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Abstract: In this paper, we present a fuzzy model based indirect adaptive control
scheme for a class of nonlinear systems with a dead-zone. The Takagi-Sugeno (T-
S) fuzzy model is used for representing a nonlinear system, where the parameters
of the fuzzy model are updated online according to Lyapunov stability theorem.
An inverse functions are cascaded with the plant to cancel the effects of dead-
zone, and the dead-zone slopes in both positive and negative sides are assumed
to be the same. In addition, the proposed adaptive fuzzy controller ensures the
stability of the closed-loop system with dead-zone and the output is forced to follow
the desired reference input. An inverted pendulum system is used to illustrate the
effectiveness of the proposed method. The simulation can demonstrate the validity
of the proposed scheme and achieve satisfy simulation results.

1. INTRODUCTION

There have been many research fields proposed
that concerning the stability of the fuzzy control
systems, online identification of the parameters
and the design of the stabilizing fuzzy controller.
The topics of the stabilization and tracking are
two typical control problems in feedback control,
sliding mode control, and adaptive control, etc..
General speaking, stabilization problems are sim-
pler than tracking problems, especially for non-
linear systems. Many of the practical control sys-
tems have the structure of a dynamical system
preceded by some nonsmooth nonlinearities in
the actuator, such as dead-zone and saturation,
etc. ([Zhou, Wen and Zhang (2006)]). Dead-zone
is the one of the most important non-smooth
nonlinearities in actuator, which can severely
limit system performance and even cause unde-
sirable inaccuracy or oscillations to instability.
In [Ren et al. (2005)], since the dead-zone is an
essentially nonlinear element, thhe authors make
it possible to use earlier results on adaptive linear
control, and the effects of an inaccurate dead-

1 This work is supported by Tatung University, Taipei,
Taiwan, R.O.C. under project B96-E02-024.

zone inverse are represented by a bounded distur-
bance, then the linear model reference controller
is reparameterized with a filtered regressor signal
to faciliate the adaptive control to achieve the
tracking purpose. Online parameter estimations
are important for indirect adaptive control sys-
tems, especially for a nonlinear system whose dy-
namics is approximated by a combination of linear
models, since they can be computed in real time
and easily be introduced in the on-line control
strategies to produce adaptive control algorithms.
Recently, the adaptive fuzzy control schemes using
feedback control technique ([Chen et al. (2002)])
or using the Takagi-Sugeno fuzzy model based
estimation ([Changand and Young (2002)]) have
been introduced to deal with nonlinear system
control problems. The Takagi-Sugeno fuzzy model
can approximate a nonlinear system with a com-
bination of several linear systems within a re-
quired accuracy. The basic idea of the adap-
tive fuzzy control is that given the weights form
the fuzzy system and estimates from adapta-
tion, one obtains the parameters in the control
law. Most of the online parameter estimation
schemes proposed in the indirect adaptive fuzzy
control (see [Yu (2002)], [Giordano et al. (2002)],
[Nounou and Passino (2002)]) can be only applied
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to the specified control structures such as mainly
feedback control ([Huang and Lin (2002)]) and
sliding mode control structures ([Tao et al. (2002)]).
Moreover, most of them concentrated on systems
with linear control inputs. However, nonlineraities
in the control input, especially for dead zone
nonlinearity, are generally not neglected. Thus, a
parameters estimation scheme applicable to the
general fuzzy models and controllers for stabiliz-
ing nonlinear systems with dead zone nonlinearity
in the control input is needed. In this paper, we
present a fuzzy model based indirect adaptive con-
trol scheme for a class of nonlinear systems with a
dead-zone. The Takagi-Sugeno (T-S) fuzzy model
is used for representing a nonlinear system, where
the parameters of the fuzzy model are updated
online according to Lyapunov stability theorem.
An inverse functions are cascaded with the plant
to cancel the effects of dead-zone, and the dead-
zone slopes in both positive and negative sides are
assumed to be the same. In addition, the proposed
adaptive fuzzy controller ensures the stability of
the closed-loop system with dead-zone and the
output is forced to follow the desired reference
input. An inverted pendulum system is used to il-
lustrate the effectiveness of the proposed method.
The simulation can demonstrate the validity of
the proposed scheme and achieve satisfy simula-
tion results.

