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1. INTRODUCTION

In this paper, we propose sufficient conditions under which
a controlled nonlinear system admits an exponential ob-
server. The need to study the observer design problem for
nonlinear dynamical systems is, from a control point of
view, well understood by now.

The existence of an observer relies on observability proper-
ties which are a bit more involved than in the linear case.
Many techniques have been developed for designing an
observer for nonlinear systems. Among these techniques,
a rather natural approach consists in considering systems
which can be steered by a change of coordinates into state
affine systems up to output injection. From observability
point of view, these systems possess similar properties as
linear systems and an extended Luenberger observer can
be designed. Several authors Krener and Isidori [1983],
Krener and Respondek [1985] Xia and Gao [1988], have
characterized such nonlinear systems. An extension of
these results consists to ask how one can design a constant
gain observer of nonlinear systems (so-called an extended
Luenberger observer). The idea consists to develop normal
forms characterizing the class of nonlinear systems which
are observable independently on the inputs (called uni-
formly observable systems). Based on these normal forms
and the high gain technics, the authors in Hammouri
[1991], Bornard and Hammouri [1991], Gauthier et al.
[1992], Gauthier and Kupka [1994] gave an extended Lu-
enberger. Many extensions of these results to multi-output
uniformly observable systems have been proposed (see
for instance H. Hammouri [1977], Hammouri and Farza
[2003]).

Under a geometric condition (called uniform observability
structure), the authors in Hammouri and Farza [2003] gave
a normal form which extend those proposed in Hammouri
[1991], Gauthier et al. [1992], Gauthier and Kupka [1994].

Based on this normal form, the authors in Hammouri
and Farza [2003] propose a constant gain observer. The
algorithm permitting to calculate the gain of the observer
is based on the existence of some cone of matrices. The
computation of this cone is very difficult to check in practi-
cal cases. Based on the LMI technics, our aim here consists
to replace the above condition by a more simpler. Indeed,
using LMI approach in this new observer gain design, gives
a sufficient condition which is more easy to be verified and
implemented.

The paper is organized as follows. The next section re-
sumes some previous necessary results and gives the prob-
lem statement. In Section 2, a high gain observer is de-
signed through LMI technics under a new condition. We
end this paper by an illustrative example before conclud-
ing.

2. OBSERVER SYNTHESIS

The system that we consider (Hammouri and Farza [2003])
has the following normal form:

{
ż = F (u, z)
y = Cz

(1)

where F (u, z) =




F 1(u, z)
...

F q(u, z)


, z =




z1

...
zq


 ∈ R

n; u ∈ U

a compact subset of R
m; zi ∈ Rni ; n1 ≥ n2 ≥ . . . ≥ nq;

n1 + . . . + nq = n. Each function F i(u, z), i = 1, . . . , q − 1
satisfies the following triangular structure:

F i(u, z) = F i(u, z1, . . . , zi+1), zi ∈ Rni (2)
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with the following rank condition:

Rank(
∂F i

∂zi+1
(u, z)) = ni+1 ∀z ∈ Rn; ∀u ∈ U (3)

Nonlinear systems that can be steered by a change of
coordinates to the form (1), (2), (3) are those satisfying
some geometrical condition (called a U -uniform observ-
ability structure Hammouri and Farza [2003]).

Definition 2.1. A constant gain exponential observer for
system (1) is a dynamical system of the form:

˙̂z = F (u, ẑ) + G(Cẑ − y) (4)

where G is a constant matrix such that: ‖ẑ(t) − z(t)‖ ≤
λe−µt‖ẑ(0) − z(0)‖ where λ > 0 and µ > 0 are constants
which do not depend on the input u ∈ L∞(R+, U) nor on
ẑ(0), z(0). �

2.1 The existing results

In Hammouri and Farza [2003], the authors gave some
sufficient conditions under which a constant gain observer
was designed for system (1). These conditions may be
formulated as follows:

H1) Global Lipschitz condition:

∃c > 0; ∀u ∈ U ; ∀z, z′ ∈ R
n,

‖F (u, z)− F (u, z′)‖ ≤ c‖z − z′‖. �

H2) The Cone condition:

∀k, 1 ≤ k ≤ q − 1, there exists nk × nk+1 constant matrix
Sk,k+1 such that

∂F k

∂zk+1
(u, z) ∈ C(nk, nk+1;−1; Sk,k+1); ∀(u, z) ∈ U ×Rn

where C(nk, nk+1;−1) is the cone defined by {M ∈
M(nk, nk+1; R); s.t. MT S + ST M < αIk+1}.
M(nk, nk+1; R) is the space of nk×nk+1 real matrices and
Ik+1 is the (k+1)×(k+1) identity matrix. �

Set Z = (Z1, . . . , Zq−1) ∈ R
n × . . .× R

n. Under the above
hypotheses, the authors in Hammouri and Farza [2003],
show that there exists a symmetric positive definite matrix
P and constants ρ > 0 and η > 0 such that for every
(u, Z1, . . . , Zq−1) ∈ U × R

n × . . . × R
n, we have:

PA(u, Z) + AT (u, Z)P − ρCT C ≤ −ηI, where

A(u, Z)=




0 A1(u, Z1) 0 . . . 0
... 0 A2(u, Z2) 0 . . .

...
... . . .

