
Dealing with Mutual Exclusion Sections in

Production Systems: from Shared Resources

to Parallel TEG’s ⋆

Olivier Boutin
∗,∗∗

Bertrand Cottenceau
∗∗

Anne L’Anton
∗

∗ Institut de Recherche en Communications et Cybernétique de Nantes
(IRCCyN), UMR CNRS 6597

1 rue de la Noë – BP 92101 – 44321 Nantes Cedex 03, France
e-mail: {olivier.boutin, anne.l-anton}@irccyn.ec-nantes.fr

∗∗ Laboratoire d’Ingénierie des Systèmes Automatisés (LISA), EA 4014
62 avenue Notre Dame du Lac – 49000 Angers, France

e-mail: bertrand.cottenceau@istia.univ-angers.fr

Abstract: This paper deals with the disambiguation of the behaviour of Petri nets including
shared resources. In the production management context, they are often used for the modelling
of manufacturing cells. But this representation has a poor transposition into dioid algebra.
In this article, we design a method to describe such a phenomenon in a dioid of interval. The
latter expresses this class of Petri nets models in a formal way. Their input/output behaviours
are guaranteed to be greater than the lower bound of the reference model set and lower than the
upper bound of this set. In fact, the resource sharing problem is turned into a time uncertainty
problem, concerning the access to the shared resource. In this new problem, time uncertainties
are bounded and can be described by intervals.
Both bounds “confining” the behaviours of the studied production systems in intervals can
be manipulated in the scope of the Zmax algebra, even though the original systems are not
Zmax linear by essence.

Keywords: Discrete event systems; Modelling; Simulation; Petri nets; Manufacturing plant
operations; Dioid algebra; Interval analysis.

1. INTRODUCTION

Discrete Event Systems (DES) span from transporta-
tion, communication or computer networks to manufac-
turing systems. Many optimization problems are nonlinear
in traditional arithmetic but appear to be linear over
dioids (Baccelli et al. [1992], Heidergott et al. [2005]). Par-
ticularly, some linear state representations in dioids can de-
scribe the behaviour of Timed Event Graphs (TEG) (Co-
hen et al. [1989]).

In the specific production management context, TEG’s ap-
propriately model manufacturing phenomena such as de-
lays and synchronizations (Trouillet and Benasser [2002],
Amari et al. [2004]). However, shared resources phenomena
cannot be represented in TEG’s, because a place cannot
have more than one incoming or outgoing arc in that kind
of diagram. In job-shops, decisions have to be taken, for
a given piece of material to go on one path or another.
In practice, the junction in the material paths can be
considered as a shared resource since a mutual exclusion
policy is usually applied to such portions. That amounts to
saying that “usual” dioids can only be used when studying
flow-shops. (Boutin et al. [2007]).
Other models such as automata (for instance Zmax au-
⋆ Many thanks to Didier Lime (from IRCCyN MOVES team) and
Jean-Jacques Loiseau (from IRCCyN ACSED team) for their support
on Petri nets and formal proofs respectively

tomata (Gaubert [1995], Al Saba et al. [2006])) are usually
better suited to study those systems. Nevertheless, they
require a cyclic assignment policy, which is not the case
in our study cases. We have not found in literature any
other work showing a linear modelling in a dioid algebra
of shared resources in production systems.

In this paper we present a shared resource assignment
policy such that the behaviour of the system could be
described by intervals of time uncertainties. It is a com-
promise between a cyclic assignment of the resource to the
competing processes and a first in first out queuing policy.
For this policy, we show that a problem of a shared
resource between two sub-systems can be turned into a
problem with uncertain delays and unsynchronized TEG’s,
by means of time uncertainties on the access to the re-
source and on its unavailability durations. However, let
us note that there is no equivalence between the two
representations.

