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Abstract: The paper deals with the predictive control for linear systems subject to constraints, leading to 
piecewise affine control laws. The main goal is to reduce the sensitivity of these schemes with respect to 
the model uncertainties. This objective can be attained by considering worst-case (min-max) formulations, 
but generally this is leading to fastidious on-line optimisation which may reduce the range of application. 
Here a two stage predictive strategy is proposed, which synthesize in a first instant an analytical 
(continuous and piecewise linear) control law based on the nominal model and secondly robustify the 
central controller (the controller obtained when no constraint is active). This robustification is then 
expanded to all the space of the piecewise structure by means of its corresponding disturbance model. 

 

1. INTRODUCTION 

The model predictive control (MPC) laws are optimization 
based techniques which allows constraints handling from the 
design stage. At each sampling time a finite horizon optimal 
control problem has to be solved. The analytical formulation 
of the optimum and its on-line evaluation avoids the 
important computational effort required for the real-time 
implementation. Solutions in this direction exist at least for 
two important classes of problems (linear and quadratic cost 
functions) subject to linear constraints due to the Abadie 
constraint qualification (Goodwin et al., 2004). It must be 
said that these are in fact a part of a larger class of 
multiparametric convex programs (Bemporad et al., 2002b) 
for which exact or approximate algorithms exist 
(Grancharova and Johansen, 2005; Bemporad and Filippi, 
2006, Olaru and Dumur, 2004). 

In the case of robust predictive control laws, the model 
uncertainties and the disturbances can be taken into account 
at the design stage. A popular methodology in this direction 
is the one based on a min-max criterium (in the case when the 
extreme combination of disturbances or uncertainties are 
known) (Kerrigan and Maciejowski, 2004; Bemporad et al., 
2002a; Olaru and Dumur, 2007) which comes finally to the 
resolution of a single multiparametric linear program. The 
structure of this ultimate optimization is however quite 
complex and large prediction horizons cannot be handled due 
to the exponential growth of disturbances realization to be 
taken into account. If the exact computation of explicit 
solutions is prohibitive, the construction of approximations 
can be an interesting alternative (Grancharova and Johansen, 
2008).  

In a slightly different manner by constructing an estimation 
mechanism (Goodwin et al., 2004) for the constrained 
variables, one can obtain a robust control structure, but the 
multiparametric optimization remains intricate. 

In (Olaru and Rodriguez-Ayerbe, 2006) it was presented a 
first study regarding the possible robustness improvement for 
the explicit affine feedback policy constructed upon 
predictive control strategy for linear systems. The simplest 
way to proceed is to consider an observer of the state 
variables (Goodwin et al., 2004). With an observer, the 
dimension of the state space is kept, and so the piece-wise 
structure of controller does not change, and the same 
observer can be used in each region. The observer can also be 
viewed as a noise characterization for the prediction model. 
Nevertheless, the observer does not allow reaching all the 
space of stabilizing controllers.  

The present paper presents an improved result based on the 
Youla-Kučera parametrization which span the space of 
stabilizing controllers. For a two-degree of freedom 
controller, one has access to all the stabilizing controllers that 
preserve the same input/output behavior, so the Youla-
Kučera parameter offers more degrees of freedom than the 
use of an observer.  

The robustification is made such that the state space 
dimension of the controller is augmented. The direct 
consequence is that the use of a same parameter in each 
region is not possible. The continuity between critical regions 
can be lost with severe degradation in stability and 
performances. The main contribution here is the 
reconstruction of the noise model induced by the Youla-
Kučera parameter for the unconstrained case, and its use for 
the generation of the robust piece-wise controller 
corresponding to the constrained MPC case. 

In the following, section 2 briefly recalls the constrained 
MPC control and section 3 the explicit solution to the 
associated mutiparametric optimisation problem. Section 4 
the output control of the obtained piecewise controller and 
this robustification. Numerical examples are presented in 
section 5 and the final conclusions in section 6. 
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2. CONSTRAINED MPC FORMULATION 

The design of a predictive control law is based on the 
existence of a numerical model of the system to be 
controlled. Within the general framework of linear systems 
theory, consider the following state space model: 

+
+ ∈+= ZtBuAxx ttt ,1  (1) 

with n
tx ℜ∈  the state vector at time t, m

tu ℜ∈  the control 
vector at time t, A and B matrices of adequate dimensions and 
the pair ),( BA  assumed to be stabilisable. 

