), inputs(w1
i ), and state responses(w2

i ).
This decomposition of the LQ control indicates that by
introducing additional s-triplet Wi := (w0

i , w1
i , w2

i )(i =
n + 1, n + 2, · · · , n + s = Ns) which have dominant
influence on the system response, it enables us to deal
with the constrained LQ problem via a lower dimensional
optimization problem. Based on the idea observed here,
reduced order MPC laws are derived by employing the
system decomposition method Hara and Kojima [2007a,b].

Although the reduced order MPC law can be obtained
from the lower dimensional optimization problem, there is
no guarantee that an optimization problem for the reduced
order MPC law remains feasible at all time steps and the
resulting closed-loop system is stabilized. In the sequel,
we introduce the system decomposition method and derive
a reduced order model predictive control that guarantees
both feasibility and stability of the closed-loop system.

3. SYSTEM DECOMPOSITION OF DISCRETE-TIME
LINEAR SYSTEMS

Let us begin with the system decomposition method for
discrete-time systems (Hara and Kojima [2007a]).

Define spaces U := R
m·N ,Z := R

n·(N+1) and denote
input-output responses as follows:

û :=











R
1
2 u0

R
1
2 u1

...

R
1
2 uN−1











∈ U , ẑ :=

[

z0

z1

]

∈ Z

z0 = P
1
2 xN

z1
k = Q

1
2 xk

(k = 0, 1, · · · , N − 1)

, z1 =







z1
0
...

z1
N−1






(15)

The input-output relation is described by

ẑ = Fax0 + Gû (16)

Fa :=

















P
1
2 AN

Q
1
2 I

Q
1
2 A
...

Q
1
2 AN−1

















∈ R
n·(N+1)×n, (17)

G :=



















P
1
2 AN−1BR− 1

2 P
1
2 AN−2BR− 1

2 · · · P
1
2 BR− 1

2

0 0 · · · 0

Q
1
2 BR− 1

2 0 · · · 0

Q
1
2 ABR− 1

2 Q
1
2 BR− 1

2 0
...

...
...

Q
1
2 AN−2BR− 1

2 Q
1
2 AN−3BR− 1

2 · · · 0



















∈ R
n·(N+1)×m·N (18)

and the cost function (6) is written as follows:

J = ‖û‖2
U + ‖ẑ‖2

Z

= xT
0 FT

a (I + GGT)−1Fax0 +

[

x0

û

]T

∆

[

x0

û

]

(19)

∆ :=

[

Fa G
0 I

]T [

G
I

]

(I + GTG)−1

[

G
I

]T [

Fa G
0 I

]

∈ R
(n+m·N)×(n+m·N) (20)

The eigenvalues and eigenvectors of the matrix ∆ charac-
terize the dominant pairs of the initial state and control
signal. Next lemma provides a calculation method of the
eigenvalues and eigenvectors by fixed size of matrix.

Lemma 1. (Hara and Kojima [2007a]) The eigenvalues of
∆ are given by the roots of the following transcendental
equation.
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det

{

[−P, I]Ha(λ)N

[

I
λI + P

]}

= 0 (21)

Ha(λ) :=

[

A+
1

1 − λ
BR−1BTA−TQ −

1

1 − λ
BR−1BTA−T

−A−TQ A−T

]

(22)

The eigenvector wi = (w0
i , w1

i ) ∈ R
n ×U corresponding to

the eigenvalue λi is constructively given as follows:

w0
i 6= 0 : [−P, I]Ha(λi)

N

[

I
λiI + P

]

w0
i = 0 (23)

w1
i =











w1
i0

w1
i1
...

w1
iN−1











, (24)

w1
ik = −

1

1 − λi

R− 1
2 BT[0, I]Ha(λi)

k+1

[

I
λiI + P

]

w0
i (25)

k = 0, 1, · · · , N − 1

Further, when û = w1
i is applied to the system with the

initial condition x0 = w0
i , the system response xk is given

by

xk = w2
ik = [I, 0]Ha(λi)

k

[

I
λiI + P

]

w0
i ,

k = 0, 1, · · · , N. (26)

2

Remark 1. In terms of the eigenvalue problem of ∆, the
following properties are verified for the system Σ.

