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Abstract: In maintenance field, industrial and research communities take a growing interest in the 

"understanding of the degradation phenomenon". Within this frame, the general purpose of the paper is to 

explore the way of defining a prognostic system that is able to approximate and predict the degradation of 

equipment. Prognostic is defined and the evolution of developments on forecasting methods is studied. A 

neuro-fuzzy system for failure prediction based on the ANFIS model is closely studied and a pre-treatment 

of data is proposed to perform short term accurate and mid-term reliable predictions. 

 

1. INTRODUCTION 

The high costs in maintaining complex equipments make 

necessary to enhance maintenance support systems and 

traditional concepts like preventive and corrective strategies 

are progressively completed by new ones like predictive and 

proactive maintenance (Iung et al., 2003, Muller et al., 2008). 

Thus, prognostic reveals to be a very promising activity as it 

should allow avoiding inopportune maintenance spending. 

That said, prognostic must obviously not be the single 

maintenance task as its applicability, cost and effectiveness 

can vary from an industrial plant to an other. Within this 

frame, the objective of the work partially reported here is to 

define a prognostic system that is able to take into account 

the dynamic of the equipment. A central problem can be 

pointed out from this: the accuracy of a prognostic system is 

related to its ability to approximate and predict the 

degradation of equipment. In other words, starting from a 

"current situation", a prognostic tool must be able to forecast 

the "future possible situations". From the research point of 

view, many developments exist to support this forecasting 

activity (De Gooijer and Hyndman, 2006). However, in 

practice, choosing an efficient technique depends on classical 

industrial constraints that limit the applicability of the tools: 

available knowledge (model, past experiences…), evolution 

of the monitored system (linearity, periodicity…), decision 

criteria (precision, reasoning…), real implementation 

requirements (flexibility, complexity, computation time…). 

In this context and according to the maintenance field, the 

purpose of the work is to point out a predictive tool and to 

study the applicability of it. In this way, the paper is 

organized in three parts. First, the concept of "prognostic" is 

positioned within the maintenance strategies and an overview 

of prediction approaches is given (section 2). The evolution 

of forecasting systems based on artificial intelligence is then 

more closely studied (section 3). A specific class of methods 

emerges from it: the neuro-fuzzy systems. One of them is 

also presented in section 4, the ANFIS, and an improvement 

of this tool to perform accurate mid term predictions is 

proposed and illustrated on an academic example. 

2. FROM THE PROGNOSTIC PROCESS TO THE 

CHOICE OF A FORECASTING APPROACH 

2.1 The emergence of prognostic in maintenance policies 

In the maintenance area, one usually speaks about fault 

detection and diagnostic, response development and 

scheduling of these actions. Briefly these steps correspond to 

the need, of "perceiving" phenomena, of "understanding" 

them and of "acting" consequently. However, rather than 

understanding a phenomenon which has just appeared like a 

failure (a posteriori), it's convenient to try to "anticipate" it's 

manifestation in order to consequently and, as soon as 

possible, resort to protective actions. This is what could be 

defined as the "prognostic process". Also, industrials show a 

growing interest in this thematic which becomes a major 

research framework; see recent papers dedicated to condition-

based maintenance (Ciarapica and Giacchetta, 2006, Jardine 

et al., 2006, Vachtsevanos et al., 2006). Prognostic is 

recognized as a key feature in maintenance strategies as it 

usefully completes maintenance tasks. However, this concept 

isn't well defined. So, let's have a closer look on it. 

2.2 Prognostic and forecasting 

In scientific literature, "prognostic" is sometimes related to 

fracture and fatigue (Farrar et al., 2003). Some authors define 

it as a process whose objective is to predict the remaining 

useful life before a failure occurs given the current machine 

condition and past operation profile (Jardine et al., 2006). 