The results of this study provide a method to formally
represent job-shops (and not only flow-shops) in the dioid
of intervals introduced in Lhommeau et al. [2004]. TEG’s
with uncertain delays can be transposed as linear equa-
tions over this dioid. This should lead to an alternative
to simulation methods for the study of job-shops, and to
the automation of the synthesis for job-shop controllers for
just-in-time behaviour.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 919 10.3182/20080706-5-KR-1001.2876

In the following section, we introduce theoretical aspects
of linear systems, such as dioids and the corresponding
graphical formalism, namely the TEG’s. Afterwards, we
describe how we deal with mutual exclusion and the class
of systems we focus on. And then in section 4 we illustrate
our method on an application case based on an eight
shaped production system.

2. LINEAR SYSTEMS

2.1 Elements of the dioid theory

We recall in this section some aspects of the dioid theory.
The reader is invited to consult Baccelli et al. [1992]
or Cohen et al. [1989] for an exhaustive presentation.

Definition 1. (Dioid). A dioid is a set D endowed with
two inner operations denoted ⊕ (sum) and ⊗ (product) 1 .
They are both associative (i.e. ∀(a, b, c) ∈ D3, (a ⋆ b) ⋆
c = a⋆ (b⋆c), here and below, the symbol ⋆ denotes any of
the two operations ⊕ and ⊗) and admit neutral elements
denoted ε and e respectively. The sum is also commutative
(i.e. ∀(a, b) ∈ D2, a ⊕ b = b ⊕ a) and idempotent (i.e.
∀a ∈ D, a ⊕ a = a). The product distributes over the
sum (i.e. ∀a, b, c ∈ D3, a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)
and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c)) and the element ε is
absorbing for the product (i.e. ∀a ∈ D, ε⊗ a = a⊗ ε = ε).

Definition 2. (Order relation). An order relation < can be
associated with a dioid D by the following equivalence:
∀(a, b) ∈ D2, a < b ⇔ a = a ⊕ b.
The operations ⊕ and ⊗ are consistent with the order <

in the following sense:
∀(a, b, c) ∈ D3, if a < b, then a ⋆ c < b ⋆ c and c ⋆ a < c ⋆ b.

Definition 3. (Completeness). A dioid D is said to be
complete if it is closed for infinite sums and if the product
distributes over infinite sums too, i.e. if ∀a ∈ D and
∀A ⊆ D, a ⊗ (

⊕

x∈A
x) =

⊕

x∈A
a ⊗ x.

Example 4. (Zmax and Zmin dioids). The set Z = Z ∪
{−∞,+∞} endowed with the maximum operator as sum
and the classical sum + as product is a complete dioid,
usually noted Zmax, of which ε = −∞ and e = 0.
The set Z endowed with the minimum operator as sum
and + as product is a complete dioid, usually noted Zmin,
of which ε = +∞ and e = 0.

Definition 5. (Kleene star operator). Let ∗ be the opera-
tor defined as follows: a∗ =

⊕

i∈N
ai , with a0 = e.

This operation is consistent with the order < in the fol-
lowing sense: ∀(a, b) ∈ D2, if a < b, then a∗ < b∗.

Theorem 6. (Baccelli et al. [1992]). Over a complete dioid,
the implicit equation x = ax ⊕ b admits x = a∗b as least
solution.

Theorem 7. If D is a dioid, the set Dn×n of n×n matrices
and entries in D is also a dioid where the sum and the
product are defined by: ∀A,B ∈ Dn×n, (A⊕B)ij = Aij ⊕
Bij and (A ⊗ B)ij =

⊕n
k=1 Aik ⊗ Bkj .

2.2 Dioids and interval arithmetics

We will briefly present how interval arithmetics can be
applied to dioids. We recommend reading Litvinov and
1 The symbol ⊗ will be omitted when no confusion is possible with
the traditional product

Sobolevskĭı [2001] and Lhommeau et al. [2004] for further
information.

Definition 8. (Interval). A (closed) interval in dioid D is
a set of the form x = [x, x] = {t ∈ D| x < t < x} where
(x, x) ∈ D2 are called the lower and the upper bounds of
the interval x, respectively.