(a) The matrix ∆ has eigenvalues at zero and the corre-
sponding eigenvector yields the LQ control:

uk = R− 1
2 w1

k

= KLQAk
cw0, w0 6= 0 (27)

(k = 0, 1, · · · , N − 1).

Thus the eigenvalue problem of ∆ characterizes a set
of control sequences which naturally includes the LQ
control.

(b) The eigenvectors {wi} of ∆ are orthogonal in R
n×U .

2

In Lemma 1, the assumption (A1) is necessary since the
formula requires the symplectic matrix Ha, which involves
the inverse of the state transition matrix A.

In the sequel, we normalize the eigenvectors as ‖(w0
i , w1

i )‖Rn×U

= 1 (i = 1, 2, · · · ) and define w2
i by the corresponding state

responses.

4. STABILIZING REDUCED ORDER MODEL
PREDICTIVE CONTROL

In the previous section, the system decomposition of
discrete-time linear systems is presented, which charac-
terizes the dominant pairs of the initial state and control
sequence. By employing the system decomposition, we
derive a reduced order model predictive control law which
guarantees the closed-loop stability.

Let λi(λ1 = · · · = λn = 0, λn+1 ≥ · · · ≥ λn+m·N ),
wi = (w0

i , w1
i )(i = 1, 2, · · · , n + m · N) be the eigenvalues

and eigenvectors of the matrix ∆. We denote the state and
input at time t by xt, ut and the predicted state and input
at time t + k by xk|t, uk|t, which are computed based on
the measurement xt(= x0|t) at time t. When we apply a
control sequence:

uk|t =

Ns
∑

i=1

αiR
− 1

2 w1
ik + αNs+1 · ūk (k = 0, 1, · · · , N − 1),

(Ns = n + s) (28)

the following system response is generated (Lemma 1).

xk|t =

Ns
∑

i=1

αi · w
2
ik + Akx̃0 + αNs+1 · x̄k (29)

x̄k :=
k−1
∑

i=0

AiBūk−1−i, x̄0 = 0, k = 1, 2, · · · , N (30)

x̃0 := x0|t −

Ns
∑

i=1

αi · w
0
i (31)

Here Ns is a design parameter, which represents the num-
ber of basis vectors in the input space. In the control (28),
ūk ∈ R

m(k = 0, 1, · · · , N − 1) denotes an auxiliary input
sequence to be designed and is introduced to guarantee
stability of the resulting closed-loop system. The cost
function (6) corresponding to the input (28) is expressed
as follows:

J
(

v, x0, Ū
)

= vTHv + 2vTFx0 + xT
0 Sx0 (32)

v := [α1, α2, · · · , αNs+1]
T (33)

Ū = {ū0, ū1, · · · , ūN−1} (34)

H :=ĨT

{

Λ + WT
0 (P + ANT

PAN +

N−1
∑

k=0

AkT
QAk)W0

− WT
0 (ANT

PW 2
N +

N−1
∑

k=0

AkT
QW 2

k )

− (ANT
PW 2

N +
N−1
∑

k=0

AkT
QW 2

k )TW0

}

Ĩ

+ Ī

{

x̄T
NPx̄N +

N−1
∑

k=0

(x̄T
k Qx̄k + ūT

k Rūk)

}

ĪT

+ Ī

{

x̄T
NP (W 2

N + ANW0)

+
N−1
∑

k=0

x̄T
k Q(W 2

k − AkW0) + ūT
k R− 1

2 W 1
k

}

Ĩ

+ ĨT

{

x̄T
NP (W 2

N + ANW0)

+

N−1
∑

k=0

x̄T
k Q(W 2

k − AkW0) + ūT
k R− 1

2 W 1
k

}T

ĪT

F :=(ĨTW 2
N

T
+ Ī x̄T

N )PAN +
N−1
∑

k=0

(ĨTW 2
k

T
+ Ī x̄T

k )QAk

− ĨTWT
0 S (35)
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S :=ANT
PAN +

N−1
∑

k=0

AkT
QAk (36)

Λ := diag(λ1, λ2, · · · , λNs
) ∈ R

Ns×Ns

W0 := [w0
1, w

0
2, · · · , w0

Ns
] ∈ R

n×Ns

W 1
k := [w1

1k, w1
2k, · · · , w1

Nsk] ∈ R
m×Ns , k = 0, · · · , N

W 2
k := [w2

1k, w2
2k, · · · , w2

Nsk] ∈ R
n×Ns , k = 0, · · · , N

Ĩ := [INs
, 0] ∈ R

Ns×(Ns+1)

Ī := [0, · · · , 0, 1]T ∈ R
Ns+1 (37)

We will solve the following optimization problem P, which
is obtained by reformulating the constrained LQ control
problem PLQ (4), (5) with additional conditions for closed-
loop stability.