Prognostic is also seen as the "chance" that a machine 

operates without a fault / failure up to some future time (Lin 

and Makis, 2003). Thus, a salient characteristic of prognostic 

can be pointed out: "prognostic" is mostly assimilated to a 

"prediction process" (a future situation must be caught). 
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The ISO comity defines prognostic as "the estimation of time 

to failure and risk for one or more existing and future failure 

modes" (ISO 13381-1, 2004). More generally, definitions of 

"prognostic" are grounded on the failure or fault notion, 

which implies that "prognostic" is associated with a degree of 

acceptability. Thus, it should be based on assessment criteria, 

whose limits depend on the system itself and on performance 

objectives. Consider Fig. 1: the predicted situation at time 

"t+dt" can be considered as a critical one because of the 

degradation limit. Without this limit, there is no way to 

conclude on the predicted situation, and thus, it is impossible 

to dress an appropriate maintenance. 

Finally, prognostic could be split into 2 sub-activities: a first 

one to predict the evolution of a situation at a given time 

(forecasting process), and a second one to assess this 

predicted situation with regards to a referential. In practical 

situation all this must be supported by operational tools 

(hardware and software technology devices). In this paper, 

the "assessment characteristic" of prognostic is leaved aside 

and the developments here after deal with "forecasting". 

 

time 

degradation index 

situation(t) 

Predicted(t+dt) 

t t+dt 

eval. criteria 
- perf. limit 

Predict / 
Forecast 

Assess : Perf(t+∆t)<0 

 

Fig. 1. Prognostic as a forecasting and assessment process 

2.3 Prediction / forecasting approaches overview 

According to some authors, the methods presented in this 

section are sometimes labeled as "prognostic techniques" (§ 

2.2). However, most of them refer to what, in this paper, is 

called "prediction / forecasting". 

Various techniques to prognostics have been developed. 

These methods can be classified as being associated with one 

of the following two approaches: model-based and data-

driven (Byington, 2002, Chiang et al., 2001). 

Model based approaches.  The model-based methods assume 

that an accurate mathematical model can be constructed from 

first principles. As an example, physics-based fatigue models 

have been extensively employed to represent the initiation 

and propagation of structural anomalies. The main advantage 

of these approaches is their ability to incorporate physical 

understanding of the system to be monitored. But this closed 

relation with a mathematical model may also be a strong 

weakness: it can be difficult even impossible to catch the 

system behavior (comprehensiveness, non linearity). 

Data driven approaches.  Data-driven approaches derive 

directly from routinely monitored system operating data. In 

many applications, measured input/output data is the major 

source for a deeper understanding of the system degradation 

behavior. According to the scientific literature, data-driven 

approaches can be divided on two global categories: 

statistical techniques and artificial intelligent (AI) techniques. 

The strength of data-driven techniques is their ability to learn 

from examples and capture subtle relationships among the 

data even if the underlying relationships are unknown or hard 

to describe. 

Forecasting tool choice.  Real systems are complex and their 

behavior is often non linear, non stationary. These 

considerations make harder a modeling step, even impossible. 

Yet, a forecasting computational tool must deal with it, and, 

according to precedent remarks, artificial intelligence should 

be valorized to support it. In fact, AI techniques have been 

increasingly applied and have shown improved performances 

over conventional "prediction" approaches (Wang et al., 

2004, Yam et al., 2001, Zhang et al., 1998). More precisely, 

adaptive networks are well suitable for forecasting. This point 

is more widely discussed in next section. 

3. ADAPTIVE NETWORKS: TOWARDS A NEURO-

FUZZY SYSTEM FOR FORECASTING 

3.1 Neural Networks – a fitted forecasting technique 

Artificial neural networks (ANNs) are a special case of 

adaptive networks that have been extensively explored in 

literature because of the following aspects. ANNs can 

perform nonlinear modeling without a priori knowledge: they 

are able to learn complex relationships among "inputs and 

outputs". Moreover, from the computational point of view, 

ANNs are quick processes. 

ANNs have two typical connection architectures: 

feedforward (like the multi layers perceptron MLP or the 

radial basis function network RBF) and recurrent networks 

(like the Elman architecture or the recurrent radial basis 

function network). Both have been employed in system 

behavior forecasting. Yet, there is no unique way of 

designing an accurate ANN for "prediction". 

3.2 From ANNs to neuro-fuzzy systems for forecasting 

The idea of using ANNs for forecasting is not new: in 1964, 

Hu used the Widrow’s adaptive linear network to forecast the 

weather. However, due to the lack of a training algorithm at 

the time, the research was quite limited and ANNs were 

leaved aside. Since the 80
th

, research in the area is growing 

up (see also Fig. 2). 

