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Abstract: The problem of designing an iterative learning controller in the presence of input
uncertainties is of great importance in practical implementations. This paper addresses this
important issue for a simple scalar nonlinear dynamic system with general input uncertainties.
A dual iterative learning loop is applied to systems to “learn” both unknown dynamics and
static input uncertainties respectively and can ensure that the output of the system converges
to the desired trajectory. Two analytic examples show that the proposed dual learning control
scheme can work well under input uncertainties such as saturation and dead zone.

1. INTRODUCTION

A special control problem is considered in this paper:
the control task in a finite time interval [0, T ] repeats
itself along iteration domain (see Xu and Tan (2003)
and references herein). This kind of control problem is
frequently encountered in many industrial processes such
as assembly lines and chemical batch processes. Intuitively,
the information obtained from last iteration would be
used to improve the control performance of this iteration.
Iterative learning control (ILC) is well-known for its ability
to improve the control performance along the iteration
domain as it takes advantage of the repeatable control
environment.

Since Arimoto published his first paper on ILC (Arimoto
et al. (1984)), ILC methodologies have become the focus
of many researchers over the last three decades (see, for
instance,Moore (1993), Saab (1994), Amann et al. (1996),
Chen et al. (1998), Moore (1999), Longman (2000), Chin
et al. (2004), Norrlof and Gunnarsson (2005), Saab (2005),
Sugie and Sakai (2007) and references herein), leading to
numerous practical implementations of ILC schemes, as
well as better theoretical understanding.

The focus of this paper to design ILC schemes for non-
linear dynamic systems with input uncertainties. Input
uncertainties are quite common phenomenon in engineer-
ing applications. Examples of input uncertainties include
saturation, deadzone, hysteresis and so on. The existence
of these input uncertainties may severely deteriorate the
control performance or cause oscillations, even lead to
system instability.

In order to deal with unknown dynamics as well as
unknown input uncertainties, a dual iterative learning loop
is proposed. Loop 1 is a normal ILC scheme, which can
ensure the convergence of output of the dynamics without
input uncertainties. Loop 2 is another ILC scheme to

deal with static input uncertainties. The input signal of
loop 1 becomes the “desired output” for the loop 2. ILC
scheme in loop 2 drives the output of static mapping (input
uncertainties) to this “desired output” obtained from loop
1. It should be noted that in numerical literature, many
iterative numerical algorithms are available to drive the
output of an unknown static mapping to the desired one
(see Ortega and Rheinboldt (1970) and references herein).
In this paper, those available numerical methods are used
in loop 2 to deal with input uncertainties (unknown static
mapping) and incorporating with an ILC scheme in loop
1 to ensure the desired tracking performance.

It is worthwhile to highlight, among numerous available
numerical algorithms that can drive the output of un-
known static mapping to the desired one, in order to
ensure the convergence of the system (dynamics with in-
put uncertainties), some numerical algorithms which have
“nice” convergence properties are employed. Two scenarios
are discussed here: numerical algorithms that converge ei-
ther monotonically (Assumption 2) or non-monotonically
(Assumption 3). Our first result (Theorem 1) shows that
when the numerical algorithm converges monotonically,
the proposed dual ILC loop can ensure the perfect tracking
performance 1 . The second result (Theorem 2) states a
sufficient condition that can ensure the perfect tracking
performance with numerical algorithms that is not mono-
tonically convergent, but satisfies Assumption 3.

In order to illustrate how to design the dual ILC loop,
two analytical examples, in which the input uncertainty
is chosen as saturation and deadzone respectively, are
employed to show the effectiveness, therefore, providing
some insight in the proposed scheme.

1 Using the terminology in Xu and Tan (2003), the perfect tracking
performance means that the tracking error converges to 0 point-
wisely on the compact time interval [0, T ] when the number of
iteration i approaches to infinity.
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This paper is organized as follows. Problem formulation
and preliminaries are provided in Section 2. Main results
as well as two analytic examples are stated in Section 3
followed by a summary. Some proofs are presented in the
Appendix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper, the set of integers is denoted as N. i is the
number of iteration and i ∈ N. the set of real numbers is
denoted as R.

