
Robust Stability/Performance Analysis for
Polytopic Systems via Multiple Slack

Variable Approach

M. Sato ∗

∗ Institute of Space Technology and Aeronautics, Japan Aerospace
Exploration Agency, Mitaka, Tokyo 181-0015, JAPAN (e-mail:

sato.masayuki@jaxa.jp).

Abstract: This paper investigates robust stability, H2 performance, and H∞ performance anal-
ysis for polytopic systems, i.e. Linear Time-Invariant Parameter-Dependent (LTIPD) systems
in which the parameters lie in the unit simplex. Our results are derived via multiple “slack
variable” approach, which has previously been proposed for the non-negativity check of poly-
nomial functions, using Polynomially Parameter-Dependent Lyapunov Functions (PPDLFs).
Our derived conditions are only sufficient conditions for our addressed problems; however, they
encompass existing methods via single slack variable approach. Numerical examples are included
to demonstrate the effectiveness of our methods.

1. INTRODUCTION

Exact robust stability analysis and performance analysis
have been recognized as very important topics for control
theory and much research for them has been conducted
in this decade. The first approach for these problems
uses quadratic stability; that is, parameter-independent
Lyapunov functions are used, e.g. [Boyd et al., 1994];
however, the obtained result is very conservative. To re-
duce conservatism, parametrically affine or quadratically
Parameter-Dependent Lyapunov Functions (PDLFs) are
used, e.g. [Feron et al., 1996, Trofino and de Souza, 2001].
Although they successfully reduce conservatism, the re-
sults are still conservative. At the next step, Polynomially
PDLFs (PPDLFs) are used to further reduce conservatism,
and the existing methods using PPDLFs are roughly cate-
gorized into four groups: Sums-Of-Squares (SOS) approach
[Chesi et al., 2005b,a], KYP-lemma approach [Bliman,
2004], Slack Variable (SV) approach ([Ebihara et al., 2005,
Peaucelle et al., 2006, Sato and Peaucelle, 2006a] and
references therein), which has been extended to parameter-
dependent SV approach [Oliveira and Peres, 2005a,b,c,
Oishi, 2006, Oliveira et al., 2006], and quadratic separator
approach [Iwasaki and Shibata, 2001]. Some of these meth-
ods, i.e. KYP-lemma approach and parameter-dependent
SV approach [Oliveira and Peres, 2005b,c, Oishi, 2006],
give the necessary and sufficient conditions for their ad-
dressed problems. Although SV approach using parameter-
independent SVs has not been proved to give the exact
analysis even if the parameter-dependency of PPDLFs
is sufficiently increased, numerical examples demonstrate
that SV approach using parameter-independent SVs is not
so conservative [Sato and Peaucelle, 2006a,b].

In this manuscript, we propose new formulations for ro-
bust stability analysis and performance analysis for poly-
topic systems. Our methods are based on parameter-
independent SV approach using multiple SVs (we call it
multiple SV approach in short), which has been proposed

for the non-negativity check of polynomial functions and
has been proved to encompass SV approach using a single
SV [Sato and Peaucelle, 2007a,b]. Consequently, our new
methods are no more conservative than analysis methods
via single SV approach. We show the effectiveness of our
methods with numerical examples.

Hereafter, 〈X〉 is a shorthand notation of X + XT , 0n,m,
In and 0 respectively denote an n × m-dimensional zero
matrix, an n-dimensional identity matrix and an appropri-
ately dimensioned zero matrix, Rn×m and Sn respectively
denote sets of n × m dimensional real matrices and n × n
dimensional symmetric real matrices, diag(X1, · · · , Xk) de-
notes a block diagonal matrix composed of X1, · · · and Xk,
⊗ denotes the Kronecker product, X⊥ ∈ R(n−r)×n denotes
a matrix satisfying X⊥X = 0 and X⊥X⊥T

> 0, where
X ∈ Rn×p and rank(X) = r, and the notation Trn(X) de-

notes

⎡
⎢⎣Tr(X11) · · · Tr(X1i)

...
. . .

