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Abstract: A model-based process fault monitoring approach is proposed in this paper which utilizes a 
multi-sensor data fusion technique. The fusion algorithm is based on a discrete-time extended Kalman 
filter (EKF). The presented EKF is modified to incorporate the asynchronous sensor measurements. The 
resulting approach will be evaluated for a variety of conditions including synchronous/asynchronous 
measurements, full-state and non full-state measurements and time-varying dynamics for monitoring 
single, double, triple and quadruple process faults. The simulation studies on a CSTR benchmark problem 
demonstrate the effectiveness of the proposed fault monitoring approach to deal with different 
circumstances. 

 

1. INTRODUCTION 

The task of fault detection is to determine the existence of 
faults in the systems, while that of fault diagnosis is to find 
the root causes of the faults. The existing techniques for fault 
detection and diagnosis can be broadly divided into process 
history based and process model-based methods. Each of 
these can further be classified into qualitative and 
quantitative approaches. The qualitative approaches involve 
fault trees (Lee et al., 1985), signed directed graph (Kramer 
et al., 1987; Cao et al., 2005), fuzzy logic (Vaija et al., 1985), 
neural networks (Venkatasubramanian et al., 1989), and 
expert systems (Fickelsherer et al., 1986). The quantitative 
approaches are basically modelling, filtering and estimation 
methods, where a wide variety of them have already been 
reviewed (e.g., Isermann 1984; Himmelblau 1978; Willsky 
1976). Among the existing quantitative model-based 
methods, the Kalman filter variants have found widespread 
applications. 

Instrumentation sensors are usually distributed throughout the 
chemical process plants to meet both operational and safety 
requirements. However, this scheme introduces a number of 
complications which makes the consolidation of the data 
from the located sensors a complicated task even for an 
experienced engineer. Further complications include the 
nature of information obtained from the sensors which is 
inherently incomplete, uncertain, and imprecise. Hence, it is 
imperative that a fusion mechanism be devised so as to 
combine data from multiple sensors to minimize such 
imprecision and uncertainty, leading to a more 
comprehensive and unified view of the sensor data. 

These conditions combined with the requirements for a 
model-based approach to provide any process failure 
detection and diagnosis information make the Kalman filter 
(KF) approach an ideal solution for the data fusion problem. 
However, the effectiveness of such approach depends to a 
large extent on how redundant and complementary are the 

information cues obtained from the installed sensors and the 
KF estimation. It is equally important to decide at what level 
of abstraction the fusion process is going to take place, e.g., 
at the measurement level, at the feature/state level, or at the 
decision level. 

The main issue in this model-based approach concerns the 
ability to detect and diagnose the process faults using the 
dependencies between the different process observed or 
estimated variables. These dependencies can be explored by 
considering mathematical process and measurement models. 

In this paper, a model-based process fault monitoring 
approach will be presented which utilizes a multi-sensor data 
fusion technique based on EKF algorithm. The standard EKF 
algorithm is modified to incorporate the time-delayed 
measurements. The developed process monitoring approach 
will be evaluated on a continuous stirred tank reactor (CSTR) 
benchmark problem to investigate its capabilities for fault 
detection and diagnosis under synchronous and asynchronous 
sensor measurements conditions. Extra evaluation tests will 
be carried out to study the proposed monitoring approach for 
both full-state and non-full state measurement cases. A soft 
sensor is introduced to estimate the unmeasurable CSTR 
concentration. Finally, the performance of the monitoring 
approach will be investigated for time-varying CSTR heat 
transfer coefficient due to fouling phenomenon. 

2. MODEL-BASED PROCESS FAULT MONITORING 
APPROACH 

Assume that the process is monitored by N different sensors, 
described by the following general nonlinear process and 
measurement models in discrete-time state-space framework: 

)1())1(),1(),1(()( −+−−−= kwkdkukxfkx      (1) 

)())(()( kvkxhkz iii +=  ;     i=1,…, N      (2) 

where f(.) and hi(.) are the known nonlinear functions, 
representing the state transition model and the measurement 
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model, respectively. xnRkx ∈)( is the process state vector, 
unRku ∈)( denotes the manipulated process variables, 

dnRkd ∈)( represents the process faults modelled by the 
process disturbances, zin

i Rkz ∈)( are the measured variables 
obtained from the N installed sensors, w(k) and vi(k) indicate 
the stochastic process and measurement disturbances 
modelled by zero-mean white Gaussian noises with 
covariance matrices Q(k) and Ri(k), respectively. 