Definition 9. (Dioid of interval). A dioid of interval, de-
noted I(D), can be defined out of a dioid D if it is
endowed with two algebraic operations, ⊕ and ⊗ such that
x⋆y = [x ⋆ y, x ⋆ y],∀x,y ∈ I(D). The intervals ε = [ε, ε]

and e = [e, e] are neutral elements of ⊕ and ⊗, respectively.

Remark 10. Since x⋆y < x⋆y whenever x < x and y < y,
then I(D) is closed w.r.t. the operations ⊕ and ⊗.

Definition 11. Let {xα} be an infinite subset of I(D), the
infinite sum of elements of this subset is:

⊕

α

xα = [
⊕

α

xα,
⊕

α

xα]

Definition 12. (Order relation). Dioid I(D) can be en-
dowed with a natural (partial) order:
a <I(D) b ⇔ a = a⊕b ⇔ a <D b and a <D b

Theorem 13. (Litvinov and Sobolevskĭı [2001]). If the
dioid D is complete, then the dioid I(D) is complete.

Remark 14. Note that if x and y are intervals in I(D),
then x ⊂ y ⇔ y < x < x < y. In particular, x = y ⇔ x =
y and x = y.

Remark 15. I(D) being closed with respect to the opera-
tions ⊕ and ⊗, the Kleene star operator admits a natural
extension, thus x∗ =

⊕

i∈N
xi = [

⊕

i∈N
x∗,

⊕

i∈N
x∗] =

[x∗, x∗] with x0 = e

2.3 Timed Event Graphs with time uncertainties

We now introduce what TEG’s are, based on the Petri
net formalism (see for example Murata [1989] for more
information on this formalism).

Definition 16. (Timed Event Graph). An event graph is a
Petri net of which places have exactly one upstream and
one downstream transition. An event graph is said to be
timed when to each place is associated a delay, defined in
the set of natural numbers.

Remark 17. Let us note that concurrency phenomena can-
not be represented in TEG’s since the corresponding mod-
elling is a place with multiple incoming and/or outgoing
arcs (see for instance Figure 2). Nevertheless, TEG’s are
interesting for representing synchronizations and delays
taking place in processes.

A delay assigned to a place expresses the minimal sojourn
time of a token in this place. By applying the earliest firing
rule, TEG’s can be seen as linear discrete event dynamical
systems by using some dioid algebras (Cohen et al. [1989],
Baccelli et al. [1992]). For instance it is possible to obtain
a linear state representation in Zmax, by associating with
each transition x a dater x(k) : Z → Zmax, which is an
increasing mapping representing the date of the kth firing
of transition x.

Many temporal uncertainties are embedded in the com-
plex systems we study. A dioid of intervals allows for
linear modelling of uncertainties (Lhommeau et al. [2004]).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

920

Linear relations in such an algebra can be mapped into
a TEG with uncertainties and vice-versa. The intervals
used as delays represent the minimal and the maximal
compulsory sojourn time of a token, before it can actually
be consumed in transition firings. The uncertain delays
are settled dynamically when a token appears in a place
having such a delay. Thus we model intervals of guaranteed
behaviour, taking into account temporal uncertainties.
There is a crucial difference between time Petri net (be
the delays associated to transitions (Merlin [1974]) or to
places (Khansa et al. [1996])) and the TEG with temporal
uncertainties. In the latter, a token does not die when a
supremum is reached, unlike in time Petri nets where the
timing information represents hard constraints.