...
Tr(Xi1) · · · Tr(Xii)

⎤
⎥⎦ for X =

⎡
⎢⎣X11 · · · X1i

...
. . .

...
Xi1 · · · Xii

⎤
⎥⎦ ,

where Xkl ∈ Rn×n (k, l = 1, · · · , i).

2. PRELIMINARIES

In this section, we make some preliminaries for our pro-
posed methods.

2.1 Definitions

In this paper, we consider the following Linear Time-
Invariant Parameter-Dependent (LTIPD) system.

G(ζ) :
{

ẋ = A(ζ)x + B(ζ)w
z = C(ζ)x + D(ζ)w , (1)

where x ∈ Rn is the state vector, w ∈ Rnw is the
disturbance input vector, and z ∈ Rnz is the performance
output vector. Matrices A(ζ), B(ζ), etc. are continuously
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parameter-dependent matrices of appropriate dimensions
and assumed to have the following representations.

[
A(ζ) B(ζ)
C(ζ) C(ζ)

]
=

N∑
i=1

ζi

[
Ai Bi

Ci Di

]
, (2)

where the parameter vector ζ = [ζ1 · · · ζN ]T are supposed
to lie in the unit simplex:

Ω =

{
ζ :

N∑
i=1

ζi = 1, ζi ≥ 0 (i = 1, · · · , N)

}
, (3)

and matrices Ai, Bi, Ci and Di are constant matrices of
compatible dimensions.

For the LTIPD system (1), we will look for a quadratic
PPDLF which is dependent of all ζi (i = 1, · · · , N) with
their power series up to mi (i = 1, · · ·N) and all their by-
products. To define such PPDLFs, we give some definitions
in the following. For each parameter ζi (i = 1, · · · , N),
define the vector of its power series ranging from zero to
mi as

ζ
[mi ]
i = [1 ζi · · · ζmi

i ]T ∈ Rσi ,

where σi = mi + 1. Define the vector of all monomials
obtained as products of all ζj

i elements with i = 1, · · · , N ,
j = 0, · · · , mi:

ζ̄ = ζ
[m1 ]
1 ⊗ · · · ⊗ ζ

[mN ]
N ∈ Rπ[1,N]

,

where π[q,r] = Πr
i=qσi. By definition, let π[1,0] = 1 and

π[N+1,N ] = 1. With these definitions, we define PPDLF as
xT P (ζ)x with the following P (ζ):

P (ζ) = ζ̄T
n P̄ ζ̄n, P̄ ∈ Snπ[1,N]

, (4)

where ζ̄n = ζ̄ ⊗ In.
Remark 1. We can set arbitrary-order PPDLFs with ap-
propriately defined P̄ . For example, when N = 2, setting

m1 = m2 = 1 and P̄ =

⎡
⎣ P̄0 P̄1 P̄2

P̄ T
1 0 0

P̄ T
2 0 0

⎤
⎦ with P̄0 ∈ Sn,

P̄1 ∈ Rn×n and P̄2 ∈ Rn×n gives a parametrically affine
Lyapunov function.

Two additional notations are now defined. Let the vector

e = [1 0 · · · 0︸ ︷︷ ︸∑N

i=1(mi×π[i+1,N])

]T ∈ Rπ[1,N]

and let en = e ⊗ In. This notation works as an index for
getting parameter-independent elements, e.g. eT

n ζ̄n = In.
Let as well affine parameter-dependent matrices

η(ζi) =
[

ζiIσi−1

0

]
−

[
0

Iσi−1

]
∈ Rσi×(σi−1), (5)

which satisfy η(ζi)⊥ = ζ
[mi ]
i

T
(i = 1, · · · , N). At last,

define

Ξ(ζi) = Iπ[1,i−1] ⊗ (η(ζi) ⊗ Iπ[i+1,N] ) ∈ Rπ[1,N]×π[1,N]−[i]
,

Ξn(ζi) = Ξ(ζi) ⊗ In,

Ξnw(ζi) = Ξ(ζi) ⊗ Inw ,

where π[1,N ]−[i] denotes π[1,i−1] (σi − 1) π[i+1,N]. They re-
spectively prove to satisfy the following relations.