Therefore, the process fault monitoring problem in this paper 
can be reduced to a design methodology to realize a data 
integration mechanism which is able to fuse together the N 
noisy measured data (zi(k); i=1,…,N), given in (2), to 
generate the optimal detection and diagnostic estimation 
information ( )(ˆ kx ) about the real-time status of the nonlinear 
process operation, described by (1). 

The central challenges of this design problem, however, can 
specifically be expressed in terms of the data fusion 
algorithm by which the multi-sensor measured data are fused 
together and the data integration architecture approach to 
determine the fusion level and its implementation topology. 

3. MULTI-SENSOR DATA FUSION TECHNIQUE BASED 
ON EKF ALGORITHM 

Multi-sensor data fusion (MSDF) is a synergistic process, 
concerning the mechanism of fusing uncertain, incomplete, 
and sometimes conflicting data from a  variety of disparate 
sensors in real time to extract a single compilation of the 
overall system status for monitoring, control and decision-
making purposes. 

For a particular industrial process application, there might be 
plenty of associated sensor measurements located at different 
operational levels and having various accuracy and reliability 
specifications. One of the key issues in developing a MSDF 
system is the question of how can the multi-sensor 
measurements be fused or combined to overcome uncertainty 
associated with individual data sources and obtain an 
accurate joint estimate of the system state vector. There exists 
various approaches to resolve this MSDF problem, of which 
the KF or its information form is one of the most significant 
and applicable candidate solutions. 

3.1 Discrete-time Extended Kalman Filter 

In most practical applications of interest, the process and/or 
measurement dynamic models are described by nonlinear 
equations, represented in (1) and (2). 

This means that the nonlinear behaviour can affect the 
process operation at least through its own process dynamics 
or measurement equation. In such cases, the standard KF 
algorithm is often unsuitable to estimate the process states 
using its linearized time-invariant state-space model at the 
desired process nominal operating point. Extended Kalman 
filter (EKF) gives a simple and effective remedy to overcome 
such nonlinear estimation problem. Its basic idea is to locally 
linearize the nonlinear functions, described by (1) and (2), at 
each sampling time instant around the most recent process 

condition estimate. This allows the Kalman filter to be 
applied to the following linearized time-varying model: 

)1()1()(
)1()()1()()(

−+−+
−+−=

kwkdkB
kukBkxkAkx

d

u       (3) 

)()()()( kvkxkHkz iii +=       ;      i=1,…,N     (4) 

where the state transition matrix A(k), the input matrices 
Bu(k) and Bd(k), and the observation matrix Hi(k) are the 
Jacobian matrices which are evaluated at the most recent 
process operating condition in real-time rather than the 
process fixed nominal values: 

)(ˆ|)( kxx
fkA

∂
∂=          )(|)( kuu u

fkB
∂
∂=  

)(ˆ|)(
kdd d

fkB
∂
∂=           

)(ˆ|)( kx
i

i x
hkH

∂
∂=  

In classical control, disturbance variables d(k) are treated as 
known inputs with distinct entry in the process state-space 
model. This distinction between state and disturbance as non-
manipulated variables, however, is not justified from the 
monitoring perspective using the EKF estimation procedure. 
Therefore, a new augmented state variable vector 

TTT kxkdkx )]()([)(* = is developed by considering the 

process disturbances or faults as additional state variables. To 
implement this view, the process faults are assumed to be 
random state variables governed by the following stochastic 
auto-regressive (AR) model equation: 

)1()1()( −+−= kwkdkd d        (5) 

This assumption changes the linearized model formulations 
in (3) and (4) to the following augmented state-space model: 

)1()1()()1()()( ***** −+−+−= kwkukBkxkAkx      (6) 

)()()()( ** kvkxkHkz iii +=        (7) 

Noting that: 

⎥
⎦

⎤
⎢
⎣

⎡
= ××

××

xxdx

xddd

nnnn
d

nnnn

kAkB
I

kA
)()(

0
)(*        (8) 

[ ]Tnn
u

nn uxud kBkB ××= )(0)(*        (9) 

[ ]xd n
i

n
i kHkH ××= 11* )(0)(       (10) 

[ ]Tnn
d

xd kwkwkw 11* )1()1()1( ×× −−=−     (11) 

where nx and nu denote the dimensions of the state vector (x) 
and the manipulated variables (u), respectively, and nd 
indicates the dimension of the disturbance or non-
manipulated variables (d). 