First step: feedforward networks.  One of the first successful 

application of ANNs in forecasting is reported by Lapedes 

and Farber (1987) who designed a feedforward ANN that can 

accurately mimic a chaotic series (Zhang et al., 1998). In 

general, feedforward ANNs (PMC, RBF) trained with the 

backpropagation algorithm (introduced at this time) have 

been found to perform better than classical autoregressive 

models for the trend prediction of non linear time series 

(Yam et al., 2001). 

Second step: learning and parameterization improvement.   

There are many factors that can affect the performance of 
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ANNs (number of inputs and outputs nodes, number of 

layers, activation functions, learning algorithm, training 

sample…). Thus, building a neural network forecaster is a 

non trivial task. Since the 90
th

 many works are led to improve 

the accuracy of predictions while reducing time processing. 

The developments are based on the research of guidelines for 

the optimization of ANN's architecture and the development 

of new training algorithms (Hippert et al., 2001). 

Third step: backward networks.  In order to explicitly take 

into account the time in forecasting tools, backward networks 

architectures were also developed and recurrent ANNs were 

compared with some of the well known methods for the 

prediction of non-linear time series. The results indicated that 

RNNs have a better forecasting performance than the 

classical methods and are even better than the feedforward 

type ANNs (Yam et al., 2001). 

Fourth step: towards neuro-fuzzy systems.  ANNs have 

successfully been used to support the prediction process, and 

research works emphasize on the interest of using it. 

Nevertheless, some authors remain skeptical: 1) the design of 

an ANN is more of an art than a science, 2) ANNs are "black-

boxes" which imply that there is no explicit form to explain 

and analyze the relationships between inputs and outputs. 

According to these considerations, recent works focus on the 

interest of hybrid systems: many investigations aim at 

overcoming the major ANNs drawback (lack of knowledge 

explanation) while preserving their learning capability. In this 

way, neuro-fuzzy systems are well adapted (next section). 
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Fig. 2. From ANNs for forecasting to neuro-fuzzy systems 

3.3 Neuro-fuzzy systems for forecasting 

Both neural networks and fuzzy inference systems (FISs) are 

dynamic and parallel processing systems that estimate input 

output function. The interest of their integration follows from 

their complementary features. FIS uses linguistic rules for 

system behavior forecasting. It starts from highly formalized 

insights about the dynamic behavior of the system, and then 

formulates expert knowledge in fuzzy IF-THEN rules in 

order to ensure the forecasting task. However, FISs lack 

learning capability: sometimes, it's difficult to properly 

determine the fuzzy rules and to optimize the membership 

functions of premises. A solution to overcome these 

disadvantages is to use ANNs to train the fuzzy structure and 

the parameters. Moreover, the rules of neuro-fuzzy systems 

(NFSs) are transparent, enabling validation and manipulation 

of knowledge by experts (James et al., 2003). At last, 

compared to ANNs, NFSs seem to be a promising tool if the 

volume of available data is limited (Mahabir et al, 2006). 

Actual developments confirm the interest of using NFSs to 

forecast non linear time series (Wang et al., 2004, Yam et al., 

2001, Zhang et al., 1998): NFSs overpass others methods in 

both forecasting accuracy and training efficiency. As a result, 

an adequate tool to support the forecasting phase of the 

prognostic process should be an NFS. Work of (Wang et al., 

2004) demonstrates that the adaptive neuro-fuzzy inference 

system (ANFIS) is a very reliable and robust machine health 

condition predictor. Next part is devoted to it. 

4. ANFIS: TOWARDS A MID-TERM RELIABLE 

FORECASTING SYSTEM 

4.1 ANFIS: adaptive  neuro-fuzzy inference system 

Principle.  ANFIS is a class of adaptive networks introduced 

by (Jang and Sun, 1995) and exploited recently to support 

forecasting tasks. It can be seen as a feed-forward neural 

network structure where each layer is a neuro-fuzzy system 

component. It simulates Sugeno fuzzy rule where the 

consequent part of the rule is a linear combination of input 

variables and a constant. The final output of the system is the 

weighted average of each rule's output. 