Ξ(ζi)⊥ = Iπ[1,i−1] ⊗
(

ζ
[mi ]
i

T ⊗ Iπ[i+1,N]

)

Ξn(ζi)⊥ = Iπ[1,i−1] ⊗
(

ζ
[mi ]
i

T ⊗ Inπ[i+1,N]

)

Ξnw(ζi)⊥ = Iπ[1,i−1] ⊗
(

ζ
[mi ]
i

T ⊗ Inwπ[i+1,N]

)
2.2 Basic Lemmas

Well-known stability, H2 performance, and H∞ perfor-
mance analysis conditions for the LTIPD system (1) are
now recalled. In these lemmas, Lyapunov functions are set
as xT P (ζ)x.
Lemma 2. (Stability). The system (1) is robustly stable
for all admissible ζ if and only if there exists P (ζ) > 0
that satisfies (6) for all admissible ζ.

〈P (ζ)A(ζ)〉 < 0 (6)

Lemma 3. (H2 performance). The system (1) is robustly
stable and its H2 performance is bounded by γ2 for all
admissible ζ if and only if D(ζ) = 0 and there exist
P (ζ) > 0 and N(ζ) > 0 that satisfy (7), (8) and (9) for all
admissible ζ.

〈P (ζ)A(ζ)〉 + C(ζ)T C(ζ) < 0 (7)

N(ζ) − B(ζ)T P (ζ)B(ζ) > 0 (8)

γ2
2 > Tr (N(ζ)) (9)

Lemma 4. (H∞ performance). The system (1) is robustly
stable and its H∞ performance is bounded by γ∞ for all
admissible ζ if and only if there exists P (ζ) > 0 that
satisfies (10) for all admissible ζ.⎡

⎣ 〈P (ζ)A(ζ)〉 P (ζ)B(ζ) C(ζ)T

B(ζ)T P (ζ) −γ2∞Inw D(ζ)T

C(ζ) D(ζ) −Inz

⎤
⎦ < 0 (10)

In Lemmas 2, 3 and 4, the positivity of P (ζ) is redundant if
the system (1) for one admissible value of the uncertainty
is stable [Feron et al., 1996, Peaucelle et al., 2006], which
can be assumed without loss of generality. Thus, we do not
consider the positivity condition of P (ζ) hereafter.

3. MAIN RESULTS

In this section, we first show our proposed methods for
robust stability analysis and performance analysis for the
LTIPD system (1) via multiple SV approach. Next, we
show that the methods encompass the previously proposed
counterpart methods via single SV approach, which have
been proposed in [Sato and Peaucelle, 2006a].

3.1 Proposed Methods

In this subsection, we show our proposed methods for
robust stability analysis using Lemma 2, robust H2 per-
formance analysis using Lemma 3, and robust H∞ perfor-
mance analysis using Lemma 4 for the LTIPD system (1)
using P (ζ) defined in (4).
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We first show our result for robust stability analysis.
Theorem 5. (Stability Analysis). If there exist a sym-
metric matrix P̄ ∈ Snπ[1,N]

, and matrices Mi ∈
Rnπ[1,N]−[i]×nπ[1,N]

(i = 1, · · · , N) such that (11) for all
the vertices of Ω, then the LTIPD system (1) is robustly
stable.

〈
P̄ (Iπ[1,N] ⊗ A(ζ))

〉
+

∑N
i=1 〈Ξn(ζi)Mi〉 < 0 (11)

Proof. Note that inequality (11) is affine with respect to
ζ. Therefore, if it holds for all the vertices of Ω, then it
also holds for all ζ in Ω. Noting that (Iπ[1,N] ⊗ A(ζ)) ζ̄n =
ζ̄nA(ζ), multiplying (11) from the left and the right by ζ̄T

n
and ζ̄n respectively leads to

〈
ζ̄T
n P̄ ζ̄nA(ζ)

〉
< 0, which is

equivalent to (6). This completes the proof.

