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Abstract: Small-size robots usually employ cheap sensors for navigation instead of expensive laser 
scanners or stereo cameras. This paper deals with the SLAM process using a monocular camera which 
heads upward to see the ceiling and the upper portion of a wall. This upward camera has some advantages 
of being free of dynamic obstacles, the fixed distance to the ceiling and so on. Most past research based on 
an upward camera used corner features for localization, which are not always extracted in an indoor 
environment. In this research, however, door features are added to overcome this difficulty involved in 
SLAM using the corner features only. A door helps not only to estimate the pose of a robot, but also to 
divide the environment into several meaningful areas. A particle filter is adopted to estimate the door 
position to check whether the specific door is suitable for the SLAM process before registering it in the 
EKF algorithm. Experimental results show that the proposed scheme works successfully in various indoor 
environments. 

 

1. INTRODUCTION 

When a robot navigates in an unknown environment, both 
accurate pose estimation of the robot and map building of the 
environment are important issues. Therefore, SLAM 
(Simultaneous Localization And Mapping) becomes one of 
the most fundamental and challenging issues in the field of 
mobile robotics. A range sensor (i.e., laser scanners, sonar 
sensors, and IR scanners) and a vision sensor (i.e., monocular 
and stereo cameras) can be usually exploited for SLAM. A 
range sensor provides the range information directly, which 
makes feature extraction easier than a vision sensor. However, 
the features that can be extracted using the range information 
are limited to lines and corners. On the other hand, a vision 
sensor can provide much more information than a range 
sensor, but requires complicated image processing to extract 
invariant features. 

Recently, small-size and/or relatively cheap robots such as 
robot vacuum cleaners have spread to our life. They, however, 
usually employ sonars or IR sensors as a range sensor, and 
these sensors provide relatively inaccurate range information 
which is not suitable for localization. Therefore, a vision 
sensor is considered a more important sensor. However, stereo 
cameras which can provide the range information as well are 
not frequently used for their high cost. Instead, in recent years, 
even the small-size robots have been equipped with low-cost 
monocular cameras. 

Several approaches to SLAM have been proposed using a 
monocular camera. Davison achieved real-time 3D monocular 
SLAM with a wearable camera successfully (A. Davison, 
2003, P. Smith et al., 2006). For a mobile robot, a forward 
camera is used to extract the corner or SIFT features, while a 
downward camera to obtain the line features between the wall 
and the floor in an indoor environment. On the other hand, an 

upward camera can extract corner and line features for SLAM 
(J. Folkesson et al., 2005, W. Y. Jeong et al., 2006). 

The scheme based on an upward camera has some advantages 
compared to other schemes. First, it is little affected by 
dynamic obstacles such as moving people since the camera 
sees the ceiling. Second, there is no scale and affine changes 
of a feature between successive ceiling images. Therefore, 
under these conditions, corner features have been extracted 
from the image as a main feature since it provides the robust 
matching results. However, the corner feature is not always 
extracted in various environments. Recently, much research 
has attempted to fuse different types of features such as the 
lines in addition to the corners. In this case, a disadvantage of 
one feature can be compensated by others. 

The corner needs a complicated process to match, but it 
provides a reliable matching result since it uses an image 
patch around the corner. The line is easily distracted by 
nearby edges since there is no appropriate descriptor for line 
matching, but it is invariant to changes in illumination, 
distance, and viewpoint. Also, the line involves the 
information to divide the environment into the meaningful 
areas (P. Smith et al., 2006). Thus, fusing various types of 
features makes navigation stable in various environments. 

To cope with the above problems, we propose a door 
extraction scheme for the monocular SLAM using an upward 
camera. In general, a door has common evidences; two 
vertical columns and one horizontal bar. All possible 
candidates for a door are generated based on these evidences 
from the image that has many lines extracted from the real 
environment, and the candidates are determined whether it is 
open or not. The extracted door feature is exploited to 
estimate the robot pose in the EKF (Extended Kalman Filter) 
SLAM with the corner feature and to divide the environment 
into the meaningful areas. 
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To use a feature such as a corner and a door in the EKF, 
reliable matching is very important. The corner is matched 
with the image patches by various methods such as NSSD 
(Normalized Sum of Squared Differences), representative 
gradients, and so on. However, line matching is one of the 
most difficult issues in the image processing field since a line 
has the insufficient surrounding information. In this research, 
the lines extracted from a door are reliable in matching since 
the door feature is matched only when the three evidences 
(two vertical columns and one horizontal bar) are collected 
simultaneously. 

The remainder of this paper is organized as follows. Section 2 
presents the basic concept of the monocular SLAM and the 
application procedure of EKF (Extended Kalman Filter) with 
corners. Section 3 presents the procedure of extracting 
candidates from the image. Section 4 describes how to 
determine whether the door candidate is open or not. Finally, 
section 5 and 6 present experimental results and conclusions. 