2. PROBLEM FORMULATION AND FUZZY
SYSTEMS

We use the fuzzy implications and the fuzzy rea-
soning methods suggested by Takgai and Sugeno
to express a real plant model as follows:

The ith plant rule:

IF x1(t) is M i
1 and · · · and xn(t) is M i

n

THEN ẋ = Aix + BiΦ(u(t)), i = 1, 2, · · · , ℓ (1)

where x = [x, ẋ, · · · , x(n−2), x(n−1)]⊤

= [x1, · · · , xn−1, xn]⊤ denote the linguistic vari-
ables associated with the inputs of the fuzzy sys-
tem, M i

j , j = 1, 2, . . . , n, are linguistic values of
linguistic variables x in the universes of discourse
U ⊂ R

n, respectively, and

Ai =















0 1 . . . 0 0
0 0 · · · 1 0
...

...
...

...
...

0 0 · · · 0 1
ai

n ai
n−1 . . . ai

2 ai
1















, Bi =















0
0
...
0
bi















,

a⊤

i = [ai
n, ai

n−1, · · · , ai
1] ∈ R

n, bi ∈ R, i = 1, . . . , ℓ,
are unknow parameters. By using a center-average
defuzzifier, product inference and singleton fuzzi-
fier, the final output of the fuzzy system is inferred
as follows:

Fig. 1. The dead-zone nonlinearity.

ẋ =

∑ℓ

i=1 wi(x)
{

Aix + BiΦ(u(t))
}

∑ℓ

i=1 wi(x)

=

ℓ
∑

i=1

hi(x)
{

Aix + BiΦ(u(t))
}

=

ℓ
∑

i=1

hi(x)
{

Aix + mBi(u(t) + ψ(u(t)))
}

(2)

where wi(x) = Πp
j=1M

i
j(xj(t)),

hi(x) = wi(x)/
∑ℓ

i=1 wi(x), M i
j(xj(t)) is the

grade of membership of xj(t) in M i
j . It is assumed

that
∑ℓ

i=1 wi(x) > 0 and wi(x) ≥ 0, for i =
1, 2, · · · , n. To clarify the dead-zone nonlinearity
Φ(·), the dead-zone with input u(t) and output
Φ(u(t)) shown in Fig. 1 is described by

Φ(u(t)) =







mr(u(t) − br), u(t) ≥ br,
0, bl < u(t) < br,
ml(u(t) − bl), u(t) ≤ bl,

(3)

where br > 0, bl > 0 and mr > 0, ml > 0 are pa-
rameters and slopes of the dead-zone, respectively.
In order to investigate the key features of the
dead-zone in the control problems, it is assumed
that the slopes of the dead-zone are the same, i.e.,
mr = ml = m. In addition, there exist known con-
stants brmin

, brmax
, blmin

, blmax
, mmin, and mmax

such that the unknown dead-zone parameters br,
bl, and m are bounded, i.e. br ∈ [brmin

, brmax
],

bl ∈ [blmin
, blmax

], and m ∈ [mmin, mmax]. From
these assumptions, the expression (3) can be rep-
resented as

Φ(u(t)) = mu(t) + φ(u(t)), (4)

where

φ(u(t)) =







−mbr, for u(t) ≥ br

−mu(t), for bl < u(t) < br

−mbl, for u(t) ≤ bl

(5)

It is seen that φ(u(t)) is bounded and satisfies
|φ(u(t))| ≤ ρ, and ρ is the upper-bound and can
be chosen as ρ = max{mmaxbrmax

,−mmaxblmin
}

for which blmin is a negative value. Hence, ψ(u(t))
in (2) can be given by

ψ(u(t)) =







−br, for u(t) ≥ br,
−u(t), for bl < u(t) < br,
−bl, for u(t) ≤ bl.