We next show our result for robust H2 performance
analysis.
Theorem 6. (H2 Performance Analysis). If there exist a
symmetric matrix P̄ ∈ Snπ[1,N]

, a parametrically
affine symmetric matrix N̄(ζ) ∈ Snwπ[1,N]

, matrices
Fi ∈ Rnπ[1,N]−[i]×(nπ[1,N]+nz) (i = 1, · · · , N), Mi ∈
R(nwπ[1,N]−[i]+nπ[1,N]−[i])×(nwπ[1,N]+nπ[1,N]) (i = 1, · · · , N)
and Hi ∈ Rπ[1,N]−[i]×π[1,N]

(i = 1, · · · , N), and a positive
number γ2 such that (12), (13) and (14) for all the vertices
of Ω, then the LTIPD system (1) is robustly stable and an
upper bound of its H2 performance is given by γ2.

[ 〈
P̄ (Iπ[1,N] ⊗ A(ζ))

〉
e ⊗ C(ζ)T

eT ⊗ C(ζ) −Inz

]
+

∑N
i=1

〈[
Ξn(ζi)

0

]
Fi

〉
< 0

(12)

[
N̄(ζ)

(
Iπ[1,N] ⊗ B(ζ)T

)
P̄

P̄ (Iπ[1,N] ⊗ B(ζ)) P̄

]
+

∑N
i=1

〈[
Ξnw(ζi) 0

0 Ξn(ζi)

]
Mi

〉
> 0

(13)

γ2
2eeT − Trnw

(
N̄(ζ)

)
+

∑N
i=1 〈Ξ(ζi)Hi〉 > 0 (14)

Noting that
(
eT ⊗ C(ζ)

)
ζ̄n = C(ζ) and (Iπ[1,N] ⊗ B(ζ)) ζ̄nw

= ζ̄nB(ζ), the proof of Theorem 6 is straightforward
similarly to that of Theorem 5 when choosing N(ζ) =
ζ̄T
nw

N̄(ζ)ζ̄nw with a parametrically affine symmetric matrix
N̄(ζ). Thus we omit it.

We finally show our result for robust H∞ performance
analysis.
Theorem 7. (H∞ Performance Analysis). If there
exist a symmetric matrix P̄ ∈ Snπ[1,N]

, matrices
Mi ∈ R(nπ[1,N]−[i]+nwπ[1,N]−[1])×(nπ[1,N]+nwπ[1,N]+nz) (i =
1, · · · , N), and a positive number γ∞ such that (15) for all
the vertices of Ω, then the LTIPD system (1) is robustly
stable and an upper bound of its H∞ performance is
given by γ∞.

⎡
⎣
〈
P̄ (Iπ[1,N] ⊗ A(ζ))

〉
P̄ (Iπ[1,N] ⊗ B(ζ)) e ⊗ C(ζ)T(

Iπ[1,N] ⊗ B(ζ)T
)
P̄ −γ2∞

(
eeT

)⊗ Inw e ⊗ D(ζ)T

eT ⊗ C(ζ) eT ⊗ D(ζ) −Inz

⎤
⎦

+
∑N

i=1

〈[Ξn(ζi) 0
0 Ξnw(ζi)
0 0

]
Mi

〉
< 0

(15)

Noting that
(
eT ⊗ D(ζ)

)
ζ̄nw = D(ζ), the proof of Theo-

rem 7 is straightforward similarly to those of Theorems 5
and 6. Thus we omit it.

3.2 Inclusion of Single SV Approach

In this subsection, we show that our derived theorems
encompass the counterpart theorems using P (ζ) defined
in (4) via single SV approach, which have been proposed
in [Sato and Peaucelle, 2006a]. To recall the analysis
methods therein, we define the following parametrically
affine matrices.

