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Abstract: There are many methods in identification developing every day. But identification of dynamic 
systems has still remained a complex open problem. One of the new effective methods of identification in 
nonlinear problems is identification with Neurofuzzy approach. Compared with classic neural network and 
wavelet network this method is faster and more accurate, demonstrated with an example in this paper. The 
main aim of this paper is developing a Locally Linear Model Tree based algorithm which can be used in 
structure identification. Our method inspired from the concepts utilized in definition of this Neurofuzzy 
network and its quality was shown by a bench mark structure identification problem. 

 

1. INTRODUCTION 

When the mission is designing a controller for a plant, 
uncertainty of data is inevitable; also even after 
identification; some unconsidered events may change its 
characteristics like aging, friction, and etc. Noises and 
disturbances may cause some difficulties in the systems too.  
Nonlinear system identification has been a topic of wide 
interest in the past; however considerable progress both in 
theory and practice has been reported during the past decade 
(Chen et al., 1990), (Chen et al., 1992). In recent years, data-
driven and rule-base approaches are utilized more than 
model-based approaches to decision making (Nelles., 1997), 
(Trabelsi. et al., 2004), (Nelles., 1996), (Eppler et al., 1999). 

These new methods have shown better results comparing 
with the classic ones and some neural network based methods 
such as Multi Layer Perceptron (MLP). Recently some 
wavelet networks are presented too (Zhang. et al., 1992). The 
main method that we emphasize on, is a Neurofuzzy method 
named Locally Linear Model Tree (LoLiMoT). Although the 
advantages of this method were investigated before (Hafner. 
et al., 1999), (Schmidt. et al., 1998), (Schwarz. et al., 1997), 
(Miller. et al., 1999), in this paper we show its ability by 
implementing MLP, Wavelet network and LoLiMoT in a 
problem and comparing them. The results show the 
performance of LoLiMoT and we use it for the following 
research. The final goal is to present a method for structure 
identification. 

 Structure identification is one of the most complex problems 
in identification and the fewer data, the more difficult 
problem. As described bellow LoLiMoT uses discretizing the 
space to fit a model to the nonlinear system and it selects the 
partitioning with minimum error. A new algorithm based on 
the basic concepts of this method is presented in this paper to 

identify the dynamic of the system. Note that a dynamic 
system means a system which uses its previous outputs in 
addition to the input vector. Identifying which part of the 
previous data has a significant effect in producing the output, 
is a difficult structure identification problem. The results of 
testing this approach, in a hand-designed nonlinear dynamic 
problem and a bench mark one, show its prefect quality. 

The rest of this paper is organized as follows: Section 2 
describes a summary about LoLiMoT. In section 3, we 
compare the results of using wavelet network, MLP and 
LoLiMoT. In section 4, our innovative approach is explained. 
Finally, Section 5 discusses the simulation results obtained by 
this way and section 6 concludes this paper.  

2. IDENTIFICATION WITH LOLIMOT 

Modelling and identification of nonlinear dynamic systems is 
a challenging task because nonlinear processes are unique in 
the sense that they do not share many properties. An 
alternative approach is to design a nonlinear model consisting 
of several linear functions. The major output function is 
derived from a combination of linear models. Many training 
algorithms and structures are suggested for the mentioned 
networks such as TSK, ANFIS, LoLiMoT and PLN networks 
(Nelles., 1997), (Eppler. et al., 1999), (Jang., 1993), (Sugeno. 
et al., 1988a, b), (Nelles., 2001). Because of the accuracy, 
speed and various additional advantages for modelling and 
identification of dynamic processes, we prefer LoLiMoT 
(Nelles., 2001). In the following, the identification of 
nonlinear dynamic processes using LoLiMoT algorithm is 
described. 

 The locally linear modelling approach is based on divide-
and-conquer strategy. The network structure of a locally 
linear Neurofuzzy model (Nelles., 1997), (Nelles., 2001) is 
depicted in Fig. 1. Each neuron realizes a locally linear model 
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(LLM) and an associated validity function that determines the 
region of validity of the LLM. The validity functions form a 
partition of unity, i.e., they are normalized such that: 
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For any model input x , the output is calculated as:        
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Thus, the network output is calculated as a weighted sum of 
the outputs of the local linear models where the weights ijw  

are linear network parameters and iϕ  is interpreted as the 
operating point dependent weighting factors. The network 
interpolates between different LLMs with the validity 
functions. The validity functions are typically chosen as 
normalized Gaussians. If these Gaussians are furthermore 
axis-orthogonal the validity functions are  
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The centres and standard deviations are nonlinear network 
parameters. In the fuzzy system interpretation each neuron 
represents one rule. The validity functions represent the rule 
premise and the LLMs represent the rule consequents.  