(6)

Let As be an arbitrary stable matrix having the
same structure as Ai and all its eigenvalues are in
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the left half plane, and a⊤

d is the vector of the last
row of As. To develop the parameter estimator for
the Takagi-Sugeno fuzzy modeled plant, we start
with the plant parameterization as

ẋ(t)= Asx +

∑ℓ

i=1 wi(x)
{

(Ai − As)x + BiΦ(u(t))
}

∑ℓ

i=1 wi(x)

= Asx +

ℓ
∑

i=1

hi(x)
{

(Ai − As)x + BiΦ(u(t))
}

=Asx+

ℓ
∑

i=1

hi(x)
{

(Ai−As)x+mBi(u(t)

+ψ(u(t)))
}

(7)

Since Ai and Bi are unknown, we define the
estimation dynamic equation as

˙̂x= Asx̂ +

∑ℓ

i=1 wi(x)
{

(Âi − As)x + B̂iΦ(u(t))
}

∑ℓ

i=1 wi(x)

= Asx̂ +

ℓ
∑

i=1

hi(x)
{

(Âi − As)x + B̂iΦ(u(t))
}

= Asx̂+

ℓ
∑

i=1

hi(x)
{

(Âi−As)x+mB̂i(u(t)

+ψ(u(t)))
}

(8)

where Âi(t), B̂i(t) are the estimates of Ai(t),
Bi(t) generated by the adaptive law, respectively.
By defining the estimation error vector as e ≡ x−
x̂ = [e1 e2 · · · en]⊤ = [x1 − x̂1 x2 − x̂2 · · · xn −
x̂n]⊤. By using (7) and (8), the error dynamic
equation can be obtained as:

ė = ẋ − ˙̂x

= Ase−

ℓ
∑

i=1

hi(x)Ãix−m

ℓ
∑

i=1

hi(x)B̃i(u(t)

+ψ(u(t))) (9)

where Ãi = Âi − Ai and B̃i = B̂i − Bi.

3. ANALYSIS OF SYSTEM STABILITY
In this section, it is shown that the proposed fuzzy
adaptive controller will achieve stability based on
the Lyapunov stability theory.

Theorem 1. Consider the nonlinear system (1).
There exists a positive definite symmetric matrix
P, which satisfies the following Lyapunov equa-
tion

A⊤

s P + PAs = −Q (10)

with Q being arbitrary n × n positive definite
matrix, and the parameter adaptive laws are given
as follows:






˙̃a
⊤

i
= ˙̂a

⊤

i
= γ1ihi(x)p⊤

1
ex⊤(t),

˙̃
bi =

˙̂
bi = γ2ihi(x)p⊤

1 e(u(t) + ψ(u(t))),

if |b̂i| > bi0 or if |b̂i| = bi0 and p⊤

1
eusgn(bi) ≥ 0,

(11)

where âi, b̂i, and p1 are the last rows of Âi, B̂i,
and P, respectively. Furthermore, let the control

law be given by

u(t) =

ℓ
∑

i=1

hi(x)
(a⊤

d − â
⊤

i )x

mb̂i

− ψ(u(t)) (12)

Then, e and x̂ as well as the parameter estimation
errors âi and b̂i are guaranteed to be uniformly
ultimately bounded (UUB) for systems with dead
zone control inputs.

Proof: Choose the Lyapunov functional candidate
as

V =
1

m
e⊤Pe +

ℓ
∑

i=1

1

mγ1i

ã⊤

i ãi +

ℓ
∑

i=1

1

γ2i

b̃
2

i

+x̂
⊤
Px̂,

where γ1i and γ2i > 0 are constant. Then, the time
derivative of V along the trajectory of (9) is given
by:

V̇ =
1

m
e⊤(A⊤

s P + PAs)e

−
2

m
e⊤P

{

ℓ
∑

i=1

hi(x)Ãix + m
ℓ

∑

i=1

hi(x)B̃i(u(t)

+ψ(u(t)))
}

+
2

m

ℓ
∑

i=1

(
1

γ1i

˙̃a
⊤

i ãi)

+2

ℓ
∑

i=1

(
1

γ2i

b̃
⊤

i
˙̃
bi) + 2 ˙̂x

⊤

Px̂

= −
1

m
e⊤Qe −

2

m
e⊤P

{

ℓ
∑

i=1

hi(x)Ãix

+m

ℓ
∑

i=1

hi(x)b̃i(u(t) + ψ(u(t)))
}

+
2

m

ℓ
∑

i=1

(
1

γ1i

˙̃a
⊤

i ãi) + 2

ℓ
∑

i=1

(
1

γ2i

b̃
⊤

i
˙̃
bi) + 2 ˙̂x

⊤

Px̂

= −
1

m
e⊤Qe −

2

m
e⊤p1

ℓ
∑

i=1

hi(x)ãix

−2e⊤p1

ℓ
∑

i=1

hi(x)b̃i(u(t) + ψ(u(t)))