In practice, the process dynamic model in (1) is of 
continuous-time nature. While, the measurements in (2) are 
available through the digital data-acquisition systems at 
discrete time instants. Furthermore, the EKF algorithm is 
implemented digitally to provide a quick and accurate 
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estimate of the process variables of interest. Therefore, an 
efficient formulation of the algorithm needs to be made for a 
real-time practical implementation in order to minimize the 
filter cycle time, while obtaining a reasonable state estimate 
accuracy. An appropriate method can be used for numerical 
integration of the continuous-time process model from one 
sample time to the next. In this paper, the simple first-order 
Euler integration algorithm has shown to be adequate. The 
time propagation equation for the state covariance matrix 
P(k) is solved using the transition matrix technique 
(Maybeck, 1982). This method preserves both the symmetry 
and the positive definiteness of P(k), and hence yields 
adequate estimation performance: 

)()()1()()( kQkkPkkP d
T +Φ−Φ=−       (12) 

where )(kΦ  denotes the state transition matrix associated 

with A(k) for all the time interval ],)1[( ss kTTk −∈τ which 
can be evaluated by: 

)()( * kATIk s+=Φ         (13) 

where Ts  is the sampling period and Qd(k) is calculated as 
follows: 

∫ −
ΦΦ= s

s

kT

Tk s
T

sd dkTQkTkQ
)1(

),()(),()( ττττ      (14) 

As a result, Qd(k) can be obtained using the following 
trapezoidal integration scheme: 

2
))()()()(()( sT

d
TkQkkQkkQ +ΦΦ=       (15) 

The EKF is then implemented using the time update 
equations which project the state and covariance estimates 
forward one time step, and the measurement update equations 
which correct the state and covariance estimates using the 
latest measurement information.  

The covariance matrix can be initialized (P(0)) with a large 
value. This option, however, causes rapid fluctuations in the 
initial EKF state estimates and hence endangers the estimator 
convergence. On the other hand, choosing a small initial 
covariance matrix will make the estimator adaptation very 
slow. Furthermore, when the process dynamics change, the 
old estimation information will lose its significance as far as 
the new process dynamic is concerned. Thus, there should be 
a means of draining off old information at a controlled rate. 
One simple and useful way of rationalizing this desired 
approach is to modify the covariance matrix update 
relationship as follows: 

λ/)]()()()([)( * kPkHkKkPkP i
−− −=       (16) 

where 10 ≤< λ  behaves as the forgetting factor concept in 
the weighted recursive least squares (WRLS) algorithm. 

3.2  Modified EKF for time delayed measurements 

A nonlinear discrete system observed by non-delayed 
measurements where both process and measurements are 

influenced by additive Gaussian noise can be put in state 
space form as given in (3) and (4). 

If the system has an output that is delayed n samples, for 
instance due to a slow sensor or a long data processing time, 
there will be a second output equation (Larsen et al., 1998): 

*** ),( ksk vsxhz +=               (17) 

where s = k –n 

The normal EKF equations should be modified to incorporate 
the time-delayed measurements for fusion purposes. 

Using the standard EKF equations, the measurement *
kz  

should be fused at time s, causing a correction in the state 
estimate and a decrease in the state covariance. If the 
measurement *

kz  is delayed n samples and fused at time k, 
the data update should reflect the fact that the n data updates 
from time s to k, and therefore the state and covariance 
estimates, have all been affected by the delay in a complex 
manner. 

Equations to account for fusing *
kz at time k have already 

been derived (Larsen et al., 1998). But, they are of such 
complexities that are not feasible in many cases. It is 
therefore suggested that if the measurement sensitivity matrix 

*
sH  and the noise distribution matrix, *

kR is known at time s, 
the filter covariance matrix should be updated as if the 
measurement is available. This makes the measurements in 
the delay period to be fused as if *

kz  had been fused at time s. 
At time k, when *

kz  is available, incorporating *
kz  is then 

greatly simplified by adding the following quantity after zk 
has been fused: 

)ˆ(ˆ ***
skksk xHzkMx −=δ               (18) 

If the delay is zero, M* is the identity matrix. For n > 0, M* is 
given by:  

∏
−

=
−−−−′−=

1

0
1

* )(
n

i
ikikik AHkIM             (19) 

The prime on k ′  signifies that these Kalman gain matrices 
have been calculated using a covariance matrix updated at 
time s with the covariance of the delayed measurement. As 
one factor in the foregoing product can be calculated at each 
sample time, the method only requires two matrix 
multiplications at each sample time.  

