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Abstract: In this paper we develop new results on control systems design for spatially
distributed linear systems using an n-D systems approach. The basic ideas are explained using
as an example heat conduction in a rod where the measurements and control action applied are
based on an array of sensors and heaters. The first part of the analysis given shows how the
process dynamics for this case can be approximately described by a 2-D transfer-function, i.e.
a fraction of two bivariate polynomials. This is followed by stability analysis and tests. Finally,
a simple algorithm for design of LQ controller is proposed.

1. INTRODUCTION

The control of distributed-parameter systems has always
been a very active topic with applications in many areas.
Also the last few years, in particular, have seen develop-
ments in associated technology which have a direct impact
on actual implementation. In particular, there have been
massive developments in the design and implementation
of very high quality sensors and actuators and also the
associated costs are dropping. As a result, it is now feasible
to consider using arrays of sensors and actuators in the
control of spatially distributed systems.

Suppose now that a particular application requires hun-
dreds of control inputs and measured outputs in order for
progress with control design and (eventual) implementa-
tion to be made. In such cases it is still feasible to design
and implement a lumped (centralized) control scheme.
Some of the more challenging and relevant applications
now emerging will, however, require thousands of actuators
and sensors and for such cases the central approach is
clearly (at very best) inefficient. Hence there is a need for
a major revision of the control paradigm for distributed
systems and the only feasible approach appears to be the
design and implementation of distributed (decentralized)
controllers with a regular (and dense) mesh of sensors
and actuators. Figs. 1 and 2 respectively illustrate the
centralized and distributed control approaches (and the
basic difference between them) for temperature regulation
in a rod.

Results on some new trends in the design of spatially dis-
tributed controllers can be found, for example, in Bamieh
et al. [2002], D’Andrea and Dullerud [2003], Stewart
et al. [2003], Stein and Gorinevsky [2005], Langbort and
D’Andrea [2003], Cichy et al. [2005] and Rogers et al.

⋆ The work was financially supported by the the Ministry of Edu-
cation of the Czech Republic under the project Centre for Applied
Cybernetics (1M0567).

[2007]. A more applications focus can be found in Kulkarni
et al. [2002] where the subject area is adaptive optics. In
this case, suitably developed spatially distributed control
is required if the objectives set down are to be achieved to
the maximum possible extent, e.g. precise control of the
shape of a deformable mirror by employing a huge area of
piezoelectric actuators.

One possible approach to the problem of the control of
systems described by linear partial differential equations
using a mesh of sensors and actuators is first formulated as
that of control systems design for a discrete approximation
(in both time and spatial position) of the dynamics. Under
some simplifying assumptions, the dynamics can then be
described by a state-space model of n-D systems theory.
Relevant background literature on this latter area can be
found, for example, in Youla and Gnavi [1979], Šebek et al.
[1988], Šebek [1988], Šebek [1994]. This paper gives further
results on this approach for 2-D systems where one variable
represents time and the second a spatial coordinate.

The systems considered here belong to the class of so-
called non-causal (also termed spatially non-causal) sys-
tems. A physical example is a heat conducting rod with
an array of temperature sensors and actuators in the form
of heaters as shown schematically in Fig. 2. This case is
used here to illustrate the results developed as a necessary
preliminary for eventual application to more complex but
physically relevant examples such as deformable mirrors
for astronomical telescopes (see, for example, Augusta and
Hurák [2006]).

The paper is organized as follows. Section 2 deals with sta-
bility of distributed parameter systems. Section 3 proposes
an algorithm for controller design. A numerical example is
shown in Section 4. Remarks and discussion conclude the
paper.
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Fig. 1. Centralized control of a distributed parameter sys-
tem: a rod with an array of heaters and temperature
sensors and one controller.

2. STABILITY ANALYSIS OF SYSTEMS WITH
DISTRIBUTED PARAMETERS

A linear shift-invariant system is bounded input bounded
output (BIBO) stable if, and only if, its impulse response
is absolutely summable. Also for systems described by
transfer functions on approach to determining if this
property holds for a given example is based on root maps.