 

Fig. 1. Network structure of a local linear Neurofuzzy model 
with M neurons. 

The LoLiMoT algorithm consists of an outer loop in which 
the rule premise structure is determined and a nested inner 
loop in which the rule consequent parameters are optimized 
by local estimation. In this loop the worst partition is selected 
in each step and split to two parts in every direction, and then 

the best new division is chosen to continue till the stop 
condition (when the desired goal is gained) is reached. 

We can summarize the algorithm in following steps: 

1. Start with an initial model: Construct the validity functions 
for the initially given input space partitioning and estimate 
the LLM parameters by the local weighted least squares 
algorithm. Set M  to the initial number of LLMs. If no input 
space partitioning is available at the beginning, then start 
with a single LLM which in fact is a global linear model 
since its validity function covers the whole input space 
with 1)(1 =xϕ , and set 1=M . 

2. Find the worst LLM: Calculate a local loss function for 
each of i ( Mi ,...,1= ) LLMs. The local loss functions can be 
computed by weighting the squared model errors with the 
degree of validity of the corresponding local model. 

3. Check all divisions: The first LLM is considered for 
further refinement. The hyper-rectangle of this LLM is split 
into two halves with an axis-orthogonal split. Divisions in 
each dimension are tried. For each division ( n,...,1dim = ), 
the following steps are carried out:  

(a) Construction of the multi-dimensional Mean Square 
Errors (MSE) for both hyper-rectangles. 

(b) Construction of all validity functions. 

(c) Local estimation of the rule consequent parameters for 
both newly generated LLMs. 

(d) Calculation of the loss functions for the current overall 
model. 

4. Find the best division: After checking the n  alternatives 
the best one is selected (the one with the most improvement). 
The validity functions constructed in Step 3(a) and the LLMs 
optimized in Step 3(c) are adopted for the model. The number 
of LLMs is incremented: 1+→ MM . 

5. Test of converging: If the termination criterion is met then 
stop, else go to Step 2. 

For the termination criterion various options exist, e.g., a 
maximal model complexity, that is a maximal number of 
LLMs, statistical validation tests, or information criteria. We 
use the accuracy validation test to terminate the learning 
process. 

Fig. 2 illustrates the operation of the LoLiMoT algorithm in 
the first four iterations for a two-dimensional input space and 
clarifies the reason for the term ”tree” in the acronym 
LoLiMoT. In practical two features make LoLiMoT 
extremely fast. First, at each step all possible LLMs are not 
considered for division. Rather, Step 2 selects only the worst 
LLM whose division most likely yields the highest 
performance gain. For example, in iteration 3 in Fig. 2 only 
LLM 3-2 is considered for further refinement and all other 
LLMs are kept fixed. Second, in Step 3 the local estimation 
approach allows to estimate only the parameters of those two 
LLMs which are newly generated by the division. For 
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example, when in iteration 3 in Fig. 2 the LLM 3-2 is divided 
into LLM 4-2 and 4-3 the LLMs 3-1 and 3-3 can be directly 
passed to the LLMs 4-1 and 4-3 in the next iteration without 
any estimation. 

 

 

Fig. 2: Operation of the LOLIMOT structure search 
algorithm in the first four iterations for a two-dimensional 
input space (p = 2). 

The training algorithm LoLiMoT is found out to be rapid, 
precise, self tuned and more user friendly than other 
conventional methods for training of Neurofuzzy networks 
which make it more acceptable in online control applications 
(Nelles., 1997), (Nelles., 1996). 

3. COMPARISON BETWEEN LOLIMOT, WAVELET 
AND MLP 

In this section, we consider a problem utilized in 
(Postalcioglu. et al., 2003). The author considered this 
example to show the power of identification of nonlinear 
problem with wavelet network. The function is formulated as 
follows: 
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In (Postalcioglu. et al., 2003), the wavelet network is 
considered with 10 neurons and the wavelet function is the 
differentiation of the Gaussian formulated as (6) with the 
network structure depicted in Fig. 3. We trained this network 
with the mentioned conditions and the result of identification 
is illustrated in Fig. 4. In this figure, the accuracy is 
computed as the MSE resulted from the difference between 
the real and identified output. 

