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Abstract: In this paper, we propose a Lyapunov function design method using a difference
approximation scheme and quantization of the Markov process. First, we approximate a
Lyapunov equation by a Schrödinger-like equation. Second, we obtain sufficient conditions for a
function to be a Lyapunov function. Then, we provide a Lyapunov function design procedure.

1. INTRODUCTION

For nonlinear control systems, the existence of control
Lyapunov functions assures that the origin is asymptoti-
cally stabilizable. In the previous works, e.g., [3, 12], some
stabilizing controllers were proposed under the assumption
that control Lyapunov functions are given. However, it is
very hard to construct control Lyapunov functions.

For nonlinear systems without inputs or closed-loop sys-
tems, the existence of Lyapunov functions implies that the
origin is asymptotically stable. While Lyapunov function
design problems are studied by Krasovskii [5, 11], Schultz
[5], Zubov [11], Vannelli-Vidyasagar [14], and so on, the
problems are not fully resolved yet. Lyapunov functions
are useful even for controller design as follows.

If Lyapunov functions are constructed for closed-loop sys-
tems with ad-hoc controllers, we can obtain better con-
trollers (such as inverse optimal controllers) by employing
these Lyapunov functions as control Lyapunov functions.

In this paper, we propose a Lyapunov function design
method using a difference approximation scheme and
quantization of the Markov process. In Section 2, we in-
troduce some definitions and previous results. In Section
3, we describe a problem. In Section 4, we approximate a
Lyapunov equation by a Schrödinger-like equation. More-
over, we describe the general solution of the approximate
Lyapunov equation by using eigenvalues and eigenfunc-
tions of the Hamiltonian operator. In Section 5, we obtain
sufficient conditions for a function to be an approximate
Lyapunov function. In Section 6, we provide an approxi-
mate Lyapunov function design procedure. In Section 7,
we confirm the effectiveness of the proposed method by an
example. Section 8 concludes this paper.

Note that this paper is different from researches for control
problems of quantum systems; e.g., Rosenbrock [10].

2. PRELIMINARY DISCUSSION

We introduce definitions and show previous works.

Let R+ be the set of positive real numbers, N+ be the
set of positive integer numbers, and N0 be the set of non-
negative integer numbers.

Let f : Rn → Rn and x = (x1, x2, . . . , xn)T ∈ Rn. We
consider the following ordinary differential equation:

ẋ = f(x) := (f1(x), f2(x), . . . , fn(x))T (1)
and assume that the origin is locally asymptotically stable.

2.1 Definitions

The origin of the system (1) is locally asymptotically stable
if and only if a Lyapunov function exists [5].
Definition 1. (Lyapunov function). Let M be a subspace
satisfying 0 ∈ M ⊂ Rn. A C1 positive define function
W : M → R is said to be a Lyapunov function of the
system (1) if Ẇ (x) is negative definite.
Definition 2. (Lyapunov equation). Let q : Rn → R+ and
V : Rn × [0,∞) → R be a function such that V̇ (x, t) =
−q(x)V (x, t). Then,

∂V

∂t
(x, t) = −q(x)V (x, t) − ∂V

∂x
(x, t) · f(x) (2)

is said to be a Lyapunov equation. 2

If V (x, t) is a time-invariant positive definite function
satisfying (2), W (x) := V (x, t) is a Lyapunov function
of the system (1).
Definition 3. (discrete state space). We define a discrete
state space by

Md :=
{

δ
n∑

i=1

γiei, ∀γi ∈ Z
}

= {xd, xd
′, xd

′′, . . .}, (3)

where δ is a spatial step and e1, e2, . . . , en are orthogonal
bases of the state vector. 2

Definition 4. (transition probability). We define p((xd, t)→
(xd

′, t′)) as a transition probability from (xd, t) to (xd
′, t′).