+
2

m

ℓ
∑

i=1

(
1

γ1i

˙̃a
⊤

i ãi) + 2

ℓ
∑

i=1

(
1

γ2i

b̃
⊤

i
˙̃
bi) + 2 ˙̂x

⊤

Px̂

= −
1

m
e⊤Qe +

{ 2

m
(

ℓ
∑

i=1

(
1

γ1i

˙̃a
⊤

i ãi)

−
ℓ

∑

i=1

hi(x)p⊤

1 exãi) + 2(
ℓ

∑

i=1

(
1

γ2i

b̃
⊤

i
˙̃
bi)

−
ℓ

∑

i=1

hi(x)b̃ip
⊤

1 e(u(t) + ψ(u(t))))
}

+2
{

adx +

ℓ
∑

i=1

hi(x)
{

(âi − ad)x + mb̂i(u(t)

+ψ(u(t)))
}}⊤

p1x̂.
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Let

ℓ
∑

i=1

(
1

γ1i

˙̃a
⊤

i ) =
ℓ

∑

i=1

hi(x)p⊤

1 ex⊤

ℓ
∑

i=1

(
1

γ2i

˙̃
bi) =

ℓ
∑

i=1

hi(x)p⊤

1 e(u(t) + ψ(u(t)))

Then ˙̃a
⊤

i and ˙̃
bi can be chosen, respectively, as

follows:

˙̃a
⊤

i = ˙̂a
⊤

i = γ1ihi(x)p⊤

1 ex⊤, (13)

˙̃
bi =

˙̂
bi = γ2ihi(x)p⊤

1 e(u(t) + ψ(u(t))). (14)

According to (11), (12), (13), and (14), we
have V̇ < 0. In light of Lyapunov stabil-
ity theory to the retarded functional differen-
tial equation ([Hale and Lunel (2002)]), e and x̂

as well as the parameter estimation errors âi

and b̂i are guaranteed to be uniformly ultimately
bounded (UUB) for all realizations of uncertain-
ties ([Khalil (2002)]). �

4. SIMULATIONS

Consider a single link flexible joint manipulator
whose dynamics has the following form:



























ẋ1 = x2

ẋ2 = −
MgL

I
sinx1 −

k

I
(x1 − x3)

ẋ3 = x4

ẋ4 =
K

L
(x1 − x3) +

1

J
u

(15)

where I and J are the link and the rotor inertia
moments, respectively, M is the link mass, k is
the joint elastic constant, L is the distance from
the axis of the rotation to the link center of mass,
and g = 9.8m/s2 is the gravitational acceleration.
We first transform the nonlinear system (15) to
the normal form as















ż1 = z2

ż2 = z3

ż3 = z4

ż4 = a(z) + b(z)u

(16)

where
a(z) = (MgL/I)sin(z1)(z

2
2 + (MgL/I)cos(z1) +

(k/I)) − (z3 + (MgL/I)sin(z1))((k/I) + (k/I)
+ (MgL/I)cos(z1)) and b(z) = (k/IJ) for which
z = [z1 z2 z3 z4]

⊤. The fuzzy rules for T-S
fuzzy model can be obtained from linearizing the
nonlinear system (16) for z1, z2 ∈ {−π, 0, π}. That
is, the triangular type membership function given
in Figs. 2 and 3 is used to represent the meaning
of the premise part of fuzzy rules:

Plant rule i : IF z1 is about Mi1 and z2 is about Mi2

THEN ż = Aiz + Biu, i = 1, 2, · · · , 9. (17)

The membership functions for the states, z1 and
z2 are presented in Figs. 2 and 3. In this experi-
ments, it is assumed that the physical parameters
in the dynamics (16) are not known exactly.

M71

M81

M91

M11

M21

M31

M41

M51

M61

1 1

−π 0 π

z1

Fig. 2. Membership functions for z1.

1 1

z2

0−π π

M32

M62

M92

M12

M42

M72

M22

M52

M82

Fig. 3. Membership functions for z2.