P : V ∗(xt) = min
v∈RNs+1

J(v, xt, Ūt) (38)

s.t.

Ns
∑

i=1

αiR
− 1

2 w1
ik + αNs+1 · ūk ∈ U (39)

Ns
∑

i=1

αi · w
2
ik + Akx̃0 + αNs+1 · x̄k ∈ X (40)

k = 0, 1, · · · , N − 1
Ns
∑

i=1

αi · w
2
iN + AN x̃0 + αNs+1 · x̄N ∈ Xf (41)

αNs+1 = 0(t = 0) (42)

Ū0 := {0, 0, · · · , 0} (t = 0) (43)

Ūt :=
{

u∗
1|t−1, u

∗
2|t−1, · · · , u∗

N−1|t−1,KLQx∗
N |t−1

}

(t ≥ 1) (44)

Here u∗
k|t, x∗

k|t denote the optimal controls and states

computed by (28),(29) with an optimal coefficient vector
obtained from the optimization problem P at time t. The
conditions (41)–(44) are introduced to guarantee recursive
feasibility of the optimization problem and stability of
the closed-loop system. The condition (41) represents
an invariant terminal set, which is the maximal output
admissible set O∞({x ∈ R

n : KLQAk
cx ∈ U, Ak

cx ∈
X,∀k ∈ Z

+})(Gilbert and Tan [1991]) expressed as

Xf := {x ∈ R
n|Mx ≤ m},M ∈ R

ñ×n,m ∈ R
ñ. (45)

The control sequence defined in (44) implies that the
additional input sequence ūk introduced in (28) varies at
each sampling time and plays a role in providing a feasible
solution for the optimization problem P. Note that the
matrices H ≥ 0 and F in the objective function are time-
varying as their elements contain ūk, x̄k. The reduced order
model predictive control law is obtained by solving this
optimization problem with Ns < m · N at each sample
time t = 0, 1, · · · . Next theorem guarantees the recursive
feasibility of the problem P and the closed-loop stability
of the reduced order model predictive control law.

Theorem 2. Assume that the optimization problem P is
feasible at initial time t = 0. Then P is feasible for all times
t = 1, 2, · · · and the control law ut = u∗

0|t asymptotically

stabilizes the system (1).

Proof. (Feasibility) The optimization problem P is feasi-
ble at t = 0 by the assumption. At time t = 1, we consider
the input sequence Ū1 = {u∗

1|0, · · · , u∗
N−1|0,KLQx∗

N |0},

which consists of the abbreviated input sequence obtained
at t = 0 and the LQ control. Since the first N −1 elements
of Ū1 steers x1 = x1|0 to x∗

N |0 ∈ Xf while satisfying the

input and state constraints and the last element KLQx∗
N |0

keeps the state in Xf , Ū1 is a feasible input sequence at
t = 1. This input sequence is realizable by the optimization
problem P if the coefficient vector v = [0, 0, · · · , 0, 1]T

is chosen as the solution to the problem P. Thus the
optimization problem has at least one feasible solution
at t = 1. Feasibility after t ≥ 2 follows from the same
argument.

(Stability) The proof is similarly obtained from Lyapunov
stability arguments (Mayne et al. [2000]). Let us consider
a candidate Lyapunov function V ∗(x). We will show that
∆V := V ∗(xt+1) − V ∗(xt) is negative for ∀xt 6= 0. At
time t + 1, let us assume that the coefficient vector v =
[0, · · · , 0, 1]T is employed for the solution to the problem
P, which implies that Ūt+1 is chosen as a predicted input
sequence. Then this sequence is feasible and we have

V (xt+1) − V ∗(xt) = xT
N |t+1PxN |t+1 + xT

N−1|t+1QxN−1|t+1

− u∗
0|tRu∗

0|t + (KLQx∗
N |t)