2

Definition 5. (transition probability rate). We define a
transition probability rate by
w(xd→xd

′, t)

:= lim
h→0

p((xd, t)→(xd
′, t+h))−p((xd, t)→(xd

′, t))
h

. (4)

When the transition probability rate is time-invariant,
w(xd→xd

′) denotes w(xd→xd
′, t). 2
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Definition 6. (master equation formalism). Let w1 and w2

be time-invariant transition probability rates and V : Md×
[0,∞) → R. Then, the equation

∂

∂t
V (xd, t) =

∑
xd

′∈M

{
w1(xd→xd

′)V (xd
′, t)

− w2(xd
′→xd)V (xd, t)

}
(5)

is said to be a “master equation.” 2

Definition 7. (bra-ket notation). Let ψ1, ψ2 : Md → Cn.
The bracket ⟨ψ1|ψ2⟩ denotes the inner product of ψ1(xd)
and ψ2(xd), and

⟨ψ1|O|ψ2⟩ :=
∑

xd
′∈Md

ψ∗
1(xd

′)(Oψ2)(xd
′), (6)

where ψ∗
1(xd

′) is the complex conjugate of ψ1(xd
′), and O

is an operator. A vector ⟨· · ·| is called a bra vector, and
|· · ·⟩ is called a ket vector. 2

When we write ⟨xd| or |xd⟩, xd denotes δxd,xd
′ , i.e.,

⟨xd|ψ⟩ = ψ(xd).

For a function V : Md × [0,∞) → R, we define

|V̄ (t)⟩ :=
∑

xd∈Md

V (xd, t)|xd⟩. (7)

Then,
V (xd, t) = ⟨xd|V̄ (t)⟩ (8)

is satisfied.
Definition 8. (Schrödinger-like equation). An operator H
is called a Hamiltonian operator if

∂

∂t
|V̄ (t)⟩ = −H|V̄ (t)⟩. (9)

The equation (9) is called a Schrödinger-like equation. 2

The Schrödinger-like equation (9) can be expressed by a
matrix equation because (9) is linear.
Definition 9. (Hamiltonian matrix). A matrix Hm is called
a Hamiltonian matrix if

Hm :=
[

⟨xd|H|xd⟩ ⟨xd|H|xd
′⟩ ···

⟨xd
′|H|xd⟩ ⟨xd

′|H|xd
′⟩

...
...

]
. (10)

2

Lemma 1. The Schrödinger-like equation (9) is equivalent
to the following matrix equation:[

⟨xd|H|V̄ (t)⟩
⟨xd

′|H|V̄ (t)⟩
...

]
= −Hm ·

[
⟨xd|V̄ (t)⟩
⟨xd

′|V̄ (t)⟩
...

]
. (11)

¨
Proof . By (7)-(9),

⟨xd|
∂

∂t
|V̄ (t)⟩ = −⟨xd|H|V̄ (t)⟩

= −⟨xd|H
∑

xd
′∈Md

⟨xd
′|V̄ (t)⟩|xd

′⟩

= −
∑

xd
′∈Md

⟨xd|H|xd
′⟩⟨xd

′|V̄ (t)⟩. (12)

Therefore,[
⟨xd|H|V̄ (t)⟩
⟨xd

′|H|V̄ (t)⟩
...

]
= −

[
⟨xd|H|xd⟩ ⟨xd|H|xd

′⟩ ···
⟨xd

′|H|xd⟩ ⟨xd
′|H|xd

′⟩
...

...

]
·
[

⟨xd|V̄ (t)⟩
⟨xd

′|V̄ (t)⟩
...

]
.

(13)
We obtain (11) by (10) and (13). 2

Remark 1. Eigenvalues of a Hamiltonian matrix Hm coin-
cide with eigenvalues of a Hamiltonian operator H. Eigen-
vectors of Hm consist of values of eigenfunctions of H: i.e.,

ϕv
j = (ϕj(xd), ϕj(xd

′), ϕj(xd
′′), . . .)T , j ∈ N0, (14)

where ϕv
j denotes an eigenvector of Hm and ϕj denotes an

eigenfunction of H. ¨
Remark 2. The Hamiltonian operator of the Schrödinger-
like equation (9) generally has complex eigenvalues and
eigenfunctions because H is non-Hermite [1, 9]. The fact
is different from the case of quantum mechanics [13]. ¨

2.2 Quantization of Markov Process ([9], p.157)

We can immediately extend the results in [9] as the
followings:
Lemma 2. If a Hamiltonian operator H satisfies

⟨xd|H =
∑

xd
′∈Md

{−w1(xd
′→xd)⟨xd

′| + w2(xd→xd
′)⟨xd|},

(15)
the master equation (5) is equivalent to the Schrödinger-
like equation (9). ¨
Lemma 3. Let H be a Hamiltonian operator in Lemma
2. Then, the elements of Hamiltonian matrix Hm are
obtained as the followings:

