
Inverse Kinematic Control Using

Rotational And Joint Space Clustering

With Visual Motor Coordination ⋆

Anjan Kumar Ray ∗ Laxmidhar Behera ∗∗

∗ Department of Electrical Engineering, Indian Institute of Technology,
Kanpur, 208016, UP, INDIA (Tel: +91-512-259-7854; e-mail:

akray@iitk.ac.in)
∗∗ Department of Electrical Engineering, Indian Institute of Technology,

Kanpur, 208016, UP, INDIA (Tel: +91-512-259-7854; e-mail:
lbehera@iitk.ac.in and School of Computing and Intelligent System,

University of Ulster, U.K., e-mail:l.behera@ulster.ac.uk)

Abstract: In this paper, the inverse kinematic control of a 6-DOF robot manipulator is achieved using
visual motor coordination (VMC). Here the positional data is converted into image plane data of a pair of
cameras. The Redundancy resolution is a prime goal for the robot manipulator with higher dimensional
joint space than the task-space. In this work, we present five schemes for this redundancy resolution
based on hybrid visual motor co-ordination (VMC) for a 6-dof robot manipulator by clustering the
rotational space and joint space information with visual feedback from a pair of cameras. The proposed
schemes are used with the extended Kohonen’s Self Organizing Map (EKSOM) to find out the mapping
from 3-dimensional positional task space to the 6-dimensional joint space of the manipulator. The
neural network with EKSOM is modified to use the cyclic nature of angular displacement of joints. The
visual feedback is obtained through a pair of calibrated cameras. So, each positional data is converted
to corresponding camera coordinates and then the modified EKSOM has been trained to obtain the
input-output mapping by combining the visual feedback and hybrid system model consisting of forward
kinematics of the manipulator. These methods produce smooth joint movements for positional tracking.
These schemes are successfully implemented on a model of 6-DOF PowerCubeTM robot manipulator
from Amtec Robotics.

1. INTRODUCTION

Visual Motor Coordination (VMC) is the process of using vi-
sual feedback from a camera system to control a robot manipu-
lator to reach a target point in its workspace. It is similar to the
hand-eye coordination of Human being. This involves the pro-
cess of finding the image coordinates of the robot end-effector
as well as the target points and the corresponding joint angles of
the manipulator. For this, a priori knowledge of camera model,
robot kinematics and dynamics are required. These require the
exact knowledge of those models which are quite uncertain in
the field of robotics. However, the calibration parameters of
the camera model can be estimated through camera calibration
technique (Tsai [1987], Horn [2000]). Moreover, finding the
exact inverse kinematics model of a robot manipulator is also
a complex process (Buss [2004]). In case of redundant robot,
where the dimension of joint-space is greater than the robot
task-space, the problem spreads out. There will be multiple
solution sets of joint angles to reach a particular target point.
The problem is to select a feasible solution which also support
the physical limits and other constraints of the manipulator.
Redundancy resolution is a process to handle this kind of multi

⋆ This work was supported by Department of Science and Technology (DST),

Govt. Of India under the project titled “Intelligent Control Schemes and

application to dynamics and visual control of redundant manipulator systems”.

The project number is DST/EE/20050331.

solution problem (Patel and Shadpey [2005]). There are several
methods available to solve the redundancy resolution prob-
lem such as Jacobian transpose, pseudo-inverse, damped-least
square (Buss [2004]), configuration control (Seraji [1989]),
successive approximation based technique (Goran S. [1999]).

Learning and acquisition paradigm can be used to form a
mapping between the task-space and the joint space. In this
learning scheme, the manipulator is trained to place its end-
effector to a desired location by using visual data. This ex-
tracts the mapping existed between the camera output and the
desired end-effector position. Various neural network models
have been developed which apply biologically inspired control
mechanisms for this coordination control task. Kuperstein’s
(Kuperstein [1987, 1988]) model is an early contribution to
the application of topology-conserving maps to visual-motor
co-ordination. Ritter, Martinetz and Schulten (T.M. Martinetz
and Schulten [1990]) have improved on Kuperstein’s model by
considering a more general model based on Kohonen’s self-
organizing scheme. Further modification has been done by Wal-
ter and Schulten (Walter and Schulten [1993]) using the visual
feedback from the camera for fine tuning of the manipulator’s
joint space variables.