Example 18. Figure 1 may represent a flexible manufac-
turing cell behaving as follows: three pieces of material can
be processed at a time and the processing takes between 2
and 5 units of time, depending on the tool to be used. If the
workstation is not available, the pieces of material stay in
the upstream stock Sup. When a processing is finished, the
piece of material is put in the downstream stock Sdown

2

and another piece of material can be processed at once, or
after one unit of time if the tool is to be changed.

u Sup

upstream
stock

x1 [2, 5] x2 Sdown

downstream
stock

y

[0, 1]

C

workstation capacity (3)

cycle time (between 2 and 5)

Figure 1. Workstation model

Transition x1 is a synchronization. It will be fired only if
both places Sup (a product has arrived in the workstation
upstream stock) and C (the workstation is available)
contain at least one token and when the uncertain delay
over place C has been spent. By using the dater functions
associated to the transitions of this TEG, we obtain:

{

max(u(k), x2(k − 3)) ≤ x1(k) ≤ max(u(k), 1 + x2(k − 3))
2 + x1(k) ≤ x2(k) ≤ 5 + x1(k)

y(k) = x2(k)

We can rewrite the first line of this system by x1(k) ∈
[u(k)⊕x2(k−3), u(k)⊕1⊗x2(k−3)]. This interval represent
the extreme behaviours of transition x1(k), showing the
best and worst cases. So in the dioid I(Zmax), this system
turns into a system of linear state equations:

{

x1(k) = u(k) ⊕ [0, 1] ⊗ x2(k − 3)
x2(k) = [2, 5] ⊗ x1(k)
y(k) = x2(k)

(1)

A dater may also be represented by its γ-transform,
formally defined by γx(k) = x(k − 1). γ may be regarded
as the backward shift operator in the event domain.
Thus daters may be turned into formal power series with
coefficients in Zmax and exponents in Z, of the form
X(γ) =

⊕

k∈Z
x(k)γk, in the dioid denoted Zmax[[γ]].

2 both Sup and Sdown have a capacity which is supposed infinite

In this dioid, linear state equation systems have the form
of the following canonical system:

{

X(γ) = AX(γ) ⊕ BU(γ) (2)
Y (γ) = CX(γ) (3)

Where X ∈ (Zmax[[γ]])n represents the internal transi-
tions behaviour, U ∈ (Zmax[[γ]])p represents the input
transitions behaviour, and Y ∈ (Zmax[[γ]])q represents
the output transitions behaviour, and A ∈ (Zmax[[γ]])n×n,
B ∈ (Zmax[[γ]])n×p and C ∈ (Zmax[[γ]])q×n represent the
link between the transitions.
The class of uncertain systems which are considered are
TEG’s where time delays are only known to belong to
intervals. Therefore uncertainties can be described by
intervals with known lower and upper bounds and the
matrices of equations (2) and (3) are such that A ∈
A ∈ I(Zmax[[γ]])n×n, B ∈ B ∈ I(Zmax[[γ]])n×p and
C ∈ C ∈ I(Zmax[[γ]])q×n. Each entry of matrices A, B and
C are intervals with bounds in dioid Zmax[[γ]] with only
non-negative exponents and coefficients integer values.
By theorem (6), equation (2) has the minimum solution
X = A∗BU . Therefore, Y = CA∗BU and the transfer
function of the system is H = CA∗B ∈ H = CA∗B ∈
I(Zmax[[γ]])q×p, where H represents the interval in which
the transfer function will lie for all the variations of the
parameters.

Consequently, by introducing state vector
X(γ) = (x1(γ) x2(γ))t, system (1) is equivalent in the
dioid I(Zmax[[γ]]) to the following system:







X(γ) =

(

[ε, ε] [γ3, 1γ3]
[2, 5] [ε, ε]

)

X(γ) ⊕

(

[e, e]
[ε, ε]

)

u(γ)

y(γ) = ([ε, ε] [e, e])X(γ)

3. MUTUAL EXCLUSION

In this section we will show how to deal with mutual
exclusion of shared resources sections, by turning this
problem into an interval analysis problem.

3.1 Class of studied problems

In this article, we consider production systems with two
workstations (namely W1 and W2) sharing one resource
(called R), as depicted in Figure 2. Each workstation has
its own upstream stock (namely S1 and S2) and entry point
(u1 and u2 respectively) for new incoming material. At the
end of their process, the workstations deliver the produced
material in their own downstream stocks, from which they
will leave the system through exit points y1 and y2.
The management rule we use for the shared resource is
described in the next section and represented in Figure 3.