η(ζ) =
[

η(ζN ) ⊗ Iπ[N+1,N]

0π[1,N]−π[N,N],(σN−1)×π[N+1,N]
· · ·

η(ζ2) ⊗ Iπ[3,N]

0π[1,N]−π[2,N],(σ2−1)×π[3,N ]
η(ζ1) ⊗ Iπ[2,N]

]
∈ Rπ[1,N]×(π[1,N]−1),

ηn(ζ) = η(θ) ⊗ In,

ηnw(ζ) = η(θ) ⊗ Inw ,

where η(ζi) (i = 1, · · · , N) have the same definitions as in
(5).

We describe the analysis methods via single SV approach.
Lemma 8. [Sato and Peaucelle, 2006a] If there exist a
symmetric matrix P̄ , and a matrix M such that (16) for all
the vertices of Ω, then the LTIPD system (1) is robustly
stable. 〈

P̄ (Iπ[1,N] ⊗ A(ζ)) + ηn(ζ)M
〉

< 0 (16)

For robust H2 performance analysis, we use the same N(θ)
in Theorem 6, i.e. N(θ) = θ̄T

nw
N̄(θ)θ̄nw , where N̄(θ) is a

parametrically affine symmetric matrix.
Lemma 9. [Sato and Peaucelle, 2006a] If there exist a
symmetric matrix P̄ , a parametrically affine symmetric
matrix N̄(ζ), matrices F , M and H , and a positive number
γ2 such that (17), (18) and (19) for all the vertices of Ω,
then the LTIPD system (1) is robustly stable and an upper
bound of its H2 performance is given by γ2.[ 〈

P̄ (Iπ[1,N] ⊗ A(ζ))
〉

e ⊗ C(ζ)T

eT ⊗ C(ζ) −Inz

]
+

〈[
ηn(ζ)

0

]
F

〉
< 0

(17)

[
N̄(ζ)

(
Iπ[1,N] ⊗ B(ζ)T

)
P̄

P̄ (Iπ[1,N] ⊗ B(ζ)) P̄

]
+

〈[
ηnw(ζ) 0

0 ηn(ζ)

]
M

〉
> 0

(18)

γ2
2eeT − Trnw

(
N̄(ζ)

)
+ 〈η(ζ)H〉 > 0 (19)
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Lemma 10. [Sato and Peaucelle, 2006a] If there exist a
symmetric matrix P̄ , a matrix M , and a positive number
γ∞ such that (20) for all the vertices of Ω, then the LTIPD
system (1) is robustly stable and an upper bound of its H∞
performance is given by γ∞.⎡
⎣
〈
P̄ (Iπ[1,N] ⊗ A(ζ))

〉
P̄ (Iπ[1,N] ⊗ B(ζ)) e ⊗ C(ζ)T(

Iπ[1,N] ⊗ B(ζ)T
)
P̄ −γ2∞

(
eeT

) ⊗ Inw e ⊗ D(ζ)T

eT ⊗ C(ζ) eT ⊗ D(ζ) −Inz

⎤
⎦

+

〈[
ηn(ζ) 0

0 ηnw(ζ)
0 0

]
M

〉
< 0

(20)

For Theorem 5 and Lemma 8, we give the following
assertion.
Proposition 11. If there exist a symmetric matrix P̄ and
a matrix M such that (16) for all the vertices of Ω, then
there always exist matrices Mi (i = 1, · · · , N) such that
(11) for all the vertices of Ω with the same P̄ .

Proof. Suppose that there exist P̄ and M such that
(16) for all the vertices of Ω. Let matrix M be

partitioned as M =
[
M̂T

N · · · M̂T
1

]T

, where M̂i ∈
Rn(σi−1)π[i+1,N]×nπ[1,N]

(i = 1, · · · , N). Set M1 = M̂1 and

Mi =
[
M̂T

i 0
]T

(i = 2, · · · , N), then
∑N

i=1 Ξn(ζi)Mi =
ηn(ζ)M holds. Therefore, inequality (11) holds with the
above defined Mi (i = 1, · · · , N) and the same P̄ . This
completes the proof.