⟨xd|H|xd
′′⟩ = −w1(xd→xd

′′) if xd
′′ ̸= xd, (16)

⟨xd|H|xd⟩ = −w1(xd→xd) +
∑

xd
′∈Md

w2(xd
′→xd). (17)

¨

If w1 = w2, Lemma 2 and Lemma 3 consist with
Rajewsky’s results [9]. The transformation from the mas-
ter equation (5) to the Schrödinger-like equation (9) is
called quantization of Markov process.

2.3 Difference Approximation ([2], IX.3, [6], 177/178)

We show the approximation of the Lyapunov equation
(2) introduced by Kushner [6], Fleming and Soner [2].
Although their original method is constructed for optimal
control of a stochastic system, we consider a deterministic
system without inputs.

We discretize the state space Rn into Md and define the
approximation of the partial derivative of V (x, t) in x as

∂V

∂xi
(x, t) ≈

{
V +

i (xd, t) if fi(xd) ≥ 0
V −

i (xd, t) if fi(xd) < 0
, (18)

where

V +
i (xd, t) :=

V (xd + δei, t) − V (xd, t)
δ

, (19)

V −
i (xd, t) :=

V (xd, t) − V (xd − δei, t)
δ

. (20)

Moreover, we define the approximation of the partial
derivative of V (x, t) in t as

∂V

∂t
(x, t) ≈ Vt(xd, t) :=

V (xd, t) − V (xd, t − h)
h

. (21)

According to [2, 6], discretization of system (1) with
the spatial step δ and the time step h yields transition
probabilities of (1) as follows:
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p((xd, t)→(xd + δei, t + h)) =
h

δ
max(fi(xd), 0), (22)

p((xd, t)→(xd − δei, t + h)) =
h

δ
max(−fi(xd), 0), (23)

p((xd, t)→(xd, t + h)) = h − h

δ

n∑
i=1

|fi(xd)| , (24)

p((xd, t)→(xd
′, t + h)) = 0 if xd

′ ̸= xd, xd + δei, xd − δei.
(25)

Lemma 4. If we use the approximations (18), (21), and
transition probabilities (22)-(25), the Lyapunov equation
(2) is approximated by

Vt(xd, t) = −q(xd)V (xd, t)

− 1
h

∑
xd

′∈Md

p((xd, t)→(xd
′, t + h))V (xd

′, t). (26)

¨

Equations (22)-(25) and Lemma 4 are modified for a deter-
ministic system without inputs. If we replace q(x)V (x, t)
by L : Rn × U × [0,∞) → R, Lemma 4 coincides with the
original result in [2, 6], where U is an input space.

3. PROBLEM FORMULATION

The purpose of this paper is to propose a Lyapunov
function design method for the system (1).

In Section 4, we approximate a Lyapunov equation as fol-
lows. First, we discretize the state space and derive a differ-
ence approximation of a Lyapunov equation by the method
in Subsection 2.3. Then, we show that the approximate
Lyapunov equation is equivalent to a Schrödinger-like
equation by the scheme in Subsection 2.2. Moreover, we
describe the general solution of the approximate Lyapunov
equation by using eigenvalues and eigenfunctions of the
Hamiltonian operator.

In Section 5, we obtain sufficient conditions for a function
to be an approximate Lyapunov function.

In Section 6, we propose an approximate Lyapunov func-
tion design method as follows. First, we extract finite
elements from the discrete state space and describe the
Hamiltonian matrix by a block tridiagonal matrix. Then,
we provide an approximate Lyapunov function design pro-
cedure.

In Section 7, we confirm the effectiveness of the proposed
method by an example. Section 8 concludes this paper.

While the Lyapunov equation (2) is different from a
general case, the fact does not put any restriction for the
system (1) because the following theorem is held:
Theorem 1. There exists a Lyapunov function of (1) in M
if and only if there exists a Lyapunov function of (1) in M
satisfying (2). ¨
Proof . Let t0 be an initial time, and x0 be an initial state.
If W (x) is a Lyapunov function of (1) in M ,

W ′(x) := e
−

∫ t

t0
q(x(s))ds

W (x0), ∀x0 ∈ M (27)
is a positive definite function defined in M . Moreover,

d

dt
W ′(x) = −q(x)W ′(x), x ∈ M. (28)

Therefore, W ′(x) is a Lyapunov function satisfying (2).
The converse is trivial. 2

4. APPROXIMATION OF LYAPUNOV EQUATION

We suggest a new approximation of the Lyapunov equation
(2) by using methods in Subsections 2.2 and 2.3.