2. EKF-BASED SLAM 

A stereo camera directly provides the positions of the features 
in the image, but a monocular camera cannot provide such 
information at the stationary state. Thus, when the monocular 
camera is used as a main sensor to estimate the robot pose, the 
features should be observed at different positions to reduce 
the uncertainty of the position, as shown in Fig. 1. The first 
bearing information forms the possible area of the feature 
with the uncertainty shown in Fig. 1(a), and another bearing 
information is incorporated to reduce the uncertainty of the 
feature position, as shown in Fig. 1(b). Fig. 2 shows the 
reduction of the uncertainty of corner features which are 
extracted from the upward camera during SLAM in the real 
environment. In this paper, the EKF is adopted to deal with 
the relationship between the robot and features using a 
monocular camera. 

Estimated 
position of feature

Movement of robot

Uncertainty of 
feature position

Reduced 
uncertainty

Uncertainty of 
observation

 
Fig. 1. Basic concept of monocular SLAM. 

The EKF algorithm is usually adopted to handle nonlinearities 
involved in the robot motion. Since the corner and door 
features are used as landmarks in this research, the state 
vector and covariance matrix are defined as follows: 
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Fig. 2. Reduction in uncertainty (ellipsoid) of the corner 
feature during robot motion. 

where T
yxR rrr ],,[ θ=X  represents the position (rx and ry) and 

the orientation (rθ) of the robot, T
zyxC ccc

i
],,[=X  is the 

position of the i-th corner where cx, cy, and cz are its x, y, and z 
coordinates. T

yxyxD cccc
j

],,,[ 2211=X  represents the j-th door 

which is defined by two vertical columns, c1 and c2 in the x-y 
plane. All variables are described in Fig. 3. n and m are the 
numbers of corners and doors, respectively. PR, PC, and PD 
represent the covariance matrices of the robot, all corners and 
doors, respectively, and PRC(PCR), PCD(PDC), and PRD(PDR) are 
the covariance  matrices related to PR and PC, PC and PD, and 
PR and PD, respectively. 
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Fig. 3. Measurements in global and image coordinates. 

The EKF algorithm based on Bayesian filtering (S. Thrun et 
al., 2005) consists of the prediction stage and update stage. At 
the prediction stage, the state vector kX̂  and its covariance 

matrix kP  at time k are calculated from 1
ˆ

−kX  and 1−kP  at time 
k-1 and the encoder reading uk as follows: 
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where Q represents the covariance matrix of the process noise, 
f is a function of the system dynamics, and XF ∂∂=∇ /fx  and 

uF ∂∂=∇ /fu  are the Jacobian matrices of the nonlinear 
function f with respect to the state and input, respectively. 
Note that the superscript “-“ indicates the state before the 
measurement at time k is taken. 
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If the robot sees the previously observed landmark, the EKF 
performs the update stage. The prediction of a landmark on 
the sensor frame, or the image coordinate, can be obtained by 
the following observation model based on the predicted 
system state. 

)ˆ(ˆ −= kk h XZ      (5)  

where h represents the observation model used in this research. 
The observation models for the corners and doors are 
expressed by 
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where fc is the focal length of the camera, TCC
r zz ],[ θ  and 

TDD zz ],[
21 θθ  denote the radius and angle of the corner and the 

angles of door columns in the polar coordinates as shown in 
Fig. 3, respectively  (W. Y. Jeong et al., 2006). After 
observing the real features on the image, the measurement 
matrix Zk can be obtained, and the state vector and its 
covariance matrix P at time k are updated as follows: 
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where K represents the Kalman gain matrix, XH ∂∂= /h  and 
vh ∂∂= /V  are the Jacobian matrices of the observation 

model with respect to the state vector and the sensor noise, 
and R is the covariance of the measurement noise. 

3. DOOR CANDIDATE GENERATION 

If a door feature is extracted reliably, it can be used as an 
important landmark in the EKF and the environment can be 
divided into the meaningful subareas using the detected doors. 
To detect a door, the vertical and horizontal lines can be 
exploited, which makes the matching process more robust 
than a corner feature because two vertical columns and one 
horizontal bar should be detected together from one door. 
However, in the real images, many vertical and horizontal 
lines can exist and detecting a door is a difficult task. In this 
research, several candidates are generated and evaluated to 
detect a door reliably. 

 

3.1 Obtaining candidates from vertical lines 

When an upward camera sees the vertical lines perpendicular 
to the floor, these lines head toward the center of the image. 
This property can be used to extract the vertical lines of the 
door columns. To generate candidates for a door, it is 
necessary to group the neighboring vertical lines into a single 
line. Each group presents a candidate for a door column, and 
the candidates for a door are generated from these groups, as 
shown in Fig. 4. For n candidates for door columns, n(n-1)/2 
candidates for a door are generated. In this research, all lines 
are acquired by the Canny edge detection and Hough 
transform algorithms. 