At each sampling time, the current state vector (assumed to 
be measurable) ttt xx =  is used to elaborate the open loop 
optimal control sequence *

uk  :  
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according to the following cost function:  
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where p  represents the norm { }∞= ,2,1p  and the pair 
),( AQ  is assumed to be detectable. The prediction horizon 

N , the weighting terms 0T ≥= QQ , 0T >= RR  and the 
final cost defined by 0T ≥= PP  are the tuning knobs of the 
control law. 

The optimization of this cost function is performed subject to 
constraints imposed by the system dynamic, to functional 
constraints and to terminal or stability constraints: 
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All constraints previously mentioned are of polyhedral type, 
described by systems of linear equalities and inequalities. The 
finite set of constraints (4) can be restructured to obtain a 
formulation which will be directly usable by the optimization 
routine. Indeed, the predicted state vector can be written in a 
compact form:  
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with xx tt = , which enables to structure the optimization 
problem (3)-(4) by the relations: 

• Case 2=p : 
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• Case ∞= ,1p : 
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with { }
ξ

ξξ Nu ,,; 1 Kkz =  and 
ξ

ξξ N,,1 K  auxiliary variables, 
the number ξN  of these variables depending on the 
optimization horizon and the prediction model (Zadeh and 
Whalen 1962).  
For both cases (6a)-(6b), the optimal argument includes the 
control sequence *

uk . Only the first part of this sequence is 
applied effectively to the system input, the complete 
procedure is iterated again at the next sampling time 
according to the receding horizon principle. Real time 
implementation is usually performed through on-line 
optimization procedures (linear or quadratic programming) in 
order to determine the optimum corresponding to a particular 
value of the state vector x.  

3. EXPLICIT SOLUTION 

Another approach considers (6) as a multiparametric 
optimization problem (see Pistikopoulos et al, 2007 for a 
review of the control problems under these framework) and 
describes the optimal solution as an explicit function of the 
state vector x : 

mnf ℜ→ℜ:  so that )(xfu MPC
t =  (7) 

Real time implementation is reduced in this case to the 
evaluation of this function.  

Regarding the structure of the multiparametric problems it 
can be observed that the feasible domain is represented by a 
parameterized polyhedron. If bounded, then the optimum is 
given by a convex combination of parameterized vertices. If 
the optimal solution is not unique (usually the case of linear 
cost functions (6b)), the explicit solution is equiavalent to a 
point to set mapping (Olaru and Dumur, 2006b), and the 
continuity of the solution must be a crucial criterion when 
implementing the solution. Indeed, a continuous control law 

)( t
MPC
t xfu =  avoids discontinuous variations on the control 

in case of disturbances appearing on the state vector. 

The use of a dual representation of the feasible domain and 
projection mechanisms (see Olaru and Dumur, 2004 and 
2005 for details) provides an insight on the topology of the 
optimisation problems and can be advantageous if there exist 
unbounded directions due to the fact that the generators 
representation offers the right tool for their description as 
well as for the control of the constraints redundancy. 

Once the explicit solution of (6a or 6b) is obtained, we 
dispose of an analytic description of the control law (7). 
Several studies were dedicated to the piecewise affine 
characterisation (Bemporad et al., 2002b; Seron et al, 2003; 
Olaru and Dumur, 2004; Mare and De Dona, 2005): 

Indeed, the explicit predictive control law is described by a 
collection of piecewise affine function: 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2521



 

⎪
⎩

⎪
⎨

⎧

∈+

∈+

==

LL

LL

ktkk

tt

t
MPC
t RxiflxL

RxiflxL

xfu
111

)(  (8) 

with kR  polyhedral critical regions covering feasible states. 

The structure of such a piecewise controller is shown in 
Figure 1. Once the look-up table of local laws is available, an 
efficient positioning mechanism (based on a search tree) can 
be constructed such that the on-line evaluation routine can 
find the optimal control action (TØndel et al., 2003). The 
effective implementation follows the scheme in Figure. 1. 

 

Piecewise con troller  

-

P osition ing  
mechanism 

li 

System 
+

+ 

X 
Li 

 
Fig. 1. Piecewise formulation for the MPC law under 

constraints 

4. OUTPUT FEEDBACK - ROBUSTIFICATION 

4.1 Observer based robustification 

When the state x is not accessible, the simplest way is to 
obtain an estimate estate x̂  with an observer (Goodwin et al. 
2004). For a prediction observer we have: 

tttt KyBuxKCAx ++−=+ ˆ)(ˆ 1  (9) 

while for an estimation observer: 
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The gain K or ),( 21 KK  are allocating the observer poles. As 
is well known, the observer do not changes the tracking 
behaviour but modifies the disturbance rejection, so this gain 
can be used to robustify a given stabilizing controller. With 
the prediction observer (9), the obtained controller 
corresponds to: 

tt
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4.2 Youla-Kučera parameter based robustification 

Youla-Kučera or Q parameter can be used to robustify the 
initial controller when no constraints are considered 
(Kouvaritakis et al. 1992). The advantage of this method is 
that we have access to the space of all stabilizing controllers. 
For a state space controller, the parametrization can be 
obtained by following the lines in (Boyd and Barratt 1991). 