. . .
. . .

. . .
...

... . . . . . .
. . .

. . . 0
... . . . . . .

. . .
. . . Aq−1(u, Zq−1)

0 . . . . . . . . . . . . 0




with Ak(u, Zk) =
∂F k

∂Zk+1

k

(u, Zk).

Using this construction, the authors show that an expo-
nential observer for system (1) takes the form:

˙̂z = F (u, ẑ) + ∆θP
−1CT (Cẑ − y) (5)

where ∆θ =




θIn1
0 . . . 0

0 θ2In2
0

...
...

. . . 0
0 . . . 0 θqInq


, Ink

is the nk × nk

identity matrix, k = 1, . . . , q and θ .

The drawback of the above observer’s gain construction
lies into the fact that the observer’s gain depends on
the matrices Sk,k+1 and that their construction is a very
difficult task.

In what follows, we will give a more simpler construction
based on the LMI technics. As in the control problems, this
new construction by LMI opens a new field of investigation
where the observer gain may take into account of the
parameter uncertainty for example. We present this new
observer gain design in the following section.

3. HIGH GAIN OBSERVER BASED LMI TECHNICS

As in Hammouri and Farza [2003], the assumption H1)
is maintained. However, assumption H2) will be reformu-
lated as follows:

A(u, Z) is the matrix defined above, from H1), the set of
matrices E = {A(u, Z); (u, z) ∈ U ×R

n} is a bounded sub-
set of M(n, n; R). �

H3) Polytopic condition:

E is contained in a polytopic convex set P=Co{M1, . . . , Ml}
of M(n, n; R), where the Mi’s are the vertices of P for
which there exist a n×n symmetric positive definite matrix
P and a n × p matrix W such that:

for 1 ≤ i ≤ l, (Mi + KC)T P + P (Mi + KC) < 0 (6)

This inequality (6) can be linearized as follows

for 1 ≤ i ≤ l, MT
i P + PMi + CT WT + WC < 0 (7)

where W = PK. �
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Remark 3.1. Since the polytopic set P is a compact
convex set, it follows that there exists α > 0 such that:

for 1 ≤ i ≤ l, MT
i P + PMi +CT WT + WC ≤ −αI (8)

for every M ∈ P .

Theorem 3.1. Under hypotheses H1) and H3), an expo-
nential observer for system (1) takes the form:

˙̂z = F (u, ẑ) + ∆θP
−1W (Cẑ − y) (9)

where ∆θ is the diagonal matrix defined above. The gain
of the observer is K = P−1W . �

Proof 3.1. We will show that there exists θ0, such that
∀θ ≥ θ0, the error e(t) = ẑ(t) − z(t) exponentially con-
verges to 0,where z(t) is the unknown state and ẑ(t) is the
its estimate given by (9).

Set F̃ i(u, z, ẑ) = F i(u, ẑ1, . . . , ẑi, zi+1) for 1 ≤ i ≤ q − 1;

F̃ q(u, z, ẑ) = F q(u, ẑ) and, F̃ (u, z, ẑ) =




F̃ 1(u, z, ẑ)
...

F̃ q(u, z, ẑ)


,

we obtain:

ė = (F (u, ẑ) − F̃ (u, z, ẑ)) + (F̃ (u, z, ẑ) − F (u, z))
+∆θP

−1W (Cẑ − y)
(10)

To show that e(t) exponentially converges to 0, it suffices
to show that ǫ(t) = ∆−1

θ e(t) exponentially converges to 0.

From (10), we deduce:

ǫ̇ = ∆−1

θ (F (u, ẑ) − F̃ (u, z, ẑ)) + ∆−1

θ (F̃ (u, z, ẑ) − F (u, z))
+P−1W (Cẑ − y)

(11)

Using the expression of F̃ (u, z, ẑ) and the fact that F (u, z)
has a triangular structure, the main value theorem yields
to:
F (u, ẑ) − F̃ (u, z, ẑ) = A(u, Z)e,

where Z = (Z1, . . . , Zq−1) and A(u, Z) is the upper diago-
nal matrix given above. Moreover the k th bloc of A(u, Z)

takes of the form Ak(u, Zk) =
∂F k

∂zk+1
(u, Z1

k, . . . , Zk+1

k ),

where Zi
k(t) = zi(t)+Λi(t)ei(t) and Λ is a diagonal matrix

hose coefficients are in [0, 1].