The following single-input-single-output nonlinear uncer-
tain dynamic system is considered:

ẋ = η(x, t) + u, (1)

u = f(v, θ), (2)

where η(x, t) is a lumped uncertainty, continuous in t and
global Lipschitz continuous in x, i.e.

|η(x1, t) − η(x2, t)| ≤ Lη|x1 − x2|,

where Lη is a Lipschitz constant. v ∈ R is a controller
input where u ∈ R is the output of the controller (or
the input of the system (1)). f(v, θ) is a static input
uncertainty (the mapping between controller input and
output) that is parameterized by an parameter vector θ,
where θ ∈ Θ ⊂ R

m and it is not completely known (see
Example 2).

Remark 1. A very simple scalar dynamic system is con-
sidered to simplify the presentation. The same result can
be extended to more general multi-input-multi-output sys-
tems with slight modification.

Remark 2. If the input uncertainty is a saturation func-
tion, f(v, θ) takes the following form

f(v, θ) = fs(v, vmax) =

{

vmax if v ≥ vmax

v if |v| ≤ vmax

−vmax if − v ≤ −vmax

,(3)

with θ = vmax is a positive constant that determines the
saturation bound.

The dynamics (1) satisfies the following identical initial-
ization condition

Assumption 1. xi(0) = x1(0) = xr(0), for all i ∈ N.

Remark 3. Due to space limitation, robustness with re-
spect to measurement errors as well initial condition errors
are not addressed in this paper, though robustness is of
great importance in ILC design.

Control objective is to find a desired control input vr(t)
which realizes

ẋr(t) = η(xr , t) + ur(t),

ur(t) = f(vr(t), θ), ∀t ∈ [0, T ]. (4)

Denote the tracking error at ith iteration as ei = xr − xi,
the error dynamic of the system becomes

ėi = [η(xr , t) + f(vr(t), θ)] − [η(xi, t) + ui(t)] . (5)

Aim of loop 1 ILC design: loop 1 ILC is to find a sequence
of ui(t) to ensure the perfect tracking performance of (1).

In other words, when there is no input uncertainties, i.e.,
u = f(v, θ) = v, loop 1 ILC iteratively updates ui(t) to
achieve perfect tracking performance.

A very simple ILC scheme is used in loop 1 as follows

ui(t) = ui−1(t) + qei(t), (6)

where q > 0 is the learning gain. The following proposition
shows that the perfect tracking can be achieved.

Proposition 1. Assume that Assumption 1 holds true for
the system (1), then the perfect tracking performance is
achieved with updating laws (6).

Proof: see Appendix. ◦

The updating law (6) iteratively modifies ui(t) which is
the output of the actuator, instead of the input of the
actuator. The static mapping between the actuator’s input
and output is not known (input uncertainty). The next
step is find an appropriate sequence of the actuator’s input
vi(t) so as to move the output of the actuator to the desired
one ui(t).

Aim of loop 2 ILC design: loop 2 ILC is to find a sequence
of input vi(t) such that the output of unknown static
mapping will move to the desired output ui(t). In other
words, we can re-formulate the aim of loop 2 ILC as:

Given ui(t) obtained from loop 1 ILC (see, (6)), how
to update the input of actuator vi such that when
i → ∞, f(vi(t), θ) → ui(t) → ur(t).

In order to better understand the above problem, let t =
t0 ∈ [0, t], ui(t0) = y, the above problem becomes to find
“z” such that a nonlinear mapping f(z, θ) = y holds. This
problem has been well addressed in numerical literature
(see Ortega and Rheinboldt (1970)) and there are many
numerical algorithm available to solve this problem. In
general, the updating law of the above problem takes the
following form

zi = h(zi−1, ∆i−1), (7)

where h(·, ·) is a linear/nonliear mapping, ∆i−1 = y −
f(zi−1, θ). In this paper, without losing generality, it is
assumed that the mapping h(·, ·) exists and satisfies some
conditions. Later, the existence of such a mapping is
illustrated by two illustrative examples.