3.2 Dealing with shared resources

In this paper, shared resources between several worksta-
tions are handled according to the following rule:
If all workstations are idle, any incoming piece of material
can be processed at once, on any workstation. Since all
workstations share the same unique resource, only one
workstation can be processing at a time. If more than one

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

921

u1 S1 t1

τ
W1

W1 t2 y1

τ
W2

W2t3S2
u2 t4 y2

Figure 2. Shared resource section

workstation upstream stock is non empty when a work-
station finishes its process, the workstations will seize the
resource on a cyclic basis. If only one upstream stock is
non empty, the incoming material will be processed on the
corresponding machine as long as no other piece of mate-
rial arrives in the upstream stock of the other workstation.
This rule is illustrated in Figure 3 in the Petri net formal-
ism, using inhibitor arcs (Reinhardt [1996]).

u1 S1 t1

t′1

t′3

t3

W1 t2

P1

S2

u2

W2 t4

P2

Figure 3. Principle diagram of our dispatching rule

Transitions t1, t′1, t3 and t′3 of Figure 3 illustrate the
four possible cases, when a decision about the resource
allocation has to be taken. If a token is in place P1 (resp.
P2), then W1 (resp. W2) has been the last workstation to
seize the resource and to process a piece of material.
If there is a token in P1 and none in S2, then W1 can seize
the resource, thus t1 is fired. W2 has the same behaviour
if there is a token in P2 and none in S1 (t3 is fired in that
case). If there is at least one token in S1 and S2 at the
same time, then the resource is alternatively seized by the
two workstations (either t′1 or t′3 is fired depending on the
last workstation to seize the shared resource).

3.3 Properties of the workstations

We will now describe the behaviour of the workstations.
Based upon the Petri net depicted in Figure 2, we can
make several statements about the firing of the transitions.

Using the assignment policy presented in the last subsec-
tion, it obviously appears that when there is no conflict
for seizing the resource, the behaviour between the entry
ui and the corresponding exit yi is Zmax linear, for all i.
If the shared resource is strongly requested (there is a lot
of tokens in S1 or in S2), then it is alternatively assigned
to the two production lines. Therefore, the head token in
S1 or in S2 (the first one which arrived) waits at most

τP1
+ τP2

units of time.
These two cases describe the dynamic of the system in
the best case (no conflict) and the worst case (a lot of
conflicts).

Proposition 19. Let u1(k), u2(k), t1(k), t2(k), t3(k) and
t4(k) be the kth firing dates of transitions u1, u2, t1, t2, t3
and t4 of Figure 3.
∀k ∈ N and according to our production management rule,
we have:















max(u1(k), t2(k − 1)) ≤ t1(k) (4)
t1(k) ≤ max(u1(k) + τ

W2
, t2(k − 1) + τ

W2
) (5)

max(u2(k), t4(k − 1)) ≤ t3(k) (6)
t3(k) ≤ max(u2(k) + τ

W1
, t4(k − 1) + τ

W1
) (7)

Proof: By using the dater function associated to the
transitions of Figure 2, and considering the earliest firing
rule, we obtain the following system:















t1(k) ≥ u1(k) ⊕
⊕

i+j=k+n

{t2(i − 1) ⊕ t4(j − 1)} (8)

n =
⊕

x∈Z

{t3(x) < +∞} (9)

Say k = 1, then ∀n ∈ N, t4(n − 1) > t2(k − 1), thus
t1(1) ≥ max(u1(1), t4(n − 1)) ≥ max(u1(1), t2(k − 1)).
Hence (4) holds for k = 1.
If k > 1, then either t2(k − 1) ≥ t4(n − 1) and so
t1(k) ≥ max(u1(k), t2(k − 1)) (thanks to equation (8)),
or t2(k − 1) < t4(n − 1) and so t1(k) ≥ max(u1(k), t4(n −
1)) ≥ max(u1(k), t2(k − 1)).
Hence (4) holds ∀k.
Now, comparing u1(k) and t2(k − 1), we either have
u1(k) ≥ t2(k − 1) or u1(k) < t2(k − 1). In the first case,
if t3(n − 1) < u1(k) (which means that W2 is already
processing material while some other material arrive in
the upstream stock of W1), then transition t1 will be fired
as soon as W2 has finished processing, i.e. after τ