Group 1
Group 2

Group 3

Candidate 1

Candidate 2

Candidate 3

 
Fig. 4. Grouping of neighboring vertical lines (left), and all 
possible candidates (right). Rectangles represent the top of 
each candidate. 

3.2 Obtaining final candidates from horizontal lines 

The final door candidates can be obtained by checking 
whether or not the horizontal lines exist between the vertical 
lines of the candidates obtained in section 3.1. Suppose the 
endpoint coordinates of the columns are found to be (p1u, p1v) 
and (p2u, p2v) in the image as a result of line extraction. 
However, these endpoints often differ from the actual ones 
due to the imperfection of line extraction. Therefore, the 
search area in which the horizontal lines can exist should be 
determined, as illustrated in Fig. 5(a). Provided that the robot 
is not located just below the door, the limit points (l1u, l1v) and 
(l2u, l2v) can be calculated by 
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where θ1 and θ2 are the angles of the vertical lines on the 
image, k is a conversion factor from meter to pixel, w denotes 
the half width of the robot, hmax denotes the maximum height 
of the door in the environment, and d represents the minimum 
distance from the horizontal line to the image center. Then, 
the range of the slope s of the horizontal line is defined by 
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Figure 5(b) is an example. If no horizontal line is extracted in 
the search area of a candidate, as shown in the upper figure of 
Fig. 5(b), this candidate is removed from the candidate set. In 
the lower figure of Fig. 5(b), however, a candidate which has 
a horizontal line in the search area is not removed and 
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considered a final candidate which will be evaluated in the 
next step (i.e., suitability test). 

1θ
2θ

 
Fig. 5. (a) Search area of door horizontal lines, and (b) 
examples of candidate determination. 

4. SUITABILITY TEST 

The set of candidates for a door can be obtained from not only 
an actual door but also other objects such as a wall or a 
bookshelf. Therefore, only an open door can be reliably 
detected using a monocular camera and exploited as a robust 
feature. Through the suitability test discussed below, the 
incorrect candidates can be removed and only the suitable 
door candidates which have the open area inside it are 
maintained. First, the position of a candidate is determined, 
and then the candidate will be checked whether it is an open 
door or not. 

4.1 Localization of candidates using particle filter 

Before one candidate is convinced of being a suitable door, it 
cannot be applied directly to the EKF algorithm as a landmark. 
Therefore, every candidate should be evaluated whether it is 
suitable or not. To evaluate a candidate, the position of that 
candidate should be known, and in this research a particle 
filter is adopted to estimate the position of a door candidate.  

Since the door used as a feature is stationary, its motion model 
need not be considered and only the update by the sensor 
model is useful. In Fig. 6, the fan-shaped area represents the 
uncertainty of observation, and its center line shows the 
direction of measurement. errorθ , errorα  and errorβ  mean the 
maximum errors of each measurement. The samples are 
weighted by the three importance factors (wθ, wα, and wβ) 
which are affected by three angle errors (θ, α, and β) 
respectively. Then, the resulting weights of samples are 
reflected in the next step, re-sampling, to make samples 
converge near the actual position of a door. A triangular 
distribution is adopted for the sensor model to reduce the 
computational burden. 

To estimate the position of one candidate, 200 random 
samples are drawn in the 3D space in Fig. 7(a). As the robot 
moves in Fig. 7(b), the initially distributed samples converge 
according to the probabilities of samples updated by the 
sensor model of Fig. 6. In Fig. 7(c), the samples converge to 
one position through sufficient observations, and therefore the 
positions of two columns are obtained from the mean value of 
the converged samples. 

errorθ
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α

errorα
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errorθ− errorθ
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Fig. 6. Sensor models for door detection; (a) top view, (b) side 
view, and (c) importance factors. 

 
Fig. 7. Estimation of candidate position using particle filter. 

4.2 Edge projection onto virtual plane 

Some candidates may contain other objects such as a 
bookshelf or a poster on the wall since these objects also have 
vertical and horizontal lines. After estimating the position of a 
candidate, all edges within that candidate on the image are 
assumed to be extracted from the surface of a closed door or a 
wall. The plane which includes this surface will be called a 
“virtual plane.” This virtual plane perpendicular to the floor 
can be calculated using the positions of two columns (c1x, c1y) 
and (c2x, c2y). The relationship between the shape of the door 
on the image and the virtual plane is illustrated in Fig. 8. 