In this present work, a general framework for kinematic con-
trol has been presented using visual feedback. A model of 6-
DOF PowerCubeTM manipulator is considered to study the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5353 10.3182/20080706-5-KR-1001.2864

applicability of the proposed schemes. In the hybrid network
approach, we take the forward kinematics model and a neural
network based on Extended Kohonen’s Self-Organizing Map
(EKSOM). The update of neural network is so planned that
will always keep the joint-angles within the limits of [−π π].
The redundancy of the manipulator has been resolved using
the rotational elements of the end-effector frame. We map
9-dimensional rotational space cluster to 6-dimensional joint
space during the training. Among the 9-dimensional input
space, first 4 elements are from image plane data corresponding
to the position in the workspace and rest 5 elements are random
rotational elements. We also use the joint space information
during training to form a 10-dimensional joint space cluster
whose first 4 elements correspond to image plane data and
rest 6 elements are joint space elements. The trained network
successfully maps the position to the joint space and hence ca-
pable of finding the inverse kinematics of the manipulator. The
simulation results are shown to validate these training schemes.

In the section 2 we present the forward kinematics model of a
6-DOF PowerCubeTM manipulator along with visual motor
coordination setup. In the section 3, a modified EKSOM is pre-
sented which is the main building block of neural network train-
ing. The rotational space clustering and joint space clustering
schemes are presented in section 3.2 and 3.3. The simulation
results are presented in the section 4 followed by the section 5
which depicts the overall conclusion of these processes.

2. MODELING OF SYSTEMS

2.1 Problem of inverse kinematics

The forward and inverse kinematics of a manipulator are given
by mappings

S = f(θ) (1)

θ = f−1(S) (2)

where, f is the mapping, θ and S = [X Y Z]T are joint
space and workspace respectively. Finding the inverse kinemat-
ics become difficult for manipulators with more than 3-DOF
as it becomes redundant with 3-dimensional positional data.
However, we can include the orientation data O = [θx θy θz]

T

to solve for the redundancy for a manipulator with upto 6-
DOF where the mapping will be from [ST OT]T → θ =
[θ1 θ2 θ3 θ4 θ5 θ6]

T . Manipulators with more than 6-DOF be-
come redundant where extra task has to be considered to resolve
the redundancy. In this present work, we have addressed the
issue of finding the inverse kinematics of manipulator whose
orientation data are not available and then resolved the redun-
dancy. The visual-motor coordination for a robot manipulator
system consists of a pair of cameras and a robot manipulator.
The objective of this method is to find out the inverse kine-
matics and then place the end-effector of the manipulator to a
desired position using the camera data.

2.2 Robot model

In this present work, we consider a 6-DOF PowerCubeTM

robot manipulator whose D-H parameters are shown in Table
1,

where, the subscripted parameters’ values are a2 = 0.370 m,
d1 = 0.390 m, d4 = 0.310 m, d6 = 0.2656 m.

Table 1. D-H parameters of PowerCubeTM

i αi−1 ai−1 di θi

1 0 0 d1 θ1

2 90o 0 0 θ2

3 0 a2 0 θ3

4 −90o 0 d4 θ4

5 90o 0 0 θ5

6 −90o 0 d6 θ6

Fig. 1. Experimental setup with stereo-vision cameras and
PowerCubeTM

The position of the end-effector with respect to its base is
specified by S = [X Y Z]T and the rotational frame is given by
the rotational matrix R. The end effector position with respect
to end-effector frame [xe ye ze]

T and rotation is related to the
base [xb yb zb]

T of the manipulator by the following equation,
[

xb

yb

zb

]

= R

[

xe

ye

ze

]

+

[

X
Y
Z

]

(3)

where, R is the rotational matrix given by

R =

[

r11 r12 r13

r21 r22 r23

r31 r32 r33

]

(4)

The forward kinematics is given by the following (5)
X = d4(−c1c2s3 − c1c3s2) + a2c1c2 + d6(−c1c2c3c4s5

+c1c4s2s3s5 + s1s4s5 − c1c2c5s3 − c1c3c5s2)
Y = d4(−s1s3c2 − s1s2c3) + a2s1c2 + d6(−s1s5c2c3c4

+s1s2s3s5c4 − c1s4s5 − s1s3c2c5 − s1s2c3c5)
Z = d4(−s2s3 + c2c3) + a2s2 + d1 + d6(−s2s5c3c4−

c2c4s3s5 − s2s3c5 + c2c3c5)
(5)

where, ci = cosθi, si = sinθi, cicj = cosθicosθj , sisj =
sinθisinθj , cisj = cosθisinθj , sicj = sinθicosθj . 0 < i < 7,
0 < j < 7 are integers.