The estimation error ttt xCyy ˆ−=′  is used to obtain an 
additional signal tu′ , as shown in figure 2. The Q parameter 
corresponds to a stable system defined by QQQQ DCBA ,,, . 
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Fig. 2. State-space controller with the Q parameter 

We have the following relations: 
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This corresponds to the following controller: 
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As mentioned before, this kind of robustification disposes of 
more degrees of freedom than a robustification obtained 
through the use of an observer. It permits to access the entire 
space of stabilizing controllers and provides stability 
robustness while preserving nominal performance 
specifications. From the practical point of view, its 
construction can use classical optimization techniques, see 
(Rodriguez and Dumur, 2005; Rossiter 2003; Ansay et al., 
1998; Yoon and Clarke, 1995; Kouvaritakis et al., 1992). 

However, this method can not be applied to robustify the 
piecewise controller (8), as it is the case with observers 
presented in section 4.1. The raison is that the Q parameter 
increases the dimension of the controller and the continuity at 
the switching between the local affine laws of the piecewise 
controller is lost.  

The idea developed in this paper is to obtain the disturbance 
model corresponding to the Q parameter and use this 
disturbance model to further regenerate the piecewise 
controller.  

Note that the disturbance model allows us to reach the same 
unconstrained controller as the central controller in (13) 
obtained with the Q parameter. That is: the unconstrained 
controller for the initial model augmented with the 
disturbance model should be the same as the controller 
obtained with the initial model and the Q parameter. 

The considered augmented model is: 
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With te′  zero mean white noise. In this case the model 
becomes:  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2522



 

{ {

[ ] t
tv

t

eC

vt

t

eK

v
t

eB
tv

t

eA

v

v

tv

t

ex
xCCy

eB
KuB

x
x

A
KCA

x
x

′+⎥⎦
⎤

⎢⎣
⎡=

′⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

+

++

+

1

11

1
00

321

43421
 (15) 

This corresponds to an innovation representation, and K is the 
observer gain of the initial observer. The system is partially 
controllable, vA  being non controllable but observable. As 
the considered cost function (3) has a terminal constraint, the 
unconstrained controller will correspond to the infinity 
horizon optimal controller. This controller can be obtained 
solving the following Riccati equation: 
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The controller gain is: 
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And the controller considering a predictor observer is: 
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The observer gain corresponds to eK , as (15) is an 
innovation representation.  

The problem is then to find vvv CBA ,,  in order to have 
)13()18( ≡ .This equivalence can be developed partitioning 

P, the solution of the Riccati equation (16), as the partition of 
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And: 
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First equation of (19) corresponds to the Riccati equation of 
initial system, so L is the same as the one of the initial 
controller. Considering the equivalence )13()18( ≡  we can 
remark, that in the case when a prediction observer (9) is 
used, QD  must be zero, because ty  is not used to estimate 

tx . This imposes a structural constraint on the Q parameter. 
We can also remark, that with 0=QD  we can impose 

QBBv = . After some developments, the following equations 
must be verified for the 12,, PCA vv  matrices: 
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The equations (21) can be practically solved using 
optimization techniques in order to obtain the unknowns 

12,, PCA vv . Interesting aspects related to the existence, the 

unicity and in general to the analytical solution of (21) are 
subject of ongoing research. Finally, the obtained extended 
model can be used to regenerate de piecewise controller 
obtained with the constrained MPC formulation. 

6. EXAMPLE 

Consider the position control of an induction motor. A simple 
model of an induction motor, between torque and position, 
for 1.0724 ms sampling period is: 
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Constraints in control amplitude are considered: 8.1max =τ  
and ],[ maxmaxref τττ −∈ .To cancel steady-state errors 
towards load disturbances an integral action ttt uuu Δ+= −1  is 
added. The following estate space formulation is obtained: 
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[ ]000525184.00052544.0=C  

An initial MPC controller is designed with CCQ T=  and 
001.0=R . P matrix corresponds to the infinite horizon 

solution obtained with Q and R. The controller obtained with 
this infinity horizon without constraints is:  

]397.0992.5807.6[ −=L  (24) 

The biggest positive invariant polyhedral set has been 
considered as terminal constraint. This can be obtained with 
(23) and the considered input constraints by using the 
maximal output admissible sets (Gilbert and Tan, 1991). This 
polyhedral set is shown in figure 3. 