A normal vector ),,( zyx nnn=n can be determined by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
        

0100
0)2/cos()2/sin(
0)2/sin()2/cos(

12

21

21

21

xx

yy

yy

xx

z

y

x

cc
cc

cc
cc

n
n
n

ππ
ππ

 (14) 

Hence, the equation of the virtual plane is 

0)()( 11 =+−+− zncyncxn zyyxx    (15) 

When a robot moves, a point (qu, qv) which is considered a 
point on the surface of a door or a wall is continuously 
projected onto the virtual plane as shown in Fig. 9(a). To 
obtain the projected point (qx, qy, qz) in 3D space, a direction 
vector d = (dx, dy, dz) from the robot to the point (qx, qy, qz) is 
calculated by 
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Fig. 8. Geometric relationship between image plane and 
virtual plane. 
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The point (qx, qy, qz) on the virtual plane is located at the end-
point of the vector t.d from the position of the robot with a 
real number t. Finally, using (15) and (16), the projected point 
(qx, qy, qz) is calculated by 
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The projected edge points on the virtual plane calculated by 
(17) are maintained until the whole process of the suitability 
test ends. These points are projected on the image plane 
during the test and continuously compared to the newly 
detected edge points. 

To compare these two edge point sets, a Hausdorff distance 
(HD) and modified Hausdorff distance (MHD) is measured. 
HD is compatible for the object matching in the image 
processing field (M.P. Dubuisson et al., 1994). Let A={a1,…, 
aNa} denotes the edge points projected on the image plane 
from the virtual plane and B={b1,…, bNb} denotes newly 
extracted edge points from the camera image. Then the HD, 
H(A,B), and MHD, hmod(A,B), between two edge sets A and B 
are defined by 
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When the candidate is extracted on the closed object like a 
poster on the wall as shown in Fig. 9(a), there is no difference 
between these two edge point sets as the robot moves. In the 
case of Fig. 9(b), the HD becomes larger as the robot moves, 

  
Fig. 9. Projection of edges; (a) closed, and (b) open doors. 

and if this value exceeds the threshold, it is determined that 
the area is open. Thus, whether one candidate is open or not 
can be determined by HD, and then an open door is registered 
to the EKF as a landmark.  

5. RESULTS 

Several experiments were conducted in the real environment 
using the ActivMedia Pioneer 3-DX robot equipped with an 
upward camera and a laser scanner. The calibrated image was 
acquired by the CMOS camera with a field of view of 130°. A 
grid map with cells of 10cm x 10cm was built by a laser 
scanner. The size of the experimental environment was 8m x 
10m which included two doors inside, as shown in Fig. 10. 
The SLAM process used the corners extracted by the Harris 
corner detector and the doors detected by the proposed 
method. The unstable features were autonomously deleted. 
The whole process of the proposed algorithm worked in real-
time in a notebook computer with a 1.83 GHz CPU. 

 
Fig. 10. Experimental environment and platform. 

Figure 11 shows the experimental results. The ellipsoids 
represent the covariance of the corners. The robot started to 
perform SLAM using the corners in the unknown 
environment in Fig. 11(a). The elements of a door were 
detected in Fig. 11(b), and then a set of door candidates were 
generated. The particle filter determines the shape and 
position of the door in Fig. 11(c). Note that one unstable 
feature in Fig. 11(b) was deleted in Fig. 11(c). If the wrong 
candidates were generated from the wall or furniture, the 
algorithm checked their suitability and deleted them from the 
candidate set in Fig. 11(d). The second door was detected and 
registered in Fig. 11(e) and (f), and finally all the unstable 
features were deleted. The grid map was successfully built by 
the proposed monocular SLAM because the localization error 
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Fig. 11. Indoor monocular SLAM with corners and doors. 

 
Fig. 12. Division of environment using doors. 

mainly due to the slippage between the robot and the floor 
was corrected well.  

The doors can divide indoor environments such as a kitchen, a 
corridor, or an office into several sub-areas. Therefore, the 
grid map can be partitioned into several parts using the doors 
detected, as shown in the example in Fig. 12. These divided 
areas can be considered each individual space, and the pose 
estimation such as the EKF can separately work to reduce the 
computational burden and cover the large environment. 

6. CONCLUSIONS 

In this paper, the door which is one of the most useful features 
in an indoor environment is detected using the lines extracted 
by an upward monocular camera. A door can be used as a 
feature for SLAM, and it can also serve to divide the 
environment into the meaningful areas. The SLAM algorithm 
based on this proposed door detection scheme was validated 
by several experiments. From this research, the following 
conclusions have been drawn. 

1. A door can be reliably detected using the lines through the 
candidate generation and suitability test, although many 
vertical and horizontal lines are extracted from the image 
of the real environment.  

2. Since both corner and door features are used together in this 
research, the proposed SLAM method can work more 
robustly in the various environments than the previous 
SLAM methods that use only corner features.  

3. The environment can be divided into several meaningful 
areas using the detected doors during SLAM. 
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