2.3 Visual motor coordination setup

The experimental setup is shown in Fig. 1. It consists of a
PowerCubeTM robot manipulator, proper lighting system,
computational unit and a pair of Ca−ZoomTM PTZ cameras.
The cameras have color image resolution of 320 X 240 pixels.
Tsai algorithm (Tsai [1987]) is used to calibrate the cameras.
For details of the calibration parameters and their definitions

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5354

Table 2. Extrinsic and Intrinsic camera parameters

Parameters Camera 1 Camera 2

f (mm) 5.436145 4.378799

κ (mm−2) 4.590897 X 10−3 2.696366 X 10−2

Tx (mm) -468.595155 543.932076

Ty (mm) -245.714726 -356.236535

Tz (mm) 2116.318683 2021.321783

Rx (deg) -157.688170 -161.992870

Ry (deg) 30.899335 -30.746348

Rz (deg) 130.253939 -127.867017

sx 0.876342 0.974713

Cx (pixel) 173.287243 117.929013

Cy (pixel) 114.979411 136.855416

please refer to Tsai [1987]. The intrinsic and extrinsic camera
calibration parameters are found out using the data as shown in
Table 2 where,
Ncx=no. of sensor elements in camera’s x direction=320 (sel)
Nfx=no. of pixels in frame grabber’s x direction=320 (pixel)
dx=X dimension of camera’s sensor element=0.0097 (mm/sel)
dy=Y dimension of camera’s sensor element=0.01 (mm/sel)
dpx=Effective X dimension of pixel in frame grabber=0.0097
(mm/pixel)
dpy=Effective Y dimension of pixel in frame grabber=0.01
(mm/pixel).
From the two calibrated cameras we get the image coordinates
of the target point S = [X Y Z]T as [u1 u2] and [u3 u4]
respectively.

3. NEURAL NETWORK TRAINING USING MODIFIED
EKSOM

3.1 Learning algorithm

The learning algorithm to find the inverse kinematics is based
on extended Kohonen’s Self-Organizing Feature Maps which
was introduced by Walter and Schulten [1993]. This method
was presented for a 3-dof robot manipulator by Behera and
Kirubanandan [1999] and Behera and Kumar [2004]. Here,
we consider a 3-dimensional neural lattice where each neuron
has three fields ‘weight vector’ wr, ‘Jacobean matrix’ Ar and
‘output vector’ θr where subscript r stands for its position in
the lattice. From each positional data S we can get a pair of
camera coordinates [u1 u2] and [u3 u4] from camera 1 and 2
respectively. These form the visual target as

utarget = [u1 u2 u3 u4]
T (6)

But for the case of 6-dof manipulator, it is difficult to find
out the inverse kinematics with 4-dimensional utarget or 3-
dimensional positional target S. Here, we have redundant solu-
tions as there may be multiple solutions of θ. So, the additional
tasks have to be considered for resolving the redundancy. For
each training step, a target position utarget is clubbed with a
function g(θ) to form an input space of the network as

iptarget = [uT
target g(θ)]T (7)

This iptarget is presented at randomly and the corresponding

θ(iptarget) = (θ1 θ2 θ3 θ4 θ5 θ6)
T are found out using a

hybrid model consisting of forward kinematics model, camera
model and the defined function g(θ). The output of the network
is obtained based on ‘winner-takes-all’ scheme which produces
the joint angles θ by the Taylor series expansion of θ(iptarget),
i.e.,

θ(iptarget) = θµ + Aµ(iptarget − wµ) (8)

where, µ denotes the subscript of the winner neuron based on
the Euclidean distance metric in the workspace by (9).

||wµ − iptarget|| = min
∀ρ
||wρ − iptarget|| (9)

In modified EKSOM, we consider the collective output of
the neighbor neurons along with that winning neuron. The
neighborhood of winner neuron is chosen by (10).