Root map, see Dudgeon and Mersereau [1984], is 2-D graph
consisting of n parts. Each part shows the loci of the
roots of a[z1, . . . , zi−1, zi+1, . . . zn][zi] as the parameters
z1, . . . , zi−1, zi+1, . . . zn traverse the unit circle zk = ej ωk

for −π ≤ ωk ≤ π, k 6= i, for i = 1, 2, . . . , n.

Systems with distributed parameters are a special class of
n-D systems. The following result expresses BIBO stability
in terms of the root map just for systems with distributed
parameters.
Lemma 1. An n-D spatially distributed system with trans-
fer function

P =
b(z, z1, z

−1
1 , . . . , zn, z−1

n )
a(z, z1, z

−1
1 , . . . , zn, z−1

n )
, (1)

where z and zl, l = 1, . . . n correspond to time and space
respectively is BIBO stable if, and only if, its root map
generated by a[z1, z

−1
1 , . . . , zn, z−1

n ][z] lies inside the unit
circle in the z plane.

It is clear from the above lemma that only one root map
is interesting when finding out stability of systems with
distributed parameters. For proof see Appendix A.

3. LQ CONTROL DESIGN VIA POLYNOMIAL
METHODS

In this section a simple procedure for design of LQ con-
troller will be proposed. In theory of systems with lumped
parameters to design LQ controller means for a given
transfer function P = b

a of a linear system to find controller
C = y

x optimal in sense of minimizing quadratic criterion
∞∑

k=0

Qu2(k) + R y2(k), (2)

where u(k) and y(k) denote input and output of plant
respectively, see Fig. 3. In algebraic approach design of
such a controller leads to procedure consisting of two steps.
The first one is to solve polynomial equation

Fig. 2. Distributed control of a distributed parameter
system: a rod with an array of heaters and tempera-
ture sensors and a distributed controller (an array of
controllers).

a⋆Qa + b⋆R b = g⋆g (3)
for polynomial g, where star (⋆) denotes complex conjugate
of polynomial. The above equation is often called poly-
nomial spectral factorization. The second step is to solve
equation

a x + b y = g (4)
for polynomials x and y and taking the solution with
deg y(z) < deg a(z).

In a heuristic way, we will base our algorithm for LQ con-
troller design on the same steps as in the case with lumped
parameter systems. Here 1-D polynomials become in n-D
ones. In what follows it is shown how n-D polynomial
spectral factorization and equations can be solved.

3.1 n-D two-sided polynomial spectral factorization

We are given a real n-D two-sided polynomial
f = ϕ(z1, z

−1
1 , . . . zn, z−1

n )(z) · ϕ(z1, z
−1
1 , . . . zn, z−1

n )(z−1).
Spectral factorization of f is defined as a polynomial g if
g(z1, z

−1
1 , . . . zn, z−1

n )(z) · g(z1, z
−1
1 , . . . zn, z−1

n )(z−1) = f

and g(z1, z
−1
1 , . . . zn, z−1

n )(z) 6= 0 for |z| > 1.

It is well-known fact that, unlike 1-D case, n-D polynomial
factorization problem cannot be solved by applying the
Fundamental Theorem of Algebra. In general, it is simply
not possible to find polynomial spectral factor of finite
form, however, there exist a factorization that has infinite
number of terms, see Šebek [1994] for details.

Spectral factorization of multivariate polynomials are dis-
cussed in a couple of publications. Algorithm for spectral
factorization of 2-D polynomial via computing complex
cepstrum was proposed by Dudgeon and Mersereau [1984],
but there is no extension to n-D case. Bose and Shi [1988]
extended Wilson spectral factorization to 2-D case. Gao
et al. [2004] deal with approximate factorization of multi-
variate polynomials

Fig. 3. Closed-loop system
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Inspired by Gao et al. [2004] we will use a simple algo-
rithm for approximate spectral factorization of multivari-
ate polynomial based on minimizing polynomial 2-norm.
Let f(z, z1, . . . , zn) and g(z, z1, . . . , zn) denote a polyno-
mial to be factorized and spectral factor, respectively. The
algorithm can be described by two following steps.