The method implies that the covariance of the filter will be 
wrong in a period of n samples, leading measurements in this 
period to be fused sub-optimally. However, after adding the 
correction term in (18), the filter state and covariance will 
once again be optimal. 

4. SIMULATION CASE STUDY 

A series of simulation studies will be conducted in this 
section to investigate the performances of the proposed 
process monitoring approach under a variety of conditions. 
First, the CSTR process will be described. Finally, different 
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simulation studies will be executed to illustrate the fault 
monitoring performances under the following conditions: 

1) Synchronous and asynchronous sensor measurements. 

2) Full-state and non full-state measurements including 
unmeasurable concentration variable.  

3) Time-varying heat transfer coefficient. 

4.1 CSTR process description 

The CSTR process shown in Fig. 1, includes an irreversible 
and exothermic reaction BA → which takes place inside the 
jacket. The reaction is operated by two proportional 
controllers that are used to regulate the outlet temperature and 
the tank level. The reactor temperature is controlled by 
manipulating the inlet flow rate of the water coolant flowing 
through the jacket, while the tank level is regulated by 
manipulating the outlet reactor flow rate. The dynamic 
behaviour of the CSTR is modelled by a system of 
differential equations translating molar and heat balances in 
the reactor. 

 

Fig.1. Continuous stirred tank reactor 

The resulting CSTR plant model equations, values of 
parameters and steady state conditions can be found 
elsewhere (Luyben, 1989). The system equations are 
modified to be dimensionless. The normalized equations 
including fault terms have already been derived (Sawattanakit 
et al., 1998). Process faults listed in Table 1 are considered in 
this study. 

Table 1: List of Fault Studied 

Fault Fault Name Notation 
#1p High inlet feed of reactant ii FF Δ+
#1n Low inlet feed of reactant ii FF Δ−
#2p High inlet concentration of reactant ii CaCa Δ+

#2n Low inlet concentration of reactant ii CaCa Δ−
#3p High inlet temperature of reactant ii TT Δ+
#3n Low inlet temperature of reactant ii TT Δ−
#4 Fouling dh

4.2 Formulation of plant state equations for fault monitoring 

The CSTR plant dynamic model demonstrates its nonlinear 
dynamic nature which can be represented by the following 

general nonlinear state equations (fi(.); i=1,…,4) in discrete-
time domain: 

)1())(),(),(()1( −+=+ kwkdkukxfkx iii             (20) 

where k denotes the sampling instants, i=1,…,4 and  
Tkxkxkxkxkx )](  )(  )(  )([)( 4321= (State vector)  (21) 

Tkukuku )](  )([)( 21=                         (Input vector)  (22) 

T
diii khkTkCakFkd )](  )(  )(  )([)( ΔΔΔ=      (23) 

where d(k) is disturbance or fault vector and wi(k-1) describe 
the process noises which have been added artificially to the 
CSTR process state model equations to include the real 
uncertainties faced in the practical situations. These process 
noises are assumed to behave as zero-mean white Gaussian 
noises with covariance matrix Q(k). 

Similarly, the output equation can be described by the 
following general nonlinear model (h(.)), derived from the 
CSTR dynamic model: 

  )())(()( * kvkxhky +=        (24) 

where TTT kxkdkx )](  )([)(* = represents the output 

vector, Tkvkvkvkvkv )](),(),(),([)( 4321= has been 
added to represent the inevitable measurement noises and 
y(k) denotes the output vector. v(k) is assumed to behave as 
zero-mean white Gaussian noises with covariance matrix 
R(k). Therefore, the nonlinear functions 

Tfffff (.)](.),(.),(.),[(.) 4321= and h(.) in state and 
output model equations can be linearized at each sampling 
time around the most recent process condition estimate, 
leading to the augmented state-space model given by (6) and 
(7). 