hr1(r) = exp

(

−
||r − µ||2

2σ2

1

)

(10)

σ1 = σ1initial

(

σ1final

σ1initial

)(t1

tmax
)

(11)

where, σ1initial and σ1final stand for the neighbourhood width
parameter σ1’s initial and final values. t1 is the current number
of training step and tmax is the maximum number of training
step. The manipulator is given a coarse movement θout

0
which

is the network output that moves the end-effector to a position

ip
0

= [u0T
target g(θout

0
)]T . (12)

This is followed by some fine movements given by θout
n1

which
brings the end-effector to ipn1

. The following equations depict

the process of averaged output to calculate θout
0

and θout
n1

where
n1 stands for number of fine movements.

θout
0

= s−1
∑

r

hr1(r)
(

θr + Ar

(

iptarget − wr

))

(13)

θout
i = θout

i−1
+ s−1

∑

r

hr1(r)Ar

(

iptarget − ipi−1

)

(14)

where, s =
∑

r hr1(r), θout
i = [θ1 θ2 θ3 θ4 θ5 θ6]

Tout
i and

i = 1, 2, ...n1. It is observed that, with this condition it may
happen that θout

i becomes unbounded during training. So, to

keep the θout
i within the range of ±2π the following corrective

measures have been taken.

if θj > 0 (15)

θj = mod(θj , 2π)

if θj < 0

θj = mod(θj ,−2π)

where, j = 1, 2, ...6. θj is the element of θout
i and the function

mod(a, b) is the remainder of the division a by b. This rule will

ensure that all element of θ
out
i will stay within the range ±2π

as well as this will enforce a smooth movements of joints. It can
be modified further to make the range within ±π as follows

if θj > 0 (16)

θj =

{

θj ; 0 ≤ θj ≤ π
θj − 2π ;π < θj < 2π

if θj < 0

θj =

{

θj ; 0 ≥ θj ≥ −π
θj + 2π ;−π > θj > −2π

The neural units are adjusted by the following update rules:

wr←wr + ǫhr2(iptarget − wr) (17)

θr← θr + ǫ1hr3∆θr (18)

Ar←Ar + ǫ1hr3∆Ar (19)

The update rule for θr is corrected using (15), (16) where, θj is
the element of θr. The ∆Ar is found using a stochastic gradient
descent approach to minimize the quadratic cost function

E =
1

2

(

∆θout
0n1
−Ar∆ip

)2

(20)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5355

The quantities ∆Ar, ∆ip, ∆θout
0n1

and ∆θr are found out using
the rules as follows:

∆Ar = ||∆ip||−2
(

∆θout
0n1
−Ar∆ip

)

∆ipT (21)

∆ip = ipn1
− ip

0
(22)

∆θout
0n1

= θout
n1
− θout

0
(23)

∆θr = θout
0
− θr −Ar (ip

0
− wr) (24)

In this work, we consider the functions hr2 and hr3 to be
Gaussian as hrk, k = 1, 2 as (25).

hrk = exp

(

−
||r − µ||2

2σ2

k

)

(25)

Also the learning rate parameters ǫ, ǫ1 and the neighborhood
width functions σ2, σ3 change during the training process
according to a general rule as follows:

η = ηinitial

(

ηfinal

ηinitial

)(t1

tmax
)

(26)

where η ∈ ǫ, ǫ1, σ2, σ3. In this present work, the initial and final
values of the parameters ǫ, ǫ1, σ2, σ3 are taken as {1.0, 0.05},
{0.9, 0.9}, {2.5, 0.01} and {2.5, 0.01} respectively.

3.2 Rotational space clustering

The facility of the hybrid model is that we can directly calculate
the elements of rotational matrix R given a set of joint angles.
So, during the process of training, the position can be achieved
by the two cameras whereas the rotational elements can be
calculated using the system model with random joint angles
using (27). Given a system model, these information are readily
available and is used to form the training cluster and a mapping
is achieved to relate directly the positional data with the joint
angles of the manipulator without accounting the orientation.
After each movement, joint angles are known from the network
output and these joint angles are then used to calculate the next
phase rotational elements to form the cluster again with updated
values.