Architecture, learning and inferring process.  Consider Fig. 3 

to describe the architecture of ANFIS and briefly explain the 

learning and inferring process, and see (Jang and Sun, 1995, 

Wang et al., 2004) for further explications. The ANFIS 

network is composed of five layers excluding input layer. If 

two membership functions are assigned to each input variable 

(like in Fig. 3), then 16 rules are formulated for the inference 

operation (2
4
). These rules are represented in general form in 

the following manner: 

Rj : if (x1 is Aj
1
) and (x2 is Aj

2
) and (x3 is Aj

3
) and (x4 is Aj

4
) 

then j
54

j
43

j
32

j
21

j
1j cxcxcxcxcy ++++=  (1) 

 

where j=1,…,16 is the rule number. 
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Fig. 3. Architecture of an ANFIS with 4 inputs 
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Layer 1 is the fuzzyfication layer in which each node 

represents a membership value to a linguistic term like 

Gaussian or sigmoid functions, etc. In this way, two Gaussian 

function memberships can be assigned to each input variable: 

)])/bmxexp(-0,5[((x)µ
2j

l
j

lj
l

A
−=  (2) 

 

where l is the number of the input {1, …, 4} and {
j

lm , 
j

lb } 

is the parameter set. Parameters in the layer are referred to as 

premise parameters. 

In Layer 2, each node performs a fuzzy T-norm operation. 

Outputs of this layer are the rule firing strength. Max-product 

operator is generally used: 

)(x).µ(x).µ(x).µ(xµµ 4j
4

A
3j

3
A

2j
2

A
1j

1
A

j =  (3) 

 

In layer 3, all the rule firing strengths are normalized. After 

the linear combination of the input variables in Layer 4, the 

predicted output y is obtained in Layer 5 via weighted 

average (4). 

∑
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This above stated NF system has 96 parameters to be 

optimized (16 premise MF parameters and 80 consequent 

parameters) which is the aim of the learning phase. Hybrid 

learning algorithms are used to be deployed; especially the 

combination of the gradient descent and least squares 

estimate algorithms. In fact, works showed that such an 

approach reduces the complexity of the algorithm while 

increasing the efficiency of learning (Jang and Sun, 1995, Li 

and Cheng, 2007, Wang et al., 2004). 

Performances and limits.  Different works (see § 3.3) show 

that ANFIS can capture the behavior of a system quickly and 

accurately, even better than other methods (included artificial 

neural networks). Moreover, contrary to an ANN, an ANFIS 

can be interpreted by an expert. That said, in practice, the 

modelling of an adapted ANFIS architecture run up against 

similar problems as for ANNs. In fact, the exactness of 

forecasting obtained through this tool depends on many 

factors: inputs selection, number and type of membership 

functions, learning algorithm. As an example, the same 

ANFIS as proposed here above but with 3 membership 

functions for each input (instead of 2) would have 431 

parameters to be optimized (instead of 96). This obviously 

would be time expensive. More over, this would impair the 

transparency of the underlying model… Nevertheless, better 

results can be performed without increasing the complexity 

of the model and this is the purpose of next section. 

4.2 Inputs selection 

Classical inputs.  In forecasting applications, the inputs of the 

ANFIS are directly extracted from the time series data. As an 

example, (Wang, et al., 2004) construct a predictor with 4 

inputs xt-3, xt-2, xt-1, xt to forecast the output xt+1. However, this 

type of "input selection" doesn't enough exploit the 

specificity of ANFIS inference… 

Inputs selection.  ANFIS approximates the output variable by 

decomposing the whole inputs space into several partial 

fuzzy spaces and representing the output space with a linear 

equation (see (1) and (4)). There is a way to take unfair 

advantage of this characteristic to improve the ANFIS 

forecasting results. Consider Fig. 4 to argue this assumption. 