4.1 Approximate Lyapunov Equation

We discretize the state space Rn into Md and consider the
transition probabilities (22)-(25) and transition probabil-
ity rate (4). Then, we obtain

w(xd→xd + δei) =
1
δ

max (fi(xd), 0), (29)

w(xd→xd − δei) =
1
δ

max (−fi(xd), 0), (30)

w(xd→xd) = −1
δ

n∑
i=1

|fi(xd)|, (31)

w(xd→xd
′) = 0 if xd

′ ̸= xd, xd + δei, xd − δei. (32)

When h → 0, (26) becomes
∂

∂t
V (xd, t) = −

∑
xd

′∈Md

w(xd→xd
′)V (xd

′, t) − q(xd)V (xd, t)

(33)
with transition probability rates (29)-(32).
Definition 10. (approximate Lyapunov equation). The
equation (33) is said to be an approximate Lyapunov
equation. 2

We define
w♯(xd

′→xd) := w(xd
′→xd) if xd

′ ̸= xd, (34)

w♯(xd→xd) := q(xd) −
∑

xd
′ ̸=xd

w♯(xd
′→xd) (35)

with (29)-(32) and consider a Hamiltonian operator H
defined by

⟨xd|H =
∑

xd
′∈Md

{w(xd
′→xd)⟨xd

′| + w♯(xd→xd
′)⟨xd|}. (36)

Then, we obtain the following Lemma:
Lemma 5. The approximate Lyapunov equation (33) with
(29)-(32) is equivalent to the Schrödinger-like equation (9)
with H defined by (36). ¨
Proof . By (34) and (35), we obtain

q(xd) =
∑

xd
′∈Md

w♯(xd
′→xd). (37)

By (33) and (37),
∂

∂t
V (xd, t) = −

∑
xd

′∈Md

{w(xd→xd
′)V (xd

′, t)

+ w♯(xd
′→xd)V (xd, t)}. (38)

Equation (38) coincides with the Schrödinger-like equation
(9) by Lemma 2 with w1 = −w and w2 = w♯. 2

4.2 Solution of Approximate Lyapunov Equation

We show that the general solution of the approximate
Lyapunov equation (33) with (29)-(32) can be represented
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by using eigenvalues and eigenfunctions of a Hamiltonian
operator. Let

Ej := EjR + iEjI , E∗
j := EjR − iEjI (39)

be eigenvalues of H with (36) and
ϕj(xd) := ϕjR(xd) + iϕjI(xd)
ϕ∗

j (xd) := ϕjR(xd) − iϕjI(xd)
(40)

be eigenfunctions corresponding to Ej , E∗
j , where j ∈ N0,

EjR, EjI ∈ R, ϕjR, ϕjI : Rn → R, i is the imaginary unit,
and |E0| ≤ |E1| ≤ · · · .
Theorem 2. The general solution of the approximate
Lyapunov equation (33) with (29)-(32) is represented by

V ♮(xd, t) =
∑
j∈N0

{Cje
−Ejtϕj(xd) + C∗

j e−E∗
j tϕ∗

j (xd)},

(41)
where Cj is an arbitrary complex constant and C∗

j is the
complex conjugate of Cj . ¨
Proof . By the linearity of the Schrödinger-like equation
(9), the general solution of (9) with (36) is represented as

V ♮(xd, t) =
∑
j∈N0

{Cje
−Ejtϕj(xd) + Dje

−E∗
j tϕ∗

j (xd)},

(42)
where Cj and Dj are arbitrary complex constants. By
Definition 2, Lemma 5 and (42), (41) is the general solution
of the approximate Lyapunov equation (33). 2

5. SUFFICIENT CONDITIONS FOR LYAPUNOV
FUNCTION

We obtain sufficient conditions for an approximate
Lyapunov function by using Lemma 5 and Theorem 2.