r11 = c1c2c3c4c5c6 − c1c4c5c6s2s3 − s1s4c5c6 − c1c2c6s3s5

−c1c3c6s2s5 − c1c2c3s4s6 + c1s2s3s4s6 − s1s6c4

r21 = s1c2c3c4c5c6 − s1s2s3c4c5c6 + c1c5c6s4

−s1s3s5c2c6 − s1s2s5c3c6 − s1s4s6c2c3

+s1s2s3s4s6 + c1c4s6

r31 = s2c3c4c5c6 + c2c4c5c6s3 − s2s3s5c6 + c2c3c6s5

−s2s4s6c3 − c2s3s4s6

r32 = −s2s6c3c4c5 − c2c4c5s3s6 + s2s3s5s6 − c2c3s5s6

−s2s4c3c6 − c2c6s3s4

r33 = −s2s5c3c4 − c2c4s3s5 − s2s3c5 + c2c3c5

(27)
In this way a fusion of camera data and the system model can
be achieved which is an important contribution to the proper
training. Otherwise, the choice of random rotational elements
associated with a specific position may not be feasible for a
physical system. The constraint function g(θ) is formulated as
(28)

g(θ) = [r11 r21 r31 r32 r33] (28)

The output space for the network is the 6-dimensional joint
space represented by (29).

θ = [θ1 θ2 θ3 θ4 θ5 θ6]
T (29)

The dimensions of the parameters wr, Ar and θr during training
are 9 × 1, 6 × 9 and 6 × 1. This clustered network is trained
with (6) through (26).

Case I During the testing phase, the mapping S → uT
target

is found out using calibrated camera parameters. The initial
rotational space g(θ0) is clubbed together to form initial tar-
get iptarget = [uT

target g(θ0)]T . From network, we get the

actual joint space θ and from (27) we get g(θ) which is
clubbed together with successive uT

target to form the input space

iptarget = [uT
target g(θ)]T . The dimensions of wr, Ar and θr

during testing phase are 9× 1, 6× 9 and 6× 1.

Case II Here the training process is same as Case I . But,
during the testing phase, we choose 4-dimensional input space
iptarget = utarget and the winner neuron µ is selected by (30)

||wµ − utarget|| = min
∀ρ
||wuρ − utarget|| (30)

The dimensions of wr, Ar and θr are 4× 1, 6× 4 and 6× 1.

3.3 Joint space clustering

In joint space clustering, we use available joint information to
train the network. Here, we club together the uT

target with the
output space θ. So, the actual 10-dimensional input space is
defined by (31).

iptarget = [uT
target θT]T (31)

We can utilize this joint space information in the following
ways.

Case III : Here the network parameters wr, Ar and θr have
dimensionality 10 × 1, 6 × 4 and 6 × 1. The weight vector wr

is defined as wr = [wT
u θT

r]T where wT
u corresponds to uT

target.
The winner is selected by (9). Except for update of network
weights wr using (17), first 4 elements of iptarget, ipi−1, ip0,
ipn1 and wr are used to train the network. In this way, this
method reduces the dimensionality of the Jacobian matrix Ar

to 6 × 4 and maps directly the image plane target utarget to
the output space θ. Equation (18) and (24) are not used in the
training process to get the update of θr, instead it is assigned
with the last 6 elements of updated wr. Ar is updated with 4-
dimensional visual feedback.
During the testing phase, we choose 4-dimensional input space
iptarget = utarget. The winner neuron µ is selected by (30).
The dimensions of wr, Ar and θr during testing phase are 4×1,
6× 4 and 6× 1.

Case IV : Here the training network parameters wr, Ar and
θr have dimensionality 10× 1, 6× 10 and 6× 1. wr and θr are
updated seperately. The constraint function g(θ) is formulated
as (32) and this clustered network is trained with (6) through
(26).

g(θ) = [θ1 θ2 θ3 θ4 θ5 θ6] (32)

During the testing phase, 4-dimensional input space uT
target is

presented corresponding to S. The mapping S → uT
target is

found out using calibrated camera parameters. The initial joint
space θ0 is clubbed together to form initial target iptarget =

[uT
target θT

0
]T . From trained network, we get the actual joint

space θ which is clubbed together with successive uT
target to

form the input space iptarget = [uT
target θT]T . The dimensions

of wr, Ar and θr during testing phase are 10 × 1, 6 × 10 and
6× 1.