At a given time t, the measure xt+r can be approximated as 

follows (linear approximations): 

r1tt2t1t3t2t3trt A)x(x)x(x)x(xxx +−+−+−+= −−−−−−+  (5) 

 

From this and considering the learning capability of ANFIS, 

the predicted output should be well approximated at any time 

by modifying the classical inputs data space partitioning and 

retaining the following set of inputs: {xt-3, xt-2-xt-3, xt-1-xt-2, 

xt-xt-1}. This pre-treatment allows the taking into account of 

the dynamic of the signal, and the "learning" of its evolution 

instead of the data series. 

 

time 

x 

Ar 

∆t 

xt-3 

t 

xt-2 

xt-1 
xt 

t+r 

real time series 

linear approximations 

 

Fig. 4. Linear approximation of a data series with ANFIS 

As with classical inputs, the choice of a membership function 

type (Gaussian…) aims at reaching a compromise between 

performance, number of parameters and computing time. 

Tests data.  The chaotic Mackey-Glass time series data is 

used to validate the effect of the proposed inputs selection. 

This time series is a benchmark problem extensively used: it's 

a non periodic and non convergent time series. Considering 

our final applicative objective (the prognostic of failures), to 

be capable to carry out predictions on such a signal is of good 

omen: real systems are complex and have generally a non-

stationary and non-linear behaviour, what makes difficult a 

modelling phase. Working with this data series constitutes a 

first step to the specification of a prognostic system able to 

take into account the dynamic of real systems. 

Simulation.  The conditions of simulation are resumed in 

Table 1. In order to extract more solid conclusions from the 

comparison results, the same training and testing data sets 

were used to train and test both models (Table 2). Predictions 

were made at "t+1", at "t+10", and at "t+50" in order to 

measure the stability of results in time. The prediction 

performance was assessed by using the root mean square 

error criterion (RMSE), the mean absolute percent error 

(MAPE) and the maximum of percent error (max_PE). 
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Table 1.  Conditions of tests 

Inference system 

number of inputs ................

input partitioning ...............

membership functions .......

inference type ....................

4 

2 memberships per input 

Gaussian 

linear – Sugeno 

Learning scheme 

training/test data samples ...

training algorithms .............

training epoch number .......

error goal ...........................

initial step size ...................

step size decrease rate ........

step size increase rate ........

500/500 and 250/750 

LSE + Gradient Descent 

10 

0 

0,01 

0,9 

1,1 

 

4.3 Discussion 

Short-term predictions.  In short-term forecasting (t+1) the 

ANFIS with the "selection of inputs" (ANFIS2) does not 

provide very higher results than the classical model (RMSE 

and MAPE are quite the same than with classical inputs). 

However, it is a little more accurate. 

Mid-term predictions.  With multi-step-ahead prediction 

(t+10 and t+50), the advantage of selecting the inputs is 

much obvious: the second ANFIS predicts in a more accurate 

manner. Both RMSE and MAPE are divided by 2. 

Error spreading.  The maximum of the percent error in 

forecasting is always smaller with the second model. This is 

all the more significant in the multi-step-ahead prediction (up 

to 2 times smaller). See Fig. 5 for an illustration. From the 

decisional point of view in maintenance applications, this 

aspect is very important: ANFIS2 enables to have a more 

robust forecasting tool as the variation of error is not as big as 

in the classical model. Thus, the confidence on the 

predictions is all the more greater. 

 Nlearn=250 samples  -  predictions at "t+50" 
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Fig. 5. Errors of predictions and pdf of percent errors 

Learning data set.  The ANFIS with "inputs selection" 

trained with 250 data samples overpass the performance of 

the classical model trained with 500 learning data samples: at 

"t+50", predictions of ANFIS2 with 250 learning samples are 

much more accurate and have a much smaller error spreading 

than that of the classical ANFIS with 500 training samples. 

Moreover, these predictions are quite the same than that of 

the normal ANFIS at "t+10" with Nlearn=500. This is an 

encouraging result: classically, one says that the number of 

learning samples must be more than five times the number of 

parameters to be updated, which is often prohibitive in real 

applications. Yet, both models have 96 parameters. 

In a word, the modification of the proposed inputs selection 

is an efficient way to improve the effectiveness of ANFIS 

predictions, notably in mid-term forecasting. Thus, this lets 

hope that it will be possible to build a prognostic system 

whose error of prediction would be mastered. The consequent 

maintenance decisions will be all the more better.  