Hence, the parameters, ai2, ai4, i = 1, 2, · · · , 9, are
tuned by the estimator. From (12), the control law
can be given by

u(t) =

4
∑

i=1

hi(x)
(a⊤

d − â
⊤

i )x

mb̂i

− ψ(u(t)), (18)

where a⊤

d = [−15.5 − 15.5 − 15.5 − 15.5].
By adaptive law (11), the adaptation rates are
set as γ11 = 75.5, γ12 = 750.5, γ13 = 503.0169,
γ14 = 75.5, γ15 = 750.5, γ16 = 503.0169, γ17 =
75.5, γ18 = 750.5, γ19 = 1503.0169, γ21 = 1000.5,
γ22 = 1000.5, γ23 = 1000.5, γ24 = 1000.5,
γ25 = 1000.5, γ26 = 1000.5, γ27 = 1000.5,
γ28 = 1000.5, and γ29 = 1000.5. The plant pa-
rameters are adjusted online and the matrix P is
obtained by solving the Lyapunov equation (11)
with ad = [−15.5 − 15.5 − 15.5 − 15.5]⊤ and the
last row of the positive definite matrix P is ob-
tained as p1 = [0.0062 0.00001 0.0062 0.00001]⊤.
Also, the values of bi0 are given by b10 =
0.0051, b20 = 0.0051, b30 = 100.0051, b40 =
0.0051, b50 = 0.0051, b60 = 100.0051, b70 =
0.0051, b80 = 0.0051, b90 = 100.0051, z(0) =
[z1(0) z2(0) z3(0) z4(0)]⊤ = [π/5 π/5 π/5 0]⊤ and

Ẑ(0) = [ẑ1(0) ẑ2(0) ẑ3(0) ẑ4(0)]⊤

= [π/3 π/3 π/3 0]⊤. In the fuzzy system, the fuzzy
subsystems are as follows: a1 = [0 − 10 0 − 10]⊤,
a2 = [0 − 10.5 0 85]⊤, a3 = [0 − 10.5 0 −
85]⊤, a4 = [0 7 0 − 9]⊤, a5 = [0 7 0 − 85]⊤,
a6 = [0 7 0 − 85]⊤, a7 = [0 7 0 − 9]⊤,
a8 = [0 7 0 − 85]⊤, a9 = [0 7 0 − 85]⊤, and
bi(0) = 1, i = 1, 2, · · · , 9. Based on the lineariza-
tion of the nonlinear plant dynamicequation, the
fuzzy model is given by âi = [âi1 âi2 âi3 âi4]

⊤

and b̂i = [0 0 0 b̂i]
⊤, i = 1, 2, · · · , 9, where

we assumed that the initial conditions of the
plant model in this simulation are as follows:
â11(0) = −0.3, â12(0) = −9.9, â13(0) = 0.1,
â14(0) = −9.9, â21(0) = −0.075, â22(0) = −10.52,
â23(0) = 0.05, â24(0) = −84.98, â31(0) = −0.136,
â32(0) = −10.43, â33(0) = 0.02, â34(0) = −84.98,
â41(0) = −0.1, â42(0) = 7.015, â43(0) = 0.045,
â44(0) = −8.954, â51(0) = −0.025, â52(0) = 6.99,
â53(0) = 0.01, â54(0) = −84.99, â61(0) = −0.04,
â62(0) = 7.02, â63(0) = 0.011, â64(0) = −84.99,
â71(0) = −0.004, â72(0) = 7.0015, â73(0) =
0.0016, â74(0) = −8.9984, â81(0) = −0.0012,
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Fig. 4. The trajectories of estimated parameters
â11, â21, â31, â41, â51, â61, â71, â81, and â91.

0 5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Time(sec)Th
e t

ra
jec

tor
ies

 of
 th

e e
sti

ma
ted

 pa
ra

me
ter

s ∧ a 12

 ∧ a 22

 ∧ a 32

 ∧ a 42

 ∧ a 52

 ∧ a 62

 ∧ a 72

 ∧ a 82

 ∧ a

∧

a
12

∧

a
22

∧

a
32

∧

a
42

∧

a
52

∧

a
62

∧

a
72

∧

a
82

∧

a
92

Fig. 5. The trajectories of estimated parameters
â12, â22, â32, â42, â52, â62, â72, â82, and â92.