(1) Choose a structure of spectral factor g.
(2) Find coefficients of g such that

• g is stable in sense of Lemma 1,
• ‖f − g⋆g‖2 is minimized.

Note that possibility to choose a structure of spectral fac-
tor should be useful for spatially distributed systems with
two (and more) plan coordinates, where the choice has to
correspond to actuators/sensors placement (and grid used
in spatial discretization, see, for instance, Augusta and
Hurák [2006] for details).

As an example, consider

f =
(
z − 0.35

(
z1 + z−1

1

)
− 0.3

)
·
(
z−1 − 0.35

(
z1 + z−1

1

)
− 0.3

)
+ 1.

Choose spectral factor

Az + B
(
z1 + z−1

1

)
+ C

with A,B,C ∈ R satisfying the following condition to
spectral factor be stable.

C +
B

2
≤ A, C − B

2
≤ A.

Square of norm ‖f − g⋆g‖2 is

6 − 4.7 A2 + 2.8 AB + 1.2 A C − 7.3 B2 − 1.7 B C

−4.7 C2+A4+8 A2 B2+4 A2 C2+4 B4+12 B2 C2+C4.

Its minimizing with the above constraint can be done using
GloptiPoly by Henrion and Garulli [2005], Henrion et al.
[2007], which gives

A = 1.5, B = −0.2, C = −0.23.

Approximate spectral factor of f is

g = 1.5 z − 0.2
(
z1 + z−1

1

)
− 0.23.

Due to using of approximation of spectral factor and
getting finite series (polynomials), the resulting controller
is practically always suboptimal one.

0 10 20 30 40 50 60
20

20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

21

x (node)

te
m

p
e

ra
tu

re
 (
°
C

)

Fig. 4. Initial condition

3.2 Linear equations with n-D two-sided polynomials

Let us consider polynomials a, b, g to be elements of
ring R[z1, z

−1
1 , . . . zn, z−1

n ][z]. The polynomial equation (4)
can now be solved by algorithms for polynomial equations
introduced by Kučera [1979]. See Hunt [1993], Šebek [1994]
for details.

4. A NUMERICAL EXAMPLE: HEAT CONDUCTION
IN A ROD

Consider a model of heat conduction in a rod, with array of
temperature sensors and actuators, schematically sketched
in Fig. 2. This system is described by the well-known heat
equation

∂u(x, t)
∂t

= κ
∂2u(x, t)

∂x2
+ q(t, x) (5)

where u denotes temperature (◦C), t and x denote time (s)
and a spatial coordinate (m) respectively, κ is a constant
(m2 s−1) and q is the input heat (◦C s−1).

Transfer function between input heat and temperature was
derived as follows, see Augusta et al. [2007a] for details.

Discretization of (5) using finite difference methods, Strik-
werda [1989], approximates partial derivatives by central
differences, i.e.(

∂u
∂t

)
k,i

= uk+1,i−uk,i

T ,
(

∂2u
∂x2

)
k,i

= uk,i−1−2 uk,i+uk,i+1
h2 (6)

where T > 0 is the sampling (time) period and h > 0
denotes the distance between the nodes along the rod.
Hence the partial differential equation description of (5)
is approximated by the partial difference (recurrence)
equation

uk+1,i = T
h2 uk,i−1 +

(
1 − 2 T

h2

)
uk,i + T

h2 uk,i+1 + qk,i (7)
where k corresponds to discrete ”time” and i to the
coordinate of the node and setting κ = 1 incurs no loss
of generality.

The recurrence equation can be more compactly expressed
by application of a two-sided z-transform to yield

U(z, z1)
Q(z, z1)

= P (z, z1) =
b(z, z1)
a(z, z1)

=
1

z − T
h2 z−1

1 − 1 + 2 T
h2 − T

h2 z1
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Fig. 5. Uncontrolled system
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Fig. 6. LQ control, Q = 1, R = 10: (a) output of plant, (b) manipulated variable
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Fig. 7. LQ control, Q = 1, R = 1: (a) output of plant, (b) manipulated variable
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Fig. 8. LQ control, Q = 10, R = 1: (a) output of plant, (b) manipulated variable, (c) output of plant and manipulated
variable at the middle of the rod
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Fig. 9. LQ control: (a) output of plant and (b) manipulated variable at the middle of the rod

where z and z1 correspond to time and space respectively.
The above transfer function is of form (1), so theory
described here can be used.