W2
units

of time, on latest, after some material has arrived in S1

(after u1 has been fired). Hence t1(k) ≤ u1(k) + τ
W2

in
that case. If t3(n − 1) ≥ u1(k), then no workstation has
undertaken any process before u1 has been fired, because
all the incoming material has already been processed. So
t1 can be fired at once, i.e. t1(k) = u1(k)
If u1(k) < t2(k − 1), then either no material is “waiting”
upstream of W2 when W1 has finished processing and t1
is fired at once (thus t1(k) = t2(k − 1)), or W1 has to
wait for the turn of W2 to seize the resource first, i.e.
t1(k) = t4(n − 1) = t3(n − 1) + τ

W2
= t2(k − 1) + τ

W2
,

which leads to the results of (5).
We would show that (6) and (7) hold true with the same
reasonings on the symmetric transitions. �

Therefore, by using Zmax notations applied to the pro-
duction system depicted in Figure 2 and the production
management rule defined in the previous subsection, we
obtain:











t1(k) = u1(k) ⊗ τa ⊕ t2(k − 1) ⊗ τb

t2(k) = τ
W1

⊗ t1(k)
t3(k) = u2(k) ⊗ τc ⊕ t4(k − 1) ⊗ τd

t4(k) = τ
W2

⊗ t3(k)

(10)

where τa, τb ∈ [0, τ
W2

] and τc, τd ∈ [0, τ
W1

].

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

922

3.4 From shared resources to parallel systems

Based on the intervals given in system (10), we can turn
the model of Figure 2 in a slightly different model, as
depicted in Figure 4. The original Petri net containing a
shared resource is actually split into two TEG’s. Manipu-
lating TEG’s will allow us for using dioid algebras.

u1
[0, τ

W2
] t1 τ

W1 t2 y1

[0, τ
W2

]

[0, τ
W1

]

τ
W2

t3[0, τ
W1

]u2 t4 y2

Figure 4. From shared resource to parallel Petri nets

Then, thanks to the dioid of intervals, we can actually syn-
thesize the dynamic behaviour of the production system
modelled by those TEG’s.
Of course, the goal here is not to provide the actual trans-
fer function of the system, but to enclose it in an interval,
so that we can do formal calculations on the latter, which
would be impossible with an accurate representation.

Using the modelling form of equations (2) and (3), we
obtain the following interval matrices for workstation 1,
which is depicted in the upper part of Figure 4:

A =

(

[ε, ε] [γ, τ
W2

γ]
[τ

W1
, τ

W1
] [ε, ε]

)

B =

(

[0, τ
W2

]
[ε, ε]

)

C = ([ε, ε] [e, e])

The interval matrix H1 given below includes the actual
transfer function H1 of the sub-system representing work-
station 1. The former characterizes all of its possible be-
haviours.

H1 = CA∗B =
(

[τ
W1

(τ
W1

γ)∗, τ
W1

τ
W2

(τ
W1

τ
W2

γ)∗]
)

Considering the input/output relation y(γ) = Hu(γ),
where u(γ) = (u1(γ) u2(γ))t and y(γ) = (y1(γ) y2(γ))t,
we obtain the following transfer matrix H for the whole
production system:

H =

(

H1 ε
ε H2

)

where H2 =
(

[τ
W2

(τ
W2

γ)∗, τ
W1

τ
W2

(τ
W1

τ
W2

γ)∗]
)

.

4. APPLICATION CASE

We have applied our method on a complex automated
transfer line located in the LISA laboratory, in Angers,
France. This transfer line includes an “eight shape” (see
Figure 5), which implies the use of a management rule in
the common sections. The first junction (hatched pattern
in the figure) can be considered as a shared resource.