Case V : Here the training process is same as Case IV . But,
during the testing phase, we choose 4-dimensional input space
iptarget = utarget and the winner neuron µ is selected by (30).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5356

Table 3. RMS error on the image plane in pixel

u1 u2 u3 u4

case I 1.1613 0.0691 0.2882 0.5543

case II 0.6370 0.2526 0.5310 0.7602

case III 3.7943 1.6007 2.4603 1.9744

case IV 0.3145 0.0597 0.2932 0.2770

case V 0.7254 0.2492 0.6195 0.5445

The dimensions of wr, Ar and θr are 4×1, 6×4 and 6×1. This
scheme does not require any initial joint space information. In
the following section 4, the simulation results are presented in
support of these schemes.

4. SIMULATION RESULTS

In the simulation, the initial and final values of σ1 are taken as
1 and 0.1 respectively. The 3-D neural network with 8× 8× 8
neurons have been trained with 100000 data points. The data
points are generated with the joint-space limits as−300 ≤ θ1 ≤
300, 600 ≤ θ2 ≤ 900, 00 ≤ θ3 ≤ 400, −400 ≤ θ4 ≤ 400,
00 ≤ θ5 ≤ 400, −400 ≤ θ6 ≤ 400. The Fig. 2 shows the
3-dimensional workspace of the robot. The first 4 elements of
weight vector wr corresponding to the image plane utarget of
the two cameras and the output vector θr are shown in Fig. 3
and Fig. 4 respectively. In the Fig. 3 and Fig. 4, trained wr and
θr of Case II , Case III and Case V are shown. During the
training phase 2 visual corrections are used for fine tuning. The
first 3 and the last 3 elements of θr in radian are shown in the
left and right plots of the Fig.4. The figures depicts that all the
joint angles are bounded within the range of ±2π. The trained
network has been tested to find the inverse kinematics of the
6-DOF robot. For this, a desired circular trajectory is formed as

X =−0.3 + 0.15cos(ja) (33)

Y = 0.05 + 0.15sin(ja)

Z = 0.9

where, X , Y and Z are in m and 0 ≤ ja ≤ 2π. Case I
and Case IV need initial joint configurations which are taken
as 00 for all the 6 joints. The circular trajectory tracking are
shown in the Fig. 5 for Case II , Case III and Case V . The
corresponding tracking on the image plane are shown in Fig.
6 and the joint angles of the manipulator are shown in Fig. 7,
Fig. 8 and Fig. 9. Case II and Case V have smooth joint
movements and also joints are bounded and CaseIII produces
bounded joint movements with slight jerks. The RMS pixel
errors on image plane as well as RMS errors in workspace
in Case III are 3.7943 pixel and 0.014 m maximum. But
in all the other cases, the RMS pixel errors are less than 1
pixel and RMS workspace errors are less than 0.0028 m. RMS
pixel errors on the image plane and RMS positional errors in
workspace are tabulated in Table 3 and Table 4 respectively.
From the tables, we see that the proposed methods of training
produces the inverse kinematics with very small positional
errors and also smooth joint movements are achieved for the
desired tracking operation. This is the prime requirement for a
real time kinematic control of a redundant robot.

5. CONCLUSION

In this work, visual control schemes based on rotational space
and joint space clustering are proposed which uses an extended

Fig. 2. Training workspace of PowerCubeTM

80 100 120 140 160 180
−220

−200

−180

−160

−140

−120

−100

−80

−60

w
r1

w
r2

250 300 350 400
−60

−40

−20

0

20

40

60

w
r3

w
r4

case II

case III

case V

Fig. 3. Trained weight vector wr corresponding to image plane

−0.5

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ
r1

θ
r2

θ
r3

−0.5

0

0.5

−0.5

0

0.5

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

θ
r4

θ
r5

θ
r6

case II

case III

case V

Fig. 4. Trained output vector θr in radian

−450
−400

−350
−300

−250
−200

−150

−100

0

100

200

800

850

900

950

1000

x−axisy−axis

z−
ax

is

desired

case II

case III

case V

Fig. 5. Tracking of a circular path in the workspace

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5357

60 70 80 90 100 110 120 130 140 150 160
−210

−200

−190

−180

−170

u
1

u 2

260 280 300 320 340 360 380
−100

−90

−80

−70

−60

−50

−40

u
3

u 4

desired

case II

case III

case V

desired

case II

case III

case V

Fig. 6. Circular path tracking on the corresponding image plane

0 200 400 600 800 1000 1200 1400
−1

−0.5

0

0.5

1

1.5

No of sample points

Jo
in

t s
pa

ce
 θ

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

Fig. 7. Joint movements for a circular path tracking in Case II

0 200 400 600 800 1000 1200 1400
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