â82(0) = 7.00057, â83(0) = 0.00026, â84(0) =
−84.9996, â91(0) = 0.0008, â92(0) = 7.00001,

â93(0) = −0.00058, â94(0) = −85.0001, b̂1(0) =

1.9, b̂2(0) = 1.9, b̂3(0) = 2.9, b̂4(0) = 1.9,

b̂5(0) = 1.9, b̂6(0) = 1.9, b̂7(0) = 1.9, b̂8(0) = 1.9,

b̂9(0) = 2.9. Since the parameters of the nonlinear
plant dynamic equation is unknown, or known
partially, every parameters comprising the Takagi-
Sugeno fuzzy model (17) should be tuned for con-
structing the control law. Let the true parameters
of the dead-zone for simulations be set as m = 1,
br = 0.75, bl = −0.75, brmax = 0.8, brmin = 0.1,
blmax = −0.1, blmin = −0.8, and ψ = 0.6. The
simulation results presented are the trajectory of
the tracking errors, the trajectories of estimated
parameters, the trajectories of control input u
with a dead-zone, the trajectories of the dead-
zone, and the trajectories of z1(t), ẑ1(t), z2(t),
ẑ2(t), z3(t), ẑ3(t), z4(t) and ẑ4(t) are shown in
Figs. 4-14. In the simulations for each parame-
ters can guarantee to converge, and tracking error
converges to the neighborhood of zero. The trajec-
tories of z1(t), ẑ1(t), z2(t), ẑ2(t), z3(t), ẑ3(t), z4(t)
and ẑ4(t) are shown in Figs. 11, 12, 13, and 14,
respectively. The trajectories of control input u
with a dead-zone is shown in Fig. 10. From Figs.
9, the trajectory of the tracking errors e1 e2 e3

and e4 converge to the neighborhood of zero in
the steady state.

5. CONCLUSION

The parameter estimator can be used in the plant
parameters of the MIMO Takagi-Sugeno fuzzy
model are varying or uncertain was proposed.
In order to show the effectiveness of the control
scheme, the fuzzy state feedback controllers with
and without the estimator were respectively ap-
plied to the plant model. By using a description of
the dead-zone and exploring the properties of this
dead-zone model intuitively and mathematically,
this adaptive fuzzy controller method is presented
without constructing the dead-zone inverse. This

0 5 10 15 20 25 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time(sec)Th
e t

ra
jec

tor
ies

 of
 th

e e
sti

ma
ted

 pa
ra

me
ter

s ∧ a 13

 ∧ a 23

 ∧ a 33

 ∧ a 43

 ∧ a 53

 ∧ a 63

 ∧ a 73

 ∧ a 83

 ∧ a

∧

a
13

∧

a
23

∧

a
33

∧

a
43

∧

a
53

∧

a
63

∧

a
73

∧

a
83

∧

a
93

Fig. 6. The trajectories of estimated parameters
â13, â23, â33, â43, â53, â63, â73, â83, and â93.
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Fig. 7. The trajectories of estimated parameters
â14, â24, â34, â44, â54, â64, â74, â84, and â94.

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

Time(sec)

Th
e t

ra
jec

tor
ies

 of
 th

e e
sti

ma
ted

 pa
ra

me
ter

s ∧ b 1 ∧ b 2 ∧ b 3 ∧ b 4 ∧ b 5 ∧ b 6 ∧ b 7 ∧ b 8 ∧ b 9

∧

b
1

∧

b
2

∧

b
3

∧

b
4

∧

b
5

∧

b
6

∧

b
7

∧

b
8

∧

b
9

Fig. 8. The trajectories of estimated parameters
b̂1, b̂2, b̂3, b̂4, b̂5, b̂6, b̂7, b̂8, and b̂9.

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(sec)

Th
e t

ra
jec

tor
y o

f th
e t

ra
ck

ing
 er

ro
rs 

e 1(t)
 e 2(t)

 e 3(t)
 an

d e
4(t)

e
1

e
2

e
3

e
4

Fig. 9. The trajectory of the tracking errors e1 e2

e3 and e4.
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Fig. 10. The trajectories of control input u with a
dead-zone.

paper deals with the adaptive fuzzy control of a
class of uncertain nonlinear system preceded by a
dead-zone. Based on Lyapunov stability theorem,
the proposed adaptive fuzzy controller scheme
can not only guarantee the stability of the whole
closed-loop system with a dead-zone in the ac-
tuator, but also obtain the good tracking per-
formance. Finally, some examples and simulation
results are used to illustrate the effectiveness and
performance of the proposed method.
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