Indeed, only one pallet can be in this section at a time,
to ensure that pallets do not overlap. The second junction
does not need any management rule in our case since all
pallets have already been distanced enough in the common
section (in gray in the figure).
All pallets are loaded at a loading point, and flow in the
system until the unloading point, where they are unloaded.
Their path follows the direction of the numbered arrows in
the increasing order. The matter here is to anticipate the
flow of pallets in the first junction, for instance by using
the production management rule defined in section 3.2.

Figure 5. Automated transfer line

We can consider the junction between the three sensors
depicted in the figure as being a shared resource, and
the paths from S1 to S3 and from S2 to S3 can be seen
as workstations. In that way, we can represent the whole
system by the diagram of Figure 6.

uHippo

τ ′
Hippo t1 τ

S2→S3 t2

τ
S1→S3t3

τLoading

uL/U

t4

τCommon
t5

τHippot6

τWorkstation

τCommon t6

τUnloading

yL/U

Figure 6. Petri net model of the transfer line

The decision of going either to the hippodrome or to the
loading/unloading loops at the end of the common section
is taken right from the first junction of the production
system. Hence the two theoretical paths going out of the
latter, having the same duration, τCommon, equal to 10
units of time here.
The transportation times between S1 and S3 and between
S2 and S3 (denoted respectively τ

S1→S3
and τ

S2→S3
in

Figure 6) are equal to 6 and 7 units of time respectively 3 .
The transfer times from the loading point up to the first
junction and from the second junction up to the unloading
3 they happen to be different because the upstream sensors of the
first junction (S1 and S2) are not exactly located at the same
distance from the downstream sensor (S3)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

923

point, called τLoading and τUnloading, both take 20 units of
time. The transfer time τHippo on the hippodrome from the
common section to the workstation and the transfer time
τ ′
Hippo from the workstation to the common section take

respectively 20 and 25. The workstation can process two
pieces of material at a time and this process takes 30 units
of time (τWorkstation) for each piece. By denoting τx the
interval of which both bounds are equal to τx and HL/U

and HHippo the transfer functions of the first junction
parts, belonging respectively to the loading/unloading
loop and to the hippodrome loop, we find the following
transfer function H for the whole system in the dioid
I(Zmax[[γ]]):

H = τLoading⊗HL/U⊗τCommon⊗τHippo⊗
τWorkstation⊗τHippo

′⊗HHippo⊗
τCommon⊗τUnloading

where
HL/U = ([τ

S1→S3
(τ

S1→S3
γ)∗,

τ
S1→S3

τ
S2→S3

(τ
S1→S3

τ
S2→S3

γ)∗])
= ([6(6γ)∗, 13(13γ)∗])

and
HHippo = ([7(7γ)∗, 13(13γ)∗]) .

Finally, we obtain

H = [20, 20]⊗[6(6γ)∗, 13(13γ)∗]⊗[10, 10]⊗
[20, 20]⊗[30(30γ2)∗, 30(30γ2)∗]⊗[25, 25]⊗
[7(7γ)∗, 13(13γ)∗]⊗[10, 10]⊗[20, 20]

= [115, 115]⊗[13(7γ)∗, 26(13γ)∗]⊗
[30(30γ2)∗, 30(30γ2)∗]

= ([(158 ⊕ 165γ)(30γ2)∗, (171 ⊕ 184γ)(30γ2)∗])

This expression expresses embedded several aspects of
the transfer line. For instance, the production rate of the
studied system is 2 products every 30 units of time. Thus
we figure the behaviour uncertainty of the shared resource
section ([13(7γ)∗, 26(13γ)∗]) is somehow hidden by the
behaviour of the workstation (30(30γ2)∗). Moreover, the
first product leaving this manufacturing unit will flow in
the system during between 158 and 171 units of time.