Assumption 2. Let y ∈ R. For a static mapping f(z, θ),
there exists a mapping h(·, ·) such that there exists ρ ∈
(0, 1), such that

|∆i| ≤ ρ|∆i−1|. (8)

Remark 4. Assumption 2 implies that there exists a nu-
merical algorithm (7) to ensure that f(zi, θ) converges to
y monotonically, i.e.,

|∆i| ≤ ρi|∆0| ⇒ lim
i→∞

|∆i| = 0. (9)

Remark 5. This inequality (8) is widely used in numerical
literature (Ortega and Rheinboldt (1970)). For example,
if the static mapping f(z, θ) satisfies

df(z, θ)

dz
∈ [a, b], ∀z ∈ R,

b > a > 0 or b < a < 0, it is easy to design a h(·, ·)
satisfying Assumption 2.
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Instead of requiring a monotonic convergence numerical
algorithm as in Assumption 2, a weaker assumption is also
used in this paper.

Assumption 3. Let y ∈ R. For a static mapping f(z, θ),
there exists a mapping h(·, ·) such that there exists ρ ∈
(0, 1) and a sequence {σi}i∈N

satisfying lim
i→∞

|σi| = 0, such

that,

|∆i| ≤ ρ|∆i−1| + |σi|. (10)

Remark 6. Since |σi| is uniformly bounded and lim
i→∞

|σi| =

0, therefore, the limit of |∆i| exists. Assume that lim
i→∞

|∆i| =

c, where c is a positive constant. It is not hard to show that

c = lim
i→∞

|∆ui| ≤ lim
i→∞

ρ|∆ui−1| + lim
i→∞

|σi|

⇒ (1 − ρ)c ≤ 0 ⇒ c = 0, (11)

which ensures lim
i→∞

|∆i| = 0.

Remark 7. Assumption 3 also ensures the convergence of
∆i, but it is weaker than Assumption 2, since the conver-
gence of |∆i| is not monotonic. However, not all convergent
numerical algorithms satisfy Assumption 3, even Assump-
tion 3 is weak. Both Assumption 2 and Assumption 3 re-
quire some “nice” convergent properties and they provide
selection criteria among available numerical algorithms.

Remark 8. It should be noted that the updating law (7)
is time-invariant. In order to “learn” ui(t) in (6), h(·, ·)
is applied at each “t” in [0, T ] and each iteration “i”.
Or, at each time instant and each iteration i, a different
desired output value y = ui(t) is given in (7) with the
same updating format.

Therefore, a dual ILC loop is proposed: one is to “learn”
unknown dynamics while the other is to “learn” unknown
static mapping. Next it will show this dual ILC loop can
ensure the perfect tracking performance.

3. MAIN RESULTS AND EXAMPLES

3.1 Main results

The learning law is thus constructed as follows

ur
i (t) = ur

i−1(t) + qei(t) ur
0 = 0 (12)

∆iui(t) = ur
i − f(vi, θ), (13)

vi(t) = h(vi−1(t), ∆
iui−1(t)), ∀t ∈ [0, T ]. (14)

The first result is stated as follows.

Theorem 1. Assume that Assumption 1 holds and h(·, ·)
in (14) satisfies Assumption 2, then the perfect tracking is
achieved with the learning control laws (12-14).

Proof: see Appendix. ◦

Remark 9. If f(vi(t), θ) = ur
i (t) at each iteration, by

applying Proposition 1, the perfect tracking performance
can be guaranteed. Since ur

i (t) updates itself by (12), the
desired output value y in (7) changes at each time instant
as well as each iteration. In the sequel, ui(t) → ur(t) and
f(vi(t), θ) → ur(t) as the number of iteration approaches
to infinity.

Remark 10. In proposed dual ILC loop (12-14), there is
a freedom in selecting loop 2 ILC scheme from numerical
literature while loop 1 ILC is fixed. However, there should
be a freedom in selecting loop 1 ILC scheme as well since
(12) is not the unique ILC scheme to ensure the perfect
tracking performance for the system (1) without input
uncertainties. In general, the dual ILC loop should consists
of one ILC scheme to deal with the system dynamics;
another ILC scheme to deal with unknown static input un-
certainties; and some “consistent” conditions between two
ILC schemes to ensure the perfect tracking performance
for overall systems (dynamics and static).

Intuitively, this “consistent” condition is related to some
input-to-state (ISS) gain from inter-connected systems (1)
and (2). The well-known small gain theorem (Khalil. ,
2002, Chapter 5) may be a possible way to characterize
this “consistent” condition and motivate a general “frame-
work” for the ILC design of any dynamic system with input
uncertainties. Example 1 also provides some insight on the
choice of loop 1 ILC to make two loops “consistent” to
ensure the perfect tracking performance. How to formu-
late this “framework” and find feasible solutions of this
problem will be further investigated in future.