Table 2.  Simulation results 

Nlearn = 500 

Ntest = 500 

Classical 

inputs 

With inputs 

selection 

t+1 

RMSE 

MAPE 

max_PE 

0,0012 

0,09 % 

8,34 % 

0,0012 

0,09 % 

7,26 % 

t+10 

RMSE 

MAPE 

max_PE 

0,0512 

4,57 % 

37,62 % 

0,0277 

2,27 % 

12,52 % 

t+50 

RMSE 

MAPE 

max_PE 

0,1024 

9,79 % 

57,62 % 

0,0529 

5,8 % 

30,88 % 

Nlearn = 250 

Ntest = 750 

Classical 

inputs 

With inputs 

selection 

t+1 

RMSE 

MAPE 

max_PE 

0,0013 

0,11 % 

8,15 % 

0,0012 

0,10 % 

7,63 % 

t+10 

RMSE 

MAPE 

max_PE 

0,0549 

5,04 % 

27,23 % 

0,0339 

2,96 % 

13,90 % 

t+50 

RMSE 

MAPE 

max_PE 

0,1084 

10,26 % 

59,19 % 

0,0581 

5,05 % 

32,31 % 

 

4.4 The inside effect of inputs selection 

The improvement of ANFIS predictions is not due to an 

increased complexity of the model, nor to a different learning 

algorithm. Also, the training and test data sets are rigorously 

the same in comparison results… 

Consider two ANFIS: the first one (ANFIS1) with classical 

inputs x1 and x2 defined on [a, b], and the second one 

(ANFIS2) with selected inputs x1 and x1-x2 ∈ [a-b, b-a]. 

Consider also two data samples for each ANFIS: {X1, X2} and 

{X1, X2'} for the first one, and {X1, X1-X2} and {X1, X1-X2'} 

for the second one, where X2' ≈ X2. These two samples are 

very similar. However, ANFIS2 "considers" them as "more 

similar" than ANFIS1 (Fig. 6): ∆µANFIS2 < ∆µANFIS1. Thus, 

during the learning phase, ANFIS2 has a lower correction of 

parameters. In other words, the inputs selection enables to 

have a compromise between approximation and 

generalization. This also explains that the learning phase can 

be performed with less learning samples. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12859



 

 

     

 

 

∆µANFIS1 

X2 X2' 
x2 

a b 

)(xµ 2j
2

A

∆µANFIS2 

X1-X2' X1-X2 

x1-x2 

a-b b-a 

)x-(xµ 21j
2

A

ANFIS 1 – layer 1: 

membership for the 

fuzzyfication of x2  

ANFIS 2 – layer 1: 

membership for the 

fuzzyfication of x1-x2  

 

Fig. 6. Example of fuzzyfication in ANFIS1 and ANFIS2 

5. CONCLUSION AND WORK IN PROGRESS 

The high costs in maintaining complex equipments make 

necessary to enhance maintenance support systems. 

However, researchers are just beginning to address the 

concept of prognostic and real effective prognostics systems 

are scarce. In this context, the work reported here aims 

globally at drawing the way of implementing an efficient 

prognostic tool in industrial applications. 

The concept of "prognostic" has been positioned within the 

maintenance strategies. This revealed that the accuracy of a 

prognostic system is related to its ability to approximate and 

predict the degradation of an equipment. Thus, a study of 

prediction approaches has been led in order to identify a 

potential technique. According to the global requirements 

that can be expected from a forecasting tool (accurate 

prediction with non linear data, knowledge representation, 

flexibility, computation time…) the ANFIS adaptive network 

has been chosen. An improvement of this technique has also 

been proposed. It enables the forecasting to be a more robust 

task, without increasing complexity of treatments. However, 

a deeper consideration of prognostic items should be taken 

into account (functioning modes, degradation laws…). 

The work is still in progress and the developments are at 

present extended in two principal ways. First, the multi-step-

ahead prediction is been more closely investigated, which is a 

critical task for real prognostic systems. Secondly, the 

predictive ANFIS tool is been modified in order to integrate 

multi-dimensional data (complex systems can't be supervised 

by a single monitoring index). 
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