Similarly to Proposition 11, we give the following asser-
tions for robust performance analysis.
Proposition 12. For a given positive number γ2, if there
exist a symmetric matrix P̄ , a parametrically affine sym-
metric matrix N̄(ζ), matrices F , M and H such that (17),
(18) and (19) for all the vertices of Ω, then there always
exist matrices Fi (i = 1, · · · , N), Mi (i = 1, · · · , N) and
Hi (i = 1, · · · , N) such that (12), (13) and (14) for all the
vertices of Ω with the same γ2 , N̄(ζ) and P̄ .
Proposition 13. For a given positive number γ∞, if there
exist a symmetric matrix P̄ and a matrix M such that (20)
for all the vertices of Ω, then there always exist matrices
Mi (i = 1, · · · , N) such that (15) for all the vertices of Ω
with the same γ∞ and P̄ .

Proofs are straightforward similarly to that of Proposition
11. Thus we omit them.

Propositions 11, 12 and 13 show that the analysis methods
via multiple SV approach encompass the counterpart
methods via single SV approach.
Remark 14. In [Sato and Peaucelle, 2006a], it has been
proved that analysis methods via single SV approach
reduce conservatism with the increase of the parameter-
dependency of P (ζ). Similarly to them, Theorems 5, 6
and 7 also reduce conservatism with the increase of the
parameter-dependency of P (ζ).

4. NUMERICAL EXAMPLES

In this section, we illustrate the effectiveness of our meth-
ods with numerical examples. The comparison between
analysis methods via single SV approach and other SV

approach methods using parameter-independent SVs, i.e.
the methods in [Ebihara et al., 2005, Peaucelle et al., 2006],
has already been shown in [Sato and Peaucelle, 2006a], in
which the methods via single SV approach, i.e. Lemmas 8,
9 and 10, give no worse analysis result than those methods.
Further, in [Sato and Peaucelle, 2006b] which is an in-
house research report prepared for [Sato and Peaucelle,
2006a], numerical examples borrowed from [Chesi et al.,
2005b,a] show that Lemmas 8, 9 and 10 give no worse
analysis result than SOS approach methods in [Chesi et al.,
2005b,a]. Therefore, in the following, we focus on the
comparison between multiple SV approach methods and
single SV approach methods.

The calculation for LMIs has been conducted using
SeDuMi ver. 1.1 [Sturm, 1999] along with the parser
YALMIP ver. 3 [Lofberg, 2004].

4.1 Stability Analysis for Randomly Generated Examples
in [Oliveira and Peres, 2005c]

We conduct robust stability analysis for the numerical
examples in Table 1 in [Oliveira and Peres, 2005c] using
Theorem 5 and Lemma 8. Here, 1000 examples, all of
which are assured to be robustly stable, are checked for
the robust stability. The results are shown in Table 1.
For reference, the results using the methods in [Oliveira
and Peres, 2005c], which are the asymptotic necessary
and sufficient conditions for robust stability analysis using
parametrically affine Lyapunov functions, are also shown.
As proved in [Ebihara and Hagiwara, 2006], parametrically
affine Lyapunov functions do not always give the exact
analysis. This fact is also illustrated in Table 1. For
reference, we also give the number of decision variables
in parentheses. Although Theorem 5 and Lemma 8 are
neither proved to be the necessary and sufficient condition
for robust stability analysis problem, they give the exact
analysis result but just for one case.

In Table 1 in [Oliveira and Peres, 2005c], they have
conducted robust stability analysis for numerical examples
with setting n = 2, 3, 4 and N = 2, 3, 4. However, the
number of decision variables in Theorem 5 for n = 4 and
N = 4 is 10272, which is prohibitive for its real calculation.
Thus, our methods are currently for low-order systems
with a few vertices due to its numerical complexity.