Using the structure of A(u, Z) and the fact that C =
(In1

, 0, . . . , 0), a simple calculation yields to:

∆−1

θ (F (u, ẑ)−F̃ (u, z, ẑ)) = ∆−1

θ A(u, Z)e = θA(u, Z)ǫ and
WC∆θ = θWC. Hence (11) becomes:

ǫ̇ = θ(A(u, Z) + P−1WC)ǫ + ∆−1

θ (F̃ (u, z, ẑ) − F (u, z))
(12)

To end the proof of the theorem, it suffices to show that
V (t) = ǫT (t)Pǫ(t) exponentially converges to 0.
A simple calculation yields to:

V̇ (t) = θǫT (t)((A(u, Z) + P−1WC)T P + P (A(u, Z)
+P−1WC))ǫ(t)

+2ǫT (t)P∆−1

θ (F̃ (u, z, ẑ) − F (u, z))
(13)

From hypothesis H3) and remark 3.1, we deduce:

V̇ (t) ≤ −αθ‖ǫ(t)‖2 + 2ǫT (t)P∆−1

θ (F̃ (u, z, ẑ) − F (u, z))
(14)

Using the triangular structure of F (u, z) and ∆theta, we
get:

∆−1

θ (F̃ (u, z, ẑ) − F (u, z)) =




θ−1(F 1(u, ẑ1, z2) − F 1(u, z1, z2))
...

θ−k(F k(u, ẑ1, . . . , ẑk, zk+1) − F 1(u, z1, . . . , zk, zk+1))
...

θ−q(F q(u, ẑ1, . . . , ẑq−1, zq) − F 1(u, z1, . . . , zq−1, zq))




From assumption H1):

‖F k(u, ẑ1, . . . , ẑk, zk+1) − F 1(u, z1, . . . , zk, zk+1)‖ ≤

c
√
‖e1‖2 + . . . + ‖ek‖2. Thus, for θ ≥ 1, we have

θ−k‖F k(u, ẑ1, . . . , ẑk, zk+1) − F 1(u, z1, . . . , zk, zk+1)‖

≤λ
√
‖e1‖2 + . . . + ‖ek‖2,

for some constant λ which doesn’t depend on θ.

Combining this last fact with (15), we obtain:

V̇ (t) ≤ −αθ‖ǫ(t)‖2 + β‖ǫ(t)‖2 (15)

where β is a constant which doesn’t depend on θ.

To end the proof, it suffices to take θ >
β

α
. �

4. COMMENTS AND EXAMPLES

In this section, we will give some remarks and examples
concerning the existence of a constant gain observer.

Remark 4.1. Assumption H1) and conditions (2), (3) are
not generally sufficient for the existence of a constant gain
observer for system (1).

Indeed, consider the following example:
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ż1 = u1z
3

ż2 = u2z
3

ż3 = 0

y = Cz =

(
z1

z2

) (16)

where u = (u1, u2) belongs to the unit circle U =
{u s.t. ‖u‖ = 1}.

Clearly system (16) takes the form (1) and satisfying (2),
(3) and assumption H1). Let us show that system (16)
doesn’t admit a constant gain observer.

Assuming that there exists a constant gain observer of the
form:

˙̂z = A(u)ẑ + K(Cẑ − y) (17)

where, A(u) =

(
0 0 u1

0 0 u2

0 0 0

)
, K =

(
k11 k12

k21 k22

k31 k32

)
is a constant

matrix and C =

(
1 0 0
0 1 0

)
.

Thus, for every u ∈ L∞(R+, U), the error equation:

ė = (A(u) + KC)e (18)

is exponentially stable at the origin.

In particular, the error equations associated to inputs
u(t) = (1, 0) and u(t) = (−1, 0) are exponentially stable.
This implies that:

(
k11 k12 1
k21 k22 0
k31 k32 0

)
and

(
k11 k12 −1
k21 k22 0
k31 k32 0

)
are both Hurwitz ma-

trices.

A simple calculation shows that this yields to the following
contradiction: k21k32−k31k22 < 0 and k21k32−k31k22 > 0.

In what follows, we will give an example which illustrate
our LMI method. Let consider the following system with
u(t) ∈ [0, 1]:






ż1 = A1(u)z2

ż2 = A2(u)z3

ż3 = 0
y = Cz = z1

(19)

with the following matrices
{

ż = A(u)z
y = Cz = z1 (20)

where,

A(u) =




0 0 1 u 0
0 0 −u 1 0
0 0 0 0 1 − u
0 0 0 0 u
0 0 0 0 0


 , C =

(
1 0 0 0 0
0 1 0 0 0

)
(21)

The vertices of the polytope are A(0) and A(1).

We solve LMI from equation (7), with K = P−1W , and
we obtain:

P =




33.54 2.71 −12.74 −4.78 −19.24
2.71 28.51 4.40 −13.68 −8.13

−12.74 4.40 27.78 6.01 −14.95
−4.78 −13.68 6.01 35.32 −16.14
−19.24 −8.13 −14.95 −16.14 78.52


 (22)

W =




25.50 509.18
−509.77 25.82
31.14 −8.07
17.81 28.16
−6.26 −1.52


 (23)

K =




1.59 30.89
−25.86 3.30
6.63 18.53

−12.06 9.18
−3.58 13.3155


 (24)

5. CONCLUSION

In this paper, an observer synthesis of a class of nonlinear
systems is presented. The paper focusses on the design of
a high gain observer by LMI technics which allow more
easier solutions to be verified. A short example illustrates
the developed technic by the design of a constant gain.
In future works and as in the control problems, this
new observer gain design may take into account of the
parameter uncertainty which should be more easy by the
use of LMI.
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