As a numerical example consider the case of a rod of
length 1 m. Let the number of nodes be n = 59 with
distance between two successive ones h = 1/n, and take
the sampling period as T = 0.1 ms.

Fig. 4 and Fig. 5 gives the initial condition and the
response of the uncontrolled system respectively.

Figs. 6, 7, 8 show responses to initial condition of closed-
loop system with LQ controller for weights Q = 1, R = 10,
Q = 1, R = 1 and Q = 10, R = 1, respectively. Fig. 9
shows the same responses at the middle of the rod.

5. CONCLUSIONS

The paper has considered the stability and control of
systems whose dynamics can be approximated by so-called
spatially non-causal 2-D systems described by fraction of
two multivariate polynomials. In the case of stability, the
approach used is based on writing the required condition
in terms of a one-variable polynomial with coefficients
which are defined in terms of the other variable. The new
results obtained consist of design of controller using of
computation of approximate spectral factorization of 2-D
two-sided polynomial and solving linear equations with
2-D two-sided polynomials.

The responses shown in 6, 7, 8, 9 are acceptable. The
closed-loop system behaviour is conformable with that
obtained in LQ control theory of systems with lumped
parameters.

The results introduced here are highly promising but are
clearly still at an early stage in terms of an overall solution.
They show that the 2-D/n-D systems can have a role to
play in this area, especially we believe in the production
of tractable solutions to problems which will provide vital
insight into the problems encountered with very large scale
examples.

Appendix A. PROOF OF LEMMA 1

A proof of Lemma 1, where von Neumann’s theory of
stability was used, was introduced by Augusta et al.
[2007b]. Here we offer a proof based on properties of
Z-transform.

Let P (z, z1, z
−1
1 , . . . , zn, z−1

n ) = Z{gk,k1,...,kn
} (Z denotes

the Z-transform). Bounded input signal satisfies a condi-
tion |fk,·| < M < +∞ for all k ≥ 0. Response of plant is
given by convolution

hk,k1,...,kn =
+∞∑
i=0

+∞∑
i1,...,in=−∞

fi,i1,...,in gk−i,k1−i1,...,kn−in .

A plant to be stable has to satisfy

|hk,...,kn | =
∣∣∣ +∞∑

i=0

+∞∑
i1,...,in=−∞

gi,i1,...,in fk−i,k1−i1,...,kn−in

∣∣∣
≤ M

+∞∑
i=0

+∞∑
i1,...,in=−∞

|gi,i1,...,in | < +∞.

Hence, the necessary and sufficient condition is
+∞∑
k=0

+∞∑
k1,...,kn=−∞

|gk,k1,...,kn | < +∞. (A.1)

The sequence {gk,k1,...,kn} is the impulse response of a
plant, so {gk,k1,...,kn} = Z−1{P (z, z1, z

−1
1 , . . . , zn, z−1

n )}
holds. If the point (z0, z0 1, . . . , z0 n) lies within the re-
gion of convergence of P , then the points (z, z1, . . . , zn)
satisfying |z1| = |z0 1|, . . . , |zn| = |z0 n| and |z| ≥ |z0| lie
within the region of convergence too (see also Dudgeon
and Mersereau [1984]). To satisfy (A.1), P has to exist for
|z| ≥ |z0| = 1. It means that a plant to be stable has to
have no roots in region |z| ≥ 1. So, the boundary of the
region of convergence is a function only of |z1|, . . . |zn| and
all its values have to be less than 1. Finally, this property
can be verify by the root map generated by a[z1, . . . , zn][z].
This concludes the proof.
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M. Šebek. Multi-dimensional systems: Control via poly-
nomial techniques. Dr.Sc. thesis, Czech Academy of
Sciences, Prague, 1994.
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