5. CONCLUSION

Based on the DES’s paradigm, this research has attempted
to describe a shared resource problem in the I(Zmax[[γ]])
dioid, the dioid of interval with bounds in dioid of formal
power series with coefficients in Zmax and exponents in
Z. The behaviours of the studied systems are confined in
intervals of I(Zmax[[γ]]) so as to obtain a formal represen-
tation of them.
An application case consisting of a eight shaped loop has
been used to put our method to the test. The results seem
promising for future modelling and control developments
on similar cases.

Synthesizing a (feedback) controller thanks to the inter-
val formal representation has already been achieved, but
has not been included in this article for page limitation
reasons. This controller help avoiding deadlocks in such a
system and lead to just-in-time management 4 , by limiting
the number of transporters in it, in case it would become
too overloaded. The main advantage of this approach is the
4 i.e. achieving some performance while minimizing internal stocks

use of the same formalism for both system and controller
modelling. Moreover, the latter being expressed in a formal
way, testing it through emulation is very reliable (Boutin
et al. [2007]).
The next step is to extend this work not only to a
shared resource between workstations, but between whole
Zmax linear systems.

REFERENCES

Michel Al Saba, Jean-Louis Boimond, and Sébastien La-
haye. On just in time control of flexible manufacturing
systems via dioid algebras. INCOM’06, Saint-Étienne,
France, 2006.

Saïd Amari, Isabel Demongodin, and Jean-Jacques
Loiseau. Supply Chain Optimization, chapter 6 - Sizing,
Cycle Time and Plant Control Using Dioid Algebra,
pages 71 – 86. Springer Verlag, 2004.

François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-
Pierre Quadrat. Synchronization and Linearity, An
Algebra for Discrete Event Systems. John Wiley and
Sons, New York, 1992. available at cermics.enpc.fr/
~cohen-g/documents/BCOQ-book.pdf.

Olivier Boutin, Bertrand Cottenceau, and Anne L’Anton.
Online Control of a (max,+) Linear Emulated Produc-
tion System. IESM’07, Beijing, China, 2007. Tsinghua
University Press.

Guy Cohen, Pierre Moller, Jean-Pierre Quadrat, and
Michel Viot. Algebraic Tools for the Performance Eval-
uation of Discrete Event Systems. IEEE Proceedings:
special issue on Discrete Event Systems, 77(1):39 – 58,
1989.

Stéphane Gaubert. Performance Evaluation of (max,+)
automata. IEEE Transactions on Automatic Control,
40(12), December 1995.

Bernd Heidergott, Geert Jan Olsder, and Jacob van der
Woude. Max Plus at Work – Modeling and Analysis of
Synchronized Systems: A Course on Max-Plus Algebra
and Its Applications. Princeton University Press, 2005.

Wael Khansa, Jean-Paul Denat, and Simon Collart-
Dutilleul. P-time petri nets for manufacturing systems.
WODES’96, Edinburgh, Scotland, 1996.

Mehdi Lhommeau, Laurent Hardouin, Bertrand Cot-
tenceau, and Luc Jaulin. Interval Analysis and Dioid:
Application to Robust Controller Design for Timed
Event Graphs. Automatica, 40(11):1923 – 1930, Novem-
ber 2004.

Grigory L. Litvinov and Andrĕı N. Sobolevskĭı. Idem-
potent Interval Analysis and Optimization Problems.
Reliable Computing, 7(5):353 – 377, 2001.

Philip M. Merlin. A Study of the Recoverability of Com-
puting Systems. PhD thesis, University of California,
Irvine, 1974.

Tadao Murata. Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE, 77(4):541 – 580,
April 1989.

Klaus Reinhardt. Reachability in Petri Nets with Inhibitor
arcs. Technical Report WSI-96-30, Wilhelm-Schickard
Institut für Informatik, Universität Tübingen, 1996.

Benoît Trouillet and Ahmer Benasser. Cyclic Scheduling
Problems With Assemblies: An Approach Based to
the Search of an Initial Marking in a Marked Graph.
SMC’02, Hammamet, Tunisia, 2002. IEEE Computer
Society Press.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

924