No of sample points

Jo
in

t s
pa

ce
 θ

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

Fig. 8. Joint movements for a circular path tracking in Case III

0 200 400 600 800 1000 1200 1400
−1

−0.5

0

0.5

1

1.5

No of sample points

jo
in

t s
pa

ce
 θ

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

Fig. 9. Joint movements for a circular path tracking in Case V

Table 4. RMS positional error in workspace in m

X Y Z

case I 0.0026 0.0028 0.0005

case II 0.0026 0.0010 0.0016

case III 0.0028 0.0140 0.0038

case IV 0.0012 0.0007 0.0004

case V 0.0018 0.0026 0.0016

Kohonen Self Organizing Map. These methods have been suc-
cessfully implemented on a 6-DOF PowerCubeTM manipu-
lator to achieve its inverse kinematics. The trained networks
have been tested for a circular path tracking in the workspace
of the manipulator. The simulation results show satisfactory
performances. The tracking errors can be further minimized
by using more numbers of visual corrections. In this present
work, 2 visual corrections are used for training. Here we have
achieved smooth bounded joint movements. Case III results
in larger positional and pixel errors because of the fact that θr

is not updated by its update rule, instead it is assigned with the
last 6 elements of the updated weight vector wr. The rotational
elements are directly related to the orientation of the manipula-
tor. So, Case I and Case II can be further extended to extract
the orientation information. This work assumes a obstacle free
environment. In this present work, obstacle avoidance is not
considered, which is another way to resolve redundancy.

ACKNOWLEDGEMENTS

We are hereby acknowledge the work of Mr. Swagat Kumar,
a Ph.D. scholar of the Department of Electrical Engineering,
Indian Institute of Technology, Kanpur who has helped us to
get the camera calibration parameters and D-H parameters of
6-DOF PowerCubeTM robot manipulator.

REFERENCES

L. Behera and N. Kirubanandan. A hybrid neural control
scheme for visual-motor coordination. IEEE Control Systems
Magazine, 19:34–41, 1999.

L. Behera and N. Kumar. Visual-motor coordination using a
quantum clustering based neural control scheme. Neural
Processing Letters, 20:11–22, 2004.

Samuel R. Buss. Introduction to inverse kinematics with
jacobian transpose, pseudoinverse and damped least squares
methods. Tech. rep., University of california, San Diego,
April 2004.

Dragan K. Goran S., Milan R. Learning of inverse kinematics
behavior of redundant robot. In Proceedings of the 1999
IEEE international conference on robotics and automation,
pages 3165–3170, Detroit, Michigan, May 1999.

Berthold K. P. Horn. Tsai’s camera calibration method revis-
ited. Technical report, 2000.

M. Kuperstein. Neural model of adaptive hand-eye coordina-
tion for single postures. Science, 239:1308–1311, 1988.

M. Kuperstein. Adaptive visual-motor coordination in multi-
joint robots using parallel architecture. In Proc. IEEE Int.
Automat. Robotics, pages 1595–1602, Raleigh, NC, 1987.

R. V. Patel and F. Shadpey. Control of redundant robot manip-
ulators. Springer, 2005.

Homayoun Seraji. Configuration control of redundant manipu-
lators: Theory and implementation. IEEE trans. on robotics
and automation, 5(4):472–490, August 1989.

H.J. Ritter T.M. Martinetz and K. Schulten. Three dimensional
neural network for learning visuomotor coordination of a
robot arm. IEEE Trans. NN, 1(1):131–136, 1990.

Roger Y. Tsai. A versatile camera calibration technique for
high-accuracy 3d machine vision metrology using off-the-
shelf tv cameras and lenses. IEEE journal of robotics and
automation, RA-3(4):323–344, August 1987.

A.J. Walter and K.J. Schulten. Implementation of self-
organizing neural networks for visuo-motor coordination of
an industrial robot. IEEE Trans. NN., 4(1):86–95, 1993.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5358