We define the following time-invariant function:

W ♮(xd) := V ♮(xd, 0) =
∑
j∈N0

(
Cjϕj(xd) + C∗

j ϕ∗
j (xd)

)
.

(43)

Assumption 1. Let 0 ∈ M ♮
d ⊂ Md. There exists a combi-

nation (C0, C1, . . .) which makes W ♮(xd) positive definite
in M ♮

d. Moreover, there exists a real constant K ∈ R
satisfying∑

j∈N♮

(∣∣∣W ♯
j (xd)

∣∣∣ +
∣∣∣W ♭

j (xd)
∣∣∣) ≤ KW ♮(xd), ∀xd ∈ M ♮

d,

(44)
where

N ♮ := {j|Cj ̸= 0} ⊂ N0, (45)

W ♭
j (xd) := Cjϕj(xd) + C∗

j ϕ∗
j (xd), (46)

W ♯
j (xd) := −i(Cjϕj(xd) − C∗

j ϕ∗
j (xd)). (47)

2

Remark 3. If the state space is bounded, a constant K
satisfying (44) exists. ¨

Under the assumption 1, we obtain the following theorem:
Theorem 3. Suppose that (41) is a satisfactory approxi-
mate solution of the Lyapunov equation (2). If Assumption
1 is held and

K max
j∈N♮

(|EjR|, |EjI |) < q(xd), ∀xd ∈ M ♮
d, (48)

W ♮(xd) is an approximate Lyapunov function in M ♮
d. ¨

Proof . Suppose that all conditions in Theorem 3 are
satisfied. Let

Cj := kj(cos µj + i sinµj), kj , µj ∈ R. (49)
By (39)-(41), (45), and (49), we obtain

V ♮(xd, t) =
∑

j∈N♮

[
2e−EjRtkj

{
ϕjR(xd) cos(µj−EjIt)

− ϕjI(xd) sin(µj − EjIt)
}]

. (50)
Then, the approximate derivative of (50) becomes

V̇ ♮(x, t) ≈
∑

j∈N♮

[
2e−EjRtkj

{
cos(µj−EjIt)

×
(
ϕ′

jR(xd)·f(xd) + EjIϕjI(xd) − EjRϕjR(xd)
)

+ sin(µj−EjIt)
×

(
−ϕ′

jI(xd)·f(xd) + EjIϕjR(xd) + EjRϕjI

)}]
, (51)

where ϕ′
jR(xd) and ϕ′

jI(xd) are the approximations of
∂ϕjR(x)/∂x and ∂ϕjI(x)/∂x, respectively. On the other
hand,

V̇ ♮(x, t) ≈ −q(xd)V ♮(xd, t) (52)

because V ♮(xd, t) is an approximate solution of the
Lyapunov equation (2). By (51) and (52), we obtain

ϕ′
jR(xd) · f(xd)

≈ EjRϕjR(xd) − EjIϕjI(xd) − q(xd)ϕjR(xd), (53)
ϕ′

jI(xd) · f(xd)
≈ EjRϕjI(xd) + EjIϕjR(xd) − q(xd)ϕjI(xd). (54)

By (40), (43), (46)-(47), and (53)-(54), the following ap-
proximation is derived:

Ẇ ♮(x) ≈ −q(xd)W ♮(xd)

+
∑

j∈N♮

{EjRW ♭
j (xd) − EjIW

♯
j (xd)}. (55)

By Assumption 1,∑
j∈N♮

{
EjRW ♭

j (xd) − EjIW
♯
j (xd)

}
≤

∑
j∈N♮

(|EjR||W ♭j (xd)| + |EjI ||W ♯j (xd)|)

≤ max
j∈N♮

(|EjR|, |EjI |)
∑

j∈N♮

(|W ♯
j (xd)| + |W ♭

j (xd)|)

≤ K max
j∈N♮

(|EjR|, |EjI |) W ♮(xd). (56)

By (55) and (56),

Ẇ ♮(x) <

{
−q(xd) + K max

j∈N♮
(|EjR|, |EjI |)

}
W ♮(xd).