Theorem 1 shows that if at each time instant, the nu-
merical updating h(·, ·) can make f(·, θ) monotonically
converge to the desired ur

i (t), the proposed dual ILC loop
determined by (12-14) can ensure the perfect tracking
performance. However, for a general unknown nonlinear
mapping f(·, ·), it is hard to guaranteed that a numerical
algorithm h(·, ·) that can ensure monotonic convergence
as in Assumption 2 exists. Sometime, it may be much
easier to find numerical algorithms that are convergent
instead of monotonically convergent, for example, numer-
ical algorithms satisfy Assumption 3. The second main
result provides a sufficient condition to ensure the perfect
tracking performance of the dual ILC loop when numerical
algorithms satisfy Assumption 3.

Theorem 2. Assume that Assumption 1 holds and h(·, ·) in
(14) satisfies Assumption 3. If there exists a positive con-
stant MC such that the sequence {σi}i∈N

in Assumption
3 satisfies

∞
∑

i=0

|σi|
2 = Mc < ∞, (15)

then the perfect tracking is achieved with the learning
control laws (12-14).

Proof: See Appendix. ◦

Remark 11. Theorem 2 provides a sufficient condition (see
(15)) that can guarantee the perfect tracking performance
with a dual ILC scheme (12-14). As shown in Example 2,
this condition (15) is satisfied when the input uncertainty
is a deadzone.

Next, it will show that how to choose h(·, ·) for some
common input uncertainties: saturation and deadzone and
thus provide the insight on how to use main results of this
paper.
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3.2 Example 1: input saturation

When the input uncertainty is saturation function defined
in (3), h(·, ·) is chosen as

vi = h(vi−1, ∆ui−1) = fs(vi−1, vmax) + qs∆ui−1 (16)

where qs ∈ (0, 1). (16) is a very common form in numerical
literature.

In order to ensure that (16) can work, (16) has to satisfy
either Assumption 2 or Assumption 3. It is observed that
when the desire output value is within saturation bound,
Assumption 2 is satisfied.

Lemma 1. Given a saturation function (3), for any |y| ≤
vmax, inequality (8) holds true where ρ = 1 − qs.

Sketch of the proof: Using the result (Xu et al. , 2003,
Property1), the result holds after simple computations. ◦

Remark 12. In Lemma 1, |y| ≤ vmax is needed. It is a very
natural requirement as it is impossible to drive fs(z, vmax)
to y, y > vmax. However this requirement for loop 2 is not
“consistent” with loop 1 as ur

i (t) generated from loop 1
may be larger than the saturation bound for some t ∈ [0, T ]
and some i ∈ N. Therefore, if (12) is used in loop 1, there
is no nonlinear mapping h(·, ·) such that the output of the
static mapping can reach ur

i (t).

However, if following updating laws are used,

ur
i = fs(u

r
i−1, vmax) + qei (17)

vi(t) = fs(vi−1(t), vmax) + qs∆
iui−1(t) (18)

where ∆iui−1(t) is defined in (13), the perfect tracking
performance can be achieved.

Corollary 1. Assume that Assumption 1 holds for the
system (1) and max

t∈[0,T ]
|ur(t)| ≤ vmax. The learning control

laws (17-18) guarantees the perfect tracking performance
of systems (1-2).

Proof: see Appendix. ◦.

Remark 13. Example 1 also indicates that the ILC scheme
(12) is not the only choice of loop 1 to ensure the perfect
tracking performance. However, how to design (17) for
more general input uncertainties is still open. As indicated
in Remark 10, further work is needed.

3.3 Example 2: Input deadzone

Next input deadzone is considered with the following
characteristics:

f(v, θ) = fdz(v, θ) =

{

mr(v − ηr) v > ηr

0 ηl ≤ v ≤ ηr

ml(v − ηl) v < ηl

, (19)

where θ = [ mr ml ηr ηl ]
T
. If the following learning law

is used

vi = vi−1 + β∆ui−1, (20)

where β is a positive constant satisfying

0 < 1 − βB1 < 1, (21)

where B1 is the upper bound of ml and mr and it is assume
to be known. In this example θ ∈ R

4 is not completely

known. The following proposition can be found in (Xu ,
2003, Theorem 2.1).