 The important problem in this method was the sensitivity of 
the training to the initial condition. With little changes in 
initial condition and learning parameters the network 
diverges. This is the most significant drawback of this kind of 
identification. 
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 The next step is identification of this nonlinear function with 
a favourite neural network method, MLP. The real and 
identified output was depicted in Fig. 5. Ten neurons are 
considered and the weights are trained by gradient descent 
similar to training method in wavelet network. The 
difficulties in MLP are the number of iterations and neurons 
and tuning the learning rate. The learning rate is assumed 
equal to 0.03 and the training was too sensitive to this 
parameter. Another interesting point in this problem is what 
the best training method is. Some faster methods such as 
Levenberg-Marquardt back propagation have a drawback 
which is involving in local minima. 

 

Fig. 3. The structure of a Wavelet network model  

 

 

Fig. 4. The output of the wavelet network (dashed) compared 
with real outputs (iteration=600, neuron=10, accuracy=0.065)  

At the end LoLiMoT is applied for identification. The results 
are illustrated in Fig. 6. In this method in addition to its 
accuracy and time of learning, there is not any problem in 
defining the number of the neurons and learning rates. It is 
clear that the quality of the identification is better without any 
sensitivity problem. In Fig. 6 the system was identified with 
15 neurons. Note that previous networks have worse 
performance with more than 10 neurons and increasing the 
neurons does not conclude better results for every problem. 
Over parameterization, long training time and local minima 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7493



 
 

     

 

are some problems happened with more neurons. The initial 
condition does not matter here and so on. Least Square is the 
way of updating the weights which is another definition of 
gradient descent when the error is mean square error. 

 

Fig. 5. The output of the MLP (dashed) compared with real 
outputs (iteration=1300, neuron=10, accuracy=0.082) 

 

Fig. 6. The output of the LoLiMoT (dashed) compared with 
real outputs (iteration=15, neuron=15, accuracy=0.0088) 

4. THE ALGORITHM OF STRUCTURE 
IDENTIFICATION  

In this part our new method of dynamic system identification 
is presented. At first the concepts which are used in 
Neurofuzzy networks are developed and the unnecessary data 
from the basic data set are removed. This led us to achieve 
the architecture of the system. Two points are considered to 
determine the useful data.  

Finding the effective portion of the input set producing the 
output is the first important step.  With a wrong input 
selection the best identification methods may loose their 
capabilities. In neural network there is not any sense about 
the fitness of input set and it is not detectable easily. But in 
Neurofuzzy networks we can determine this portion that will 
be shown in the following description.  

As it was described before, the output of the network is 
determined by (7). In this formula the inputs multiply with 
weights and the multiplication of their summation and 
memberships add to each other to make the output. 
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Now if we rearrange this formula as (8) the portion that was 
discussed will be appeared. In this formula we changed the 
place of inputs and memberships. Thus it is obvious that each 
input is multiplied by a factor and their summation makes the 
output. 
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From this point of view when the inputs are normalized 
before entering the network, their coefficients calculated by 
(9), show the effect of each input in producing the output. In 
other words, if kW is near zero thk input's role can be 
ignored and we can understand that this input does not exist 
in the dynamic of the system. Therefore the first detection 
method for determining the necessity of each input is 
calculating 

kW  and comparing its quota with a threshold.  
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Our second strategy is deleting inputs that do not participate 
in dividing process. When you enter an unnecessary data to 
the input set the space of inputs will not split in that direction. 
The reason is that with dividing in that orientation the error 
will not be reduced. Hence the scarcity of division in one 
direction can show that related input is not useful. 

Thus in evaluating the information with this approach we can 
decrease the importance of some data that the partitions will 
not be divided in those directions. 

Two reasonable techniques are described to evaluate the 
importance of each input. Combination of them results in an 
applicable method leading to a more reliable measurement 
tool. In our approach each strategy computes an importance 
degree for each input. Then our final evaluating gauge will be 
made up of these values. We named it EG (Evaluating 
Gauge). The final step is comparison of each input’s EG and 
two lowest ones which are less than the threshold will be 
removed from the set. This omission is done one by one, to 
understand the error reduction of eliminating each one. In 
other words we try to identify the system with evaluating 
each )1( −n combinations of data set. Therefore the 
elimination which reduces the identification error more than 
others can be discovered. This element will be removed and 
so on. When EG of all choices remain more than threshold 
the process will be stopped.  

5. RESULTS 
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At first this method is applied on the system defined by (10). 
In this formula a nonlinear system with complex dynamic is 
depicted. The input vector )( X  is defined as shown in (11) 
including four useless data. Both strategies can determine the 
dynamicity of the function. Thus the problem can be solved 
easily with the algorithm described in previous section. It 
means that the space is not partitioned in unused data 
directions and the portions of these inputs are insignificant in 
producing output. 