(57)

By (48) and (57), W ♮(xd) is an approximate Lyapunov
function. 2

In addition, a simple case is described as follows:
Corollary 1. Suppose that (41) is a satisfactory approxi-
mate solution of the Lyapunov equation (2). Let α ∈ N0

and Cα, Eα, ϕα ∈ R. If W ♮
α(xd) := Cαϕα(xd) is positive

definite in M ♮
d and

Eα < q(xd), ∀xd ∈ M ♮
d, (58)

W ♮
α(xd) is an approximate Lyapunov function in M ♮

d. ¨
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Proof . Because V ♮
α(xd, t) = exp(−Eαt)W ♮

α(xd) is an ap-
proximate solution of the Lyapunov equation (2), we ob-
tain

V̇ ♮
α(x, t) ≈ −q(xd)V ♮

α(xd, t). (59)
Hence, we obtain

Ẇ ♮
α(x) ≈ (Eα − q(xd))W ♮

α(xd). (60)
By (58) and (60), W ♮

α(xd) is an approximate Lyapunov
function. 2

6. LYAPUNOV FUNCTION DESIGN

We propose an approximate Lyapunov function design
method.

6.1 Block Tridiagonalization of Hamiltonian Matrix

We take finite elements from the discrete state space
Md and describe the Hamiltonian matrix Hm by a block
tridiagonal matrix.

We obtain the following Lemma:
Lemma 6. If H is defined by (36), the elements of
Hamiltonian matrix Hm are obtained as follows:

⟨xd|H|xd
′′⟩ =

{
w(xd→xd

′′) if xd
′′ ̸= xd

w(xd→xd) + q(xd) if xd
′′ = xd.

(61)

¨
Proof . By using (37) and Lemma 3 with w1 = −w and
w2 = w♯, (61) is derived. 2

We extract

Mdf :=

{
±δ

n∑
i=1

γiei, γi = 0, 1, 2, . . . , l′

}
(62)

from Md, where l′ is a constant non-negative integer. The
number of lattice points of Mdf is ln, where l := 2l′ + 1.

Moreover, we sort xd ∈ Mdf by zk ∈ Mq in lexicographic
order, where

Mq := {z1, z2, . . . , zln}. (63)
For example, when n = 2 and l = 3,

z1 = −δe1 − δe2, z2 = −δe1 + 0e2, z3 = −δe1 + δe2,

z4 = +0e1 − δe2, z5 = +0e1 + 0e2, z6 = +0e1 + δe2,

z7 = +δe1 − δe2, z8 = +δe1 + 0e2, z9 = +δe1 + δe2.

Then, the ket vector |xd⟩ is changed to |z⟩.
Let

Hκ2
κ1

:= −⟨zκ1 |H|zκ2⟩, (64)
αi := (βi − 1)li + 1, i = 1, 2, . . . , n, (65)

where κ1, κ2, β1, β2, . . . , βn ∈ N+, and define the following
diagonal matrix:

iDκ2
κ1

:=


H

κ2
κ1 0 0 0

0 H
κ2+1
κ1+1 0 0

0 0 ... 0

0 0 0 H
κ2+li−1

κ1+li−1


li×li

. (66)

Let us define

1Hβ1 :=


H

α1
α1 H

α1+1
α1 0 ··· ···

H
α1
α1+1 H

α1+1
α1+1 H

α1+2
α1+1 0 ···

0 H
α1+1
α1+2 H

α1+2
α1+2

... ···
0 0

... ... ...
...

...
... ... ...


l×l

(67)

and

iHβi :=


i−1Hαi i−1D

αi+1
αi

0 ···

i−1D
αi
αi+1 i−1Hαi+1 i−1D

αi+2
αi+1 ···

0 i−1D
αi+1
αi+2 i−1Hαi+2

...

0 0
... ...

...
...

...
...


li×li

, (68)

where i = 2, 3, . . . , n.

Then, we obtain the following Lemma:
Lemma 7. If the state space of the Schrödinger-like equa-
tion (9) with (36) is changed from Md to Mq, the
Hamiltonian matrix Hm becomes the block tridiagonal
matrix nH1. ¨
Proof . If n = 1,

Hm =

 H1
1 H2

1 0 ··· ···
H1

2 H2
2 H3

2 0 ···
0 H2

3 H3
3

... ···
0 0 ... ... ...
...

...
...