TR(KLQx∗
N |t)

− x∗
N |t

T
Px∗

N |t − x∗
0|t

T
Qx∗

0|t (46)

V (xt+1) := J([0, · · · , 0, 1]T, xt+1, Ūt+1) (47)

where x·|t+1 denotes the predicted state to the input

sequence Ūt+1. Since the equality

xT
N |t+1PxN |t+1 − x∗

N |t
T
Px∗

N |t

= −(KLQx∗
N |t)

TR(KLQx∗
N |t) − xT

N−1|t+1QxN−1|t+1

(48)

holds, (46) yields the following inequality.

V (xt+1) − V ∗(xt) = −u∗
0|t

T
Ru∗

0|t − x∗
0|t

T
Qx∗

0|t < 0 (49)

Finally, the relation

∆V = V ∗(xt+1) − V ∗(xt)

≤ V (xt+1) − V ∗(xt) < 0(xt 6= 0) (50)

is obtained from the fact that the cost V (xt+1)(not nec-
essarily optimal) is an upper bound of the optimal cost
V ∗(xt+1). Thus V ∗ is a Lyapunov function of the system
(1) and the reduced order MPC law ut = u∗

0|t asymptoti-

cally stabilizes the system. 2

Remark 2. For the traditional MPC based on the control
problem PLQ (4),(5), imposing the terminal constraint
set Xf is sufficient to ensure the closed-loop stability and
feasibility (Mayne et al. [2000]). If the terminal constraint
is imposed for the reduced order MPC (Hara and Kojima
[2007a,b]) without the auxiliary input sequence, the sim-
ilar Lyapunov stability argument is not applicable as we
cannot ensure that the value function becomes Lyapunov
function. In the case of the reduced order MPC, in ad-
dition to the terminal set constraint, the auxiliary input
sequence ūk in (28), which provides a feasible solution for
the optimization problem, is essential to guarantee the sta-
bility and feasibility of the reduced order MPC law. This
difference arises from the fact that the reduced order MPC
constructs the input obtained from the decomposed input
space whereas the standard MPC constructs the input
from the input moves over the time-discretized prediction
horizon. 2
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Next theorem provides a set of initial conditions which
ensures the stability of the reduced order MPC.

Theorem 3. Define a polytope in R
n+Ns as follows:

Y =

{

y ∈ R
n+Ns |

[

CU

CX

CXf

]

y ≤

[

dU

dX

dXf

]}

, (51)

CU :=











0m̄×n GUR− 1
2 W 1

0

0m̄×n GUR− 1
2 W 1

1
...

...

0m̄×n GUR− 1
2 W 1

N−1











,

CX :=











GX GX(W 2
0 − W0)

GXA GX(W 2
1 − AW0)

...
...

GXAN−1 GX(W 2
N−1 − AN−1W0)











,

CXf
:=

[

MAN M(W 2
N − ANW0)

]

,

dU :=







EU

...
EU






, dX :=







EX

...
EX






, dXf

:= m. (52)

Then, for any initial condition in the polytope defined by
the projection

X0 =

{

x ∈ R
n | ∃v̄ ∈ R

Ns :

[

x
v̄

]

∈ Y

}

, (53)

the constrained system (1) can be stabilized by the reduced
order MPC law ut = u∗

0|t.

Proof. Consider the optimization problem P at t = 0.
By rewriting the constraints (39),(40),(41) in terms of the
initial condition x0 and the coefficients [α1, · · · , αNs

]T, the
following expression is obtained

[

CU

CX

CXf

]

[

x0

v̄

]

≤

[

dU

dX

dXf

]

, (54)

v̄ := [α1, · · · , αNs
]T.