4.2 H2 Performance Analysis for Randomly Generated
Examples

Next, we conduct robust H2 performance analysis for
randomly generated numerical examples. In our examples,
A(ζ) matrices are the same as in Table 1; however, other
matrices B(ζ) and C(ζ), all the elements of which lie in
[−0.5, 0.5], are randomly generated. For each generated
example, we calculate the upper bound of H2 performance
γ2 by applying Theorem 6 and Lemma 9, and set the
obtained γ2 as γ2min . For comparison, we calculate the
maximum value of H2 performance γ2 using fine gridding
method, and set the obtained γ2 as γ2grid. Tables 2 and
3 respectively show the average values of γ2min/γ2grid

for MIMO systems and SISO systems. We also give the
number of decision variables in parentheses. They show
that Theorem 6 is less conservative than Lemma 9.
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A typical example which clearly illustrates Proposition 12
is shown in the following.[

Ai Bi

Ci

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
−0.65720 0.45650 −0.25776 0.28247
0.94968 −0.85357 −0.45973 0.14439
−0.41159 −0.093762 −1.8121 0.25151
0.21149 0.21465 −0.10629

⎤
⎥⎦ (i = 1)

⎡
⎢⎣
−0.86242 −0.82758 0.12356 −0.28094
0.14989 −0.31188 −0.71235 −0.45806
0.31463 −0.041254 −0.56785 −0.19322
0.40763 0.36311 0.31868

⎤
⎥⎦ (i = 2)

⎡
⎢⎣
−0.52594 −0.20583 −0.85546 0.23945
0.011705 −1.4926 0.64233 0.10013
−0.91841 −0.74820 −1.3360 0.35546
−0.41186 0.062732 −0.41894

⎤
⎥⎦ (i = 3)

Theorem 6 and Lemma 9 with mi = 1 (i = 1, 2, 3)
respectively give the minimum γ2 as 2.7340 and 3.0159.
Fine gridding method gives the worse H2 performance
as 1.8669 at ζ = [1 0 0]T . Theorem 6 gives more exact
analysis than Lemma 9; that is, Proposition 12 holds for
this example. However, they both give conservative results.
To obtain more exact analysis, parameter-dependency of
PPDLFs should be increased as suggested in Remark 14;
however, we cannot apply Theorem 6 with mi = 2 (i =
1, 2, 3) due to the prohibitive numerical complexity.

4.3 H∞ Performance Analysis for Randomly Generated
Examples

Finally, we conduct robust H∞ performance analysis for
randomly generated numerical examples. In our examples,
A(ζ) matrices are the same as in Table 1; however, other
matrices B(ζ), C(ζ) and D(ζ), all the elements of which lie
in [−0.5, 0.5], are randomly generated. For each generated
example, we calculate the upper bound of H∞ performance
γ∞ by applying Theorem 7 and Lemma 10, and set the
obtained γ∞ as γ∞min . For comparison, we calculate the
maximum value of H∞ performance γ∞ using fine gridding
method, and set the obtained γ∞ as γ∞grid . Tables 4 and
5 respectively show the average values of γ∞min/γ∞grid

for MIMO systems and SISO systems. We also give the
number of decision variables in parentheses.

A typical example which clearly illustrates Proposition 13
is shown in the following.[

Ai Bi

Ci Di

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
−0.44588 0.53058 0.46577 −0.37069
0.18373 −0.44727 0.37579 −0.46117
0.69592 −0.84477 −0.69260 −0.038438
0.24713 0.099555 −0.45061 0.18998

⎤
⎥⎦ (i = 1)

⎡
⎢⎣

−1.2033 −0.17933 −0.78222 −0.42739
−0.96830 −0.22693 0.95020 −0.49252
0.40224 0.10063 −0.52708 −0.43766
0.34847 −0.34778 0.18830 0.29317

⎤
⎥⎦ (i = 2)

⎡
⎢⎣

−1.3977 0.43537 −0.043558 −0.22457
0.58232 −0.48923 0.82965 −0.21313
0.95700 0.23948 −1.3940 −0.081949

−0.090526 −0.049513 −0.13226 −0.29596

⎤
⎥⎦ (i = 3)

Table 1. Number of systems assured to be ro-
bustly stable via Theorem 5 (Thm 5), Lemma
8 (Lem 8), Theorem 3 (Thm 3 [OP2005c]) and
Theorem 5 (Thm 5 [OP2005c]) in [Oliveira and