... ...


l×l

= 1H1 (69)

by the transition probability rates (29)-(32) and Lemma
6. If n = 2,

Hm =


1H1 1Dl+1

1 0 ···
1D1

l+1 1H2 1D2l+1
l+1 ···

0 1Dl+1
2l+1 1H3

...

0 0 ... ...
...

...
...

...


l2×l2

= 2H1. (70)

Moreover, if n = 3,

Hm =


2H1 2Dl2+1

1 0 ···

2D1
l2+1 2H2 2D2l2+1

l2+1
···

0 2Dl2+1
2l2+1 2H3

...

0 0
... ...

...
...

... ...


l3×l3

= 3H1. (71)

In this way, we obtain

Hm =


n−1H1 n−1Dln−1+1

1 0 ···

n−1D1
ln−1+1 n−1H2 n−1D2ln−1+1

ln−1+1
···

0 n−1Dln−1+1
2ln−1+1 n−1H3

...

0 0 ... ...
...

...
... ...


ln×ln

= nH1

(72)
for n > 2. 2

The previous works; e.g., Press, et al. [8] proposed some
algorithms for solving the eigenvalue problems of sparse
matrices.

6.2 Lyapunov Function Design Procedure

We propose the following approximate Lyapunov function
design procedure:

[Step1 ] Discretize the state space Rn into the finite
elements Mq.

[Step2 ] Determine a positive function q(x) and calculate
the Hamiltonian matrix Hm by Lemma 6.

[Step3 ] Solve the eigenvalue problem for the Hamiltonian
matrix Hm.

[Step4 ] Choose constants C0, C1, . . . such that W ♮(xd)
becomes a positive definite function satisfying the in-
equality (48) or (58).

By Step1-4, we can obtain W ♮(xd), which is an approxi-
mate Lyapunov function of system (1).

The classical previous works, e.g., Schultz [5], Zubov [11],
Vannelli-Vidyasagar [14] discussed a Lyapunov function
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design problem in a small enough neighborhood of the
origin. Moreover, Krasovskii [5, 11] discussed the problem
restricting the form of a Lyapunov function. Hence, the
system may be limited.

The previous works with finite-difference approximations,
e.g., Kushner [6] are under the assumption that the bound-
ary satisfies the Neumann condition ∂V/∂x = 0. Hence, if
the boundary condition is not held, the iteratively calcu-
lated values may diverge.

Our method is available in a domain that the system is
asymptotically stable. And, the restriction of a Lyapunov
function does not put any restriction for the system be-
cause Theorem 1 is held. Moreover, a divergence problem
does not cause because our method does not contain any
iteratively calculation.

7. EXAMPLE

For example, we consider a two-dimensional system
ẋ1 = x2

ẋ2 = −x1 − x2 − x3
2,

(73)

where x = (x1, x2)T ∈ M := {(x1, x2)T | − 1.0 ≤ x1 ≤
1.0, −1.0 ≤ x2 ≤ 1.0}.
For the system (73), we obtain an approximate Lyapunov
function by using the proposed method in Subsection 6.2.

Let δ = 0.1 and q(x) = 1.0. Then, Hamiltonian matrix
2H1 is obtained by (70) and (29)-(32). We solve the eigen
equation of 2H1 and choose C0, C1, . . . such that W ♮(xd)
becomes an approximate Lyapunov function by Theorem
3.

Figures 1 and 2 show the approximate Lyapunov function
W ♮(xd) and the derivative dW ♮(xd)/dt for system (73),
where dW ♮/dt is obtained by multi-linear approximation.
The region Ω denotes the largest connected level set of
W ♮(xd) and ∂Ω denotes the boundary of Ω.

0

0.5

−0.5

−0.5

0.5

1

1

−1

−1

0
x2

Ω@
2

3

x1

0

1

W    (xd)

Ω

\

Fig. 1. Approximate Lyapunov function W ♮(xd).

8. CONCLUSIONS

We have proposed a Lyapunov function design method as
follows. First, we have approximated a Lyapunov equation
by a Schrödinger-like equation. Second, we have obtained
sufficient conditions for a function to be an approximate
Lyapunov function. Then, we have provided an approxi-
mate Lyapunov function design procedure.

Moreover, we have confirmed the effectiveness of our
method by an example.
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0

0.1

 0.2

x2x1

W   (xd)
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0
0.5
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Fig. 2. Approximate dW ♮(xd)/dt.
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