)2(2
1

))4(sin()1()1()( −−−+−−= tyetututyty                  
(10) 

[ ])6(...)1()2()1( −−−−= tututytyX             (11) 

The results of identification are depicted in figures 7 to 9. 
They illustrate that the accuracy is very satisfying and the 
identification error is very low for the test data. This precise 
identification is gained by powerful identification tool and 
the strategy of detecting the dynamic of the system. It is clear 
that after 18 iterations the errors become nearly constant and 
it shows that the LoLiMoT network can identify the system 
with 18 neurons. 

We tested many such cases and this method of structure 
identification was perfect for all of them. In these problems 
more than 400 data were considered for identification. With 
less data the identification problem will become more 
complicated. 

  

Fig. 7. The output of Real system (solid line) and LoLiMoT 
(dashed line) for training data   

 

Fig. 8. The output of Real system (solid line) and LoLiMoT 
(dashed line) for testing data 

 

Fig. 9. The accuracy of identification for data of test and 
training during 35 steps (The number of neurons becomes 35) 
the accuracy of training is 0.000128 and the error of test is 
0.000337. 

The performance of this method is investigated by applying it 
in an unsolved structure identification. It was the box-jenkins 
problem which is one of the benchmark problems in this field 
(Sugeno. et al., 1988a). In this problem we have only 290 
data and the suggested input vector is defined as (12). 

[ ])6(...)1()4(...)1( −−−−= tututytyX      
(12) 

In (12), there are 10 suggested inputs for identification. We 
should determine the best set. The most difficult part of this 
problem is that the number of data is not sufficient respect to 
the X vector with 10 elements (Sugeno. et al., 1988b). Most 
of the researchers said that the main set should be 

])4()1([ −−= tutyX  but Sugeno and Yasukawa think 
that the input should be ])4()3()1([ −−−= tututyX . 
We applied Our Method on this system and the resulted set 
was ])2()3()2()1([ −−−−= tutytytyX . The correct 
response of this problem is not clear, but we can compare the 
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results of identification with these three sets. Our approach 
could reach to the accuracy of 0.16 for test regarded to 0.55 
for Sugeno suggestion that is better than another suggestion.  

The results of identification with our structure and 
Sugeno’s ones are illustrated in figures 10 to 14. The result of 
identification for training data is similar for both methods and 
it is shown in Fig. 10 only for one of them. Suitable quality of 
this algorithm is apparent in this figure. The performance is 
desirable for structure suggested by Sugeno too. But the main 
parameter that shows the power of identification is 
comparing the results for test data displayed in Fig. 11 and 
Fig.13. The better quality of our structure is obvious in these 
figures. Fig. 12 and Fig. 14 show the accuracy of two 
methods. These figures demonstrate that our strategy in 
structure identification is more successful than Sugeno’s one. 

 

Fig. 10. Identification result of box-jenkins problem with 
LoLiMoT for training data. The structure Identified by our 
suggested method. 

6. CONCLUSION 

We suggested an ad-hoc method inspired from some logic 
heuristics for structure identification with LoLiMoT 
algorithm. Using LoLiMoT as a powerful identification tool 
is sufficiently frequent. We compared this method with MLP 
and Wavelet Network to confirm its superiority. With respect 
to this fact, we extended the concept of identification with 
LoLiMoT to retain an algorithm for structure identification. 
We used two key points in LoLiMoT construction to reach a 
strategy to detect the dynamic of the unknown systems. The 
results of the structure identification for a nonlinear system 
with complex dynamic and more accurate identification in 
box-jenkins problem which is a benchmark problem in 
identification demonstrated the perfect quality of this 
algorithm. More concentration on defining this method to 
expand the method to a general structure identifier can be 
gained in future. 

 

Fig. 11. Identification result of box-jenkins problem with 
LoLiMoT for testing data. The structure Identified by our 
suggested method. 

 

Fig. 12. Identification accuracy of box-jenkins problem with 
LoLiMoT. The structure Identified by our suggested method 
(ki is the variance of Gaussians). 

 

 

Fig. 13. Identification result of box-jenkins problem with 
LoLiMoT for testing data. The structure Identified by Sugeno 
suggested structure. 
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Fig. 14. Identification accuracy of box-jenkins problem with 
LoLiMoT for testing data. The structure Identified by Sugeno 
suggested structure ( ki is the variance of Gaussians). 
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