Proposition 2. For the static mapping (19), if B1 is known,
the updating law (20) that satisfies the condition (21) can
guarantee that ∆ui converges to zero as i approaches to
infinity.

In the proof of Proposition 2 Xu (2003), it was shown
that |σi| becomes 0 after a finite iteration number pk.

This shows that lim
i→∞

i
∑

k=0

|σk|
2 < ∞. Condition (15) is thus

satisfied. Therefore, by applying Theorem 2, the following
result is obvious.

Corollary 2. Consider the system (1) with f(·, θ) that is
defined in (19). Assume that Assumption 1 holds. The
learning control laws (12-13) with (20) where β satisfies
(21) guarantees the perfect tracking performance.

The above examples show that how proposed dual ILC
loop works. Taking advantage of rich literature in numer-
ical analysis, the proposed method can be applied to deal
with very general input uncertainties.

4. CONCLUSION

In this paper, a dual ILC scheme is proposed for non-
linear dynamic systems with input uncertainties. Loop
1 ILC deals with systems’ dynamics while Loop 2 ILC
uses numerical algorithms to learn unknown static input
uncertainties. A simple ILC scheme is used in loop 1 while
loop 2 uses available numerical algorithms. By incorporat-
ing two ILC schemes in the dual loop, it is shown that
the proposed ILC scheme can ensure the perfect tracking
performance. Two examples, which the input uncertainties
are chosen to be saturation and deadzone, are used to show
the effectiveness of the proposed method.
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APPENDIX

Sketch of proof of Proposition 1 To facilitate the derivation
and analysis of the learning system, define the following
time weighted composite energy function

Ei(t) =
1

2
e−λte2

i (t) +
1

2q

∫ t

0

e−λτ (ui − f(vr, θ))
2
dτ (22)

where λ > 2Lη is a finite positive constant.

First, it is shown that the CEF (22) is non-increasing along
the iteration domain. The difference of Ei(t), ∆Ei(t), is

defined as ∆Ei(t)
4
= Ei(t) − Ei−1(t). Denoting ∆f (ui) :=

ui − ur = ui − f(vr, θ), a simple computation yields

∆Ei =
1

2
e−λt

[

e2
i (t) − e2

i−1(t)
]

+
1

2q

∫ t

0

e−λτ
[

∆2
f (ui) − ∆2

f (ui−1)
]

dτ (23)

We can compute each term on the right hand side of (23)
separately. First, noting the error dynamics (5), simple
computation leads to

1

2
e−λte2

i (t) = −
λ

2

∫ t

0

e−λτ (e2
i (τ))dτ

+

∫ t

0

e−λτei(τ) [η(xr , τ) + f(vr, θ)] dτ

−

∫ t

0

e−λτei(τ) [η(xi, τ) + ui]dτ

≤−
λ − 2Lη

2

∫ t

0

e−λτ (e2
i (τ))dτ

+

∫ t

0

e−λτei(τ) [f(vr, θ) − ui] dτ (24)

Now looking into the third term on the right hand side of
(23). Using updating law (6) leads to

1

2q

∫ t

0

e−λτ
[

∆2
f (ui) − ∆2

f (ui−1)
]

=
1

2

∫ t

0

e−λτei(τ) [2ui − qei(τ) − 2f(ur, θ)]

≤
1

2

∫ t

0

e−λτei(τ) [2ui − 2f(ur, θ)] . (25)

Substituting (24) and (25) into (23) yields

∆Ei ≤ −
λ − 2Lη

2

∫ t

0

e−λτ (e2
i (τ))dτ −

1

2
e−λt(e2

i−1(t)),

≤ −
1

2
e−λt(e2

i−1(t)) (26)

which shows that the energy function Ei is non-increasing
along the iteration axis. The proof is completed by follow-
ing the similar steps in Xu et al. (2003).

Proof of Theorem 1. The following time weighted compos-
ite energy function is employed.

Ei(t) =
1

2
e−λte2

i (t) +
1

2q

∫ t

0

e−λτ (∆f (ur
i ))

2
dτ

+
1

2q

∫ t

0

e−λτ
(

∆iui

)2
dτ, (27)

where λ > 2Lη + 2 ρ2

1−ρ2 is a finite positive constant, ρ is

from (8) and ur
i is from (12) and ∆iui is defined in (13).