Note that we only consider the coefficients αi(i =
1, · · · , Ns) as αNs+1 = 0 at t = 0. If there exists a
coefficient vector v̄ which satisfies the inequality (54) for a
given initial state x0, the optimization problem is feasible
at t = 0. Then the stability of the reduced order MPC
follows from Theorem 2. Thus the orthogonal projection
of the polytope described by (54) onto R

n characterizes the
set of all initial states for which the closed-loop stability
of the reduced order MPC law is guaranteed. 2

Remark 3. As we mentioned in Remark 1(a), the zero
eigenvalues and corresponding eigenvectors characterize
the LQ control. Thus, by including n zero eigenvalues and
eigenvectors in the Ns bases, the stabilizing reduced order
MPC law ut = u∗

0|t becomes the LQ control after the state

is once steered to the invariant set Xf . 2

Remark 4. In Rojas et al. [2004], an approximate MPC
for input constrained systems has been proposed based
on SVD of the Hessian of a quadratic cost functional.
In this approach, the input is constructed by the linear
combination of the variable basis vectors in the input
space at each sample time while our approach employs
the fixed number of the basis vectors obtained from the
system decomposition method. 2

Table 1. Eigenvalues of ∆

λ1 0

λ2 0

λ3 6419.1396

λ4 124.277

λ5 13.5067

λ6 3.3997

λ7 1.7541

λ8 1.3266

.

.

.

.

.

.

5. NUMERICAL EXAMPLE

Consider the discrete-time system

xk+1 =

[

1 0.2
0 1

]

xk +

[

0.02
0.2

]

uk, (55)

which is obtained by discretizing the double integrator
Y (s) = 1

s2 U(s) with sample time 0.2 [s]. The control
objective is to regulate the system to the origin while
fulfilling the input and state constraints:

− 1 ≤ uk ≤ 1,

[

−3
−3

]

≤ xk ≤

[

3
3

]

. (56)

A standard MPC law with Q = diag(15, 1), R = 1, N =
25 in (6) is obtained by solving the QP-problem where the
number of the optimization variable is 25. For the design
of the standard MPC formulation, the invariant set (45)
is imposed for the terminal constraint. Fig.1(MPC) shows
the system responses of the standard MPC law.

We next design a reduced order MPC law. By Lemma 1,
the eigenvalues of the matrix ∆ are calculated as Table
1. By employing three dominant eigenvalues λ3 · · ·λ5 in
addition to zero eigenvalues λ1, λ2 which correspond to
LQ control (Remark 1(a)), the stabilizing reduced order
MPC law is obtained by Theorem 2. The control input and
state response are depicted in Fig.1(reduced order MPC)
and it is observed that the responses are quite similar to
those of the standard MPC. In highlight with the standard
MPC, it should be pointed out that reduced order MPC
law is obtained from the optimization problem where the
dimension of the optimization variable is 6 (= Ns + 1)
(25 for the standard MPC). Fig.3 shows the computation
time required to solve the optimization problems at each
time step for the initial condition x0 = [1,−2.5]T. The
computation is performed on Sun Microsystems Ultrasparc
IIi 550MHz using Matlab with CPLEX QP solver. We
investigate the relation between the parameter Ns and the
feasible initial state by Theorem 3. The sets of feasible
initial states X0 for Ns = 5, 10 are depicted by Fig.2. The
computation of the projection of polytopes is performed
using MPT (Kvasnica et al. [2004]). It is observed that the
set X0 for Ns = 10, which guarantees the stability of the
reduced order MPC for ∀x0 ∈ X0, is larger than that for
Ns = 5. In this numerical example, the set X0 for Ns = 10
almost coincides with the set of initial conditions for which
the stability of the standard MPC is guaranteed. From
the trajectories for some initial conditions, we see that
the reduced order MPC law inherits the control strategy
of the standard MPC. We also show the standard MPC
for the prediction horizon N = 6 (depicted by +). In
this case, no terminal constraint is imposed. It is observed
that the response has deteriorated for the initial condition
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Fig. 3. Computation time at each time step for x0 =
[1,−2.5]T(∗:reduced order MPC,o:MPC)

x0 = [2.4,−2.3]T while the responses for other initial
conditions are similar to those of the standard MPC for
N = 25.

6. CONCLUSION

A reduced order MPC law, which guarantees stability of
the closed-loop system, is derived by employing the system

decomposition method. The MPC law is obtained from a
low dimensional on-line optimization problem and a set of
initial states for which the control law ensures stability of
the closed-loop system is clarified. A numerical example is
provided to illustrate the features of the proposed method.

The system decomposition technique (Lemma 1) requires
the nonsingular state transition matrix A, which restricts
the application of the method to systems with I/O delays.
The generalization for the singular case is a direction of
future research.
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