Peres, 2005c]

n N
Thm 5 Lem 8 Thm 3 Thm 5

(mi = 1) (mi = 1) [OP2005c] [OP2005c]

2 2 1000(100) 1000(84) 1000(6) 1000(22)
3 1000(520) 1000(360) 1000(9) 1000(33)
4 1000(2576) 1000(1488) 1000(12) 1000(44)

3 2 1000(222) 1000(186) 958(12) 977(48)
3 1000(1164) 1000(804) 936(18) 963(72)

4 2 1000(392) 1000(328) 952(20) 978(84)
3 999(2064) 999(1424) 917(30) 953(126)

Table 2. γ2min/γ2grid for randomly generated
MIMO systems via Theorem 6 (Thm 6) and

Lemma 9 (Lem 9)

n N nw(= nz )
Thm 6 Lemma 9

(mi = 1) (mi = 1)

2 2 2 1.038(461) 1.038(373)
3 2 1.065(2609) 1.075(1749)

3 2 3 1.013(1007) 1.013(814)

4 2 4 1.011(1769) 1.011(1429)

Table 3. γ2min/γ2grid for randomly generated
SISO systems via Theorem 6 (Thm 6) and

Lemma 9 (Lem 9)

n N nw(= nz )
Thm 6 Lemma 9

(mi = 1) (mi = 1)

2 2 1 1.053(289) 1.053(231)

3 1 1.095(1613) 1.112(1043)

3 2 1 1.038(527) 1.040(420)
3 1 1.119(2941) 1.155(1886)

4 2 1 1.027(845) 1.032(673)

Table 4. γ∞min/γ∞grid for randomly generated
MIMO systems via Theorem 7 (Thm 7) and

Lemma 10 (Lem 10)

n N nw(= nz )
Thm 7 Lemma 10

(mi = 1) (mi = 1)

2 2 2 1.001(325) 1.002(253)
3 2 1.011(1769) 1.022(1089)

3 2 3 1.028(727) 1.123(565)

4 2 4 1.864(1289) 4.613(1001)

Theorem 7 and Lemma 10 with mi = 1 (i = 1, 2, 3)
respectively give the minimum γ∞ as 735.76 and 2608.5.
Fine gridding method gives the worse H∞ performance
as 468.22 at ζ = [0 1 0]T . Theorem 7 gives more exact
analysis than Lemma 10; that is, Proposition 13 holds for
this example. However, they both give conservative results.
To obtain more exact analysis, parameter-dependency of
PPDLFs should be increased as suggested in Remark 14;
however, we cannot apply Theorem 7 with mi = 2 (i =
1, 2, 3) due to the prohibitive numerical complexity.

5. CONCLUSIONS

We propose new methods for robust stability, H2 per-
formance, and H∞ performance analysis for linear time-
invariant uncertain systems, whose state-space matrices
are polytopically parameter-dependent, using polynomi-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11395



Table 5. γ∞min/γ∞grid for randomly generated
SISO systems via Theorem 7 (Thm 7) and

Lemma 10 (Lem 10)

n N nw(= nz)
Thm 7 Lemma 10

(mi = 1) (mi = 1)

2 2 1 1.001(193) 1.003(154)
3 1 1.010(1037) 1.011(662)

3 2 1 1.014(351) 1.049(283)
3 1 1.028(1885) 1.069(1225)

4 2 1 1.021(557) 1.103(452)

ally parameter-dependent Lyapunov functions. The pro-
posed methods are derived via multiple slack variable
approach, which encompasses single slack variable ap-
proach. Our methods consequently encompass the previ-
ously proposed methods via single slack variable approach.
Although our methods are only sufficient conditions for
our addressed problems, randomly generated examples
demonstrate the effectiveness of proposed methods for
both robust stability and performance analysis. However,
the numerical complexity of our methods is prohibitive for
high-order systems with many vertices. This drawback will
be further investigated in the future.
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