For computer simulation of the plant fault monitoring studies, 
the CSTR nonlinear model, described in (20), are 
implemented using s-function and SIMULINK facilities in 
MATLAB. The basic time unit is hours (hr) and the sampling 
time is taken to be equal to 0.005 hr. 

4.3  Synchronous and asynchronous sensor measurements 

Fig. 2 illustrates the performance results of the process fault 
diagnosis system for asynchronous including communication 
delay (Asyn.) and synchronous (Syn.). Table 2 shows root 
mean square error (RMSE) for two cases of synchronous and 
asynchronous. As shown, results of the asynchronous are 
about equal to synchronous. So, we can almost ignore 
effective communication delay for fault detection and 
diagnosis. 

Table 2: Accuracy of fault detection and diagnosis in 
terms of RMSE measures 

Fault  No. #1n #2p #3p 
Syn. 1.7718 3.7412 3.8183 
Asy. 1.7764 3.5801 3.8370 
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Fig. 2. Estimated faults when fault#1n (dFi) 5%, fault#2p 
(dCAi) 10% and fault#3p (dTi) 10% occur at t=5,15,10 
respectively,  for asynchronous and synchronous cases. 

4.4 Full state measurable case and unmeasurable 
concentration case 

State vector is assumed to be 
[ ]4321

* ,,,,,, xxxxTiCaiFix ΔΔΔ= . In case one state is not 
measurable, the unmeasurable state should be first estimated 
before process faults can be detected. The following 
equations are used for estimation of concentration ( 2x̂ ) and 
then process faults can be detected. 
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where "i" is iteration time. In this situation, the EKF 
algorithm takes some iteration to converge to the desired 
steady state values. Fig. 3 shows the results for single, double 
and triple faults detection in the CSTR system. 

 

 

 

Fig. 3. Estimated faults when fault#1p 5% ,fault#2p 5% and 
fault#3n 5% occur at t=30 in full state measurable case and 
unmeasurable concentration case. 

4.5 Time varying heat transfer coefficient 

Fouling occurs when a material is deposited on a heat transfer 
surface during the period of process operation. In practice, it 
is common for heat transfer surfaces to become contaminated 
with deposits and this causes additional resistance to the flow 
of heat. There are two common behaviours in the 
development of a fouling film over a period of time. One is 
the so-called asymptotic fouling. In this case, the resistance to 
heat transfer increases very quickly in the beginning of the 
operation and becomes asymptotic to a steady state value at 
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the end. The other is the so-called linear fouling, where the 
fouling resistance increases linearly during the entire process 
operation. In this study, we assume that the fouling film 
develops linearly over the entire period of process operation. 
Therefore, the heat transfer coefficient h is replaced by hd, 
given by 

hthth hhd )1()( αϕ −==         (27) 

where t is time, h is the cleaned heat transfer coefficient, hd is 
the scaled heat transfer coefficient, )(h tϕ denotes fouling 

coefficient, 1 0 << hϕ , and hα is the fouling constant. 
Therefore, 

)())(exp(1)( 0 j
o
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jcjjj

j
jjj TT
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cV −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+−=

ρ
ρϕρρ     (28) 

Fig. 4 shows the fouling effect on the process output. As 
shown, fouling has occurred in time interval 30-73, 
(30<t<73). 

 

Fig. 4. Fouling effect on the process output 

Fig. 5 shows the simulation results for single, double, triple 
and quadruples faults monitoring in the CSTR process. 

Fig. 5. Estimated faults when fault#1p 5% , fault#2n 5% and 
fault#3n 5% occur at t=5 and fault#4 occurs at 30<t<73 

5. CONCLUSION 

In this paper, a process fault monitoring approach has been 
presented which utilizes a multi-sensor data fusion technique 

based on the EKF algorithm. The EKF algorithm was 
modified to incorporate the asynchronous sensor 
measurements. The proposed fault monitoring approach was 
tested for a variety of conditions. The simulation results 
demonstrate the capability of the resulting approach to 
monitor the process faults under the asynchronous sensor 
measurements. The observations indicate that the monitoring 
results were similar to what could be achieved under the 
synchronous condition. 

The evaluation studies included the full-state and non full-
state measurements. It was observed that the process faults 
could be monitored accurately with the aid of a soft sensor 
estimator. The simulation results indicated the abilities of the 
proposed approach to monitor the process faults under the 
time-varying heat transfer coefficient. 
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