 

Fig. 3. Terminal set and the initial piecewise MPC controller 
regions. 

Choosing N = 7 as prediction horizon in (3), with considered 
constrains, that is, constrains in the input maxτ<u  and in 
the terminal set shown in figure 3, a piecewise controller 
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composed of 102 linear control laws is obtained solving the 
multiparametric optimization corresponding to the MPC 
problem (the central controller corresponding to (24)). The 
regions of this initial controller are shown in figure 3, in 
relation to the terminal set. 

An observer as (9) has been calculated in order to place the 
poles of the observer at zero. As any disturbance is 
considered, this choice for the poles of the observer assures 
the fastest dynamic of the observer. The gain is: 

TK ]6.60915.1661.404[=  (25) 

This initial central controller has been robustified by the 
means of the Q parameter. A parameter to improve the 
stability robustness towards additive uncertainty has been 
synthesised. We have found: 
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This parameter has been synthesised using techniques 
described in (Rodriguez and Dumur, 2005), and forcing 

0=QD . As mentioned before, the synthesis of this 
robustification has been described by several authors, see 
(Kouvaritakis et al., 1992; Yoon and Clarke, 1995; Ansay et 
al., 1998; Rossiter 2003). Solving (21), with QBBv =  we 
found: 
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This model is added to (23), and we obtain a representation 
as (15). With this new model the multiparametric 
optimization is solved, and a new piecewise controller 
composed of 1311 linear control laws is obtained. The central 
controller corresponds to: ]77.2005.24105.29[ −−= LLn  
and TKKn ]00128[= . 

 

Fig. 4. Regions of piecewise robustified controller. 

Figure 4 shows the obtained regions of the robustified 
controller in relation to the terminal set. The terminal set of 
this controller is of dimension 6, but as the first three 

variables are the same as in the initial controller, the terminal 
set with respect to these variables will correspond, as it can 
be see in figure 4. In this figure, we can also observe that the 
stabilize region with respect to these three variables has been 
augmented. This can be interpreted by means of a filtering of 
the control signal which avoids the constraints activation and 
ultimately, the infeasibility. 

Figures 5 and 6 show the obtained simulations results 
considering a neglected dynamic in high frequency of the 
following characteristics 3.0/10000 == ξω srad  With this 
neglected dynamics, the plant representation is: 
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The convergence for an initial state inix  as (29) obtained 
with both controllers, are shown in figures 5 and 6: 
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Fig. 5. Results for initial controller and uncertain model. 
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Fig. 6. Results for robustified controller and uncertain model. 

In these figures we can observe the stable behaviour of the 
robustified controller and a dangerous sensitivity of the initial 
controller which may lead to infeasibility. The robustified 
controller has better behavior with respect to the uncertainties 
in high frequency. The continuity between the local linear 
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controllers of the general piecewise affine control law is 
guaranteed. 

6. CONCLUSIONS 

The paper investigated the robustification methods for the 
control laws obtained in a constrained predictive control 
framework. The idea is to design in a first instance a 
piecewise controller which satisfies the basic demands in 
terms of tracking performances. In a second stage, the same 
predictive control structure (prediction horizon, weightings, 
etc.) is robustified using the model arguments accounting for 
the noise influence. The idea is similar to that of using a fixed 
observer, but exploring all the space of stabilizing controllers 
of the unconstrained system. This increases the number of 
degrees of freedom.  

The robustification of initial unconstrained controller is made 
using the Youla-Kučera parametrization, and then this 
robustification is expanded to all the piecewise structure of 
the controller. For this, the disturbance model corresponding 
to the Youla-Kučera parameter is found, and use to 
regenerate the piecewise controller by preserving the same 
input/output behavior but with an increased robustness.  

The limitations of the method are in the existence of the 
corresponding disturbance model of the Youla-Kučera 
parameter. This is transparent in the resolution of a non linear 
equation system. The robustification being done off-line, any 
infeasibility can be handled by retuning the MPC parameters. 

From another point of view, the approach can be seen as an 
extension of the robustification methods for linear systems to 
the control laws under constraints. 
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