First, differencing Ei(t) yields.

∆Ei =
1

2
e−λt(e2

i (t)) −
1

2
e−λt(e2

i−1(t))

+
1

2q

∫ t

0

e−λτ
[

∆2
f (ur

i ) − ∆2
f (ur

i−1)
]

dτ

+
1

2q

∫ t

0

e−λτ
(

∆iui

)2
−

(

∆i−1ui−1

)2
dτ (28)

Each term on the right hand side of (28) is bounded
separately. Using error dynamics (5), the bound the first
term on the right hand side of (28) becomes.

1

2
e−λte2

i (t) ≤ −
λ − 2Lη

2

∫ t

0

e−λτ (e2
i (τ))dτ

+

∫ t

0

e−λτei(τ)
[

f(vr, θ) − ur
i ) + (ur

i − ur
i−1)

]

+

∫ t

0

e−λτei(τ)(ur
i−1 − f(vi, θ))dτ

≤−
λ − 2Lη − 2q

2

∫ t

0

e−λτ (e2
i (τ))dτ

+

∫ t

0

e−λτei(τ)(ur
i−1 − f(vi, θ))dτ (29)

The third term on the right hand side of (28) can be
bounded

1

2q

∫ t

0

e−λτ
[

∆2
f (ur

i ) − ∆2
f (ur

i−1)
]

=
1

2

∫ t

0

e−λτei(τ) [2ur
i − 2f(vr, θ)] −

q

2

∫ t

0

e−λτe2
i (τ).(30)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12478



Now it is the last term in on the right hand side of (28).
Using condition 8 in Assumption 2, the following fact is
obtained.

(

∆i−1ui−1

)2
=

(

ur
i−1 − f(vi−1, θ)

)2
≥

1

ρ2

(

ur
i−1 − f(vi, θ)

)2
,

leading to

(

∆iui

)2
−

(

∆i−1ui−1

)2

≤ [
(

ur
i−1 − f(vi, θ)

)2
−

(

ur
i−1 − f(vi, θ)

)2

−
1 − ρ2

ρ2

(

ur
i−1 − f(vi, θ)

)2

= 2qei(u
r
i − f(vi, θ)) − q2e2

i

−
1 − ρ2

ρ2

(

ur
i−1 − f(vi, θ)

)2
. (31)

Consequently, it yields

1

2q

∫ t

0

e−λτ
(

∆iui

)2
−

(

∆i−1ui−1

)2
dτ

≤

∫ t

0

e−λτei(τ)(ur
i − f(vi, θ)) −

q

2
e2

i (τ)dτ −

−

∫ t

0

e−λτ 1 − ρ2

ρ2

(

ur
i−1 − f(vi, θ)

)2
dτ (32)

Substituting (29), (30) and (32) into (28) yields

∆Ei ≤−
λ − 2Lη

2

∫ t

0

e−λτ (e2
i (τ))dτ

+2

∫ t

0

e−λτei(τ)(ur
i−1 − f(vi, θ)dτ

−

∫ t

0

e−λτ 1 − ρ2

ρ2

(

ur
i−1 − f(vi, θ)

)2
dτ

−
1

2
e−λt(e2

i−1(t)),

≤−
λ − 2Lη − 2ρ2

1−ρ2

2

∫ t

0

e−λτ (e2
i (τ))dτ

−
1

2
e−λt(e2

i−1(t))

≤−
1

2
e−λt(e2

i−1(t)) (33)

which shows that the energy function Ei is non-increasing
along the iteration axis. The proof is completed by follow-
ing the similar steps in Xu et al. (2003).

Proof of Theorem 2. The time weighted composite energy
function (27) is employed. The Difference of Ei(t) is
obtained in (28). In this proof, we just need to bound the
last term on the right hand side of (28).

From (10) in Assumption 3, it follows

ρ2|∆ui−1| ≥ |∆ui|
2 − 2ρ|∆ui−1| · |σi| − |σi|

2. (34)

In the sequel, it yields

(

∆iui

)2
−

(

∆i−1ui−1

)2

≤ [
(

ur
i−1 − f(vi, θ)

)2
−

(

ur
i−1 − f(vi, θ)

)2

−
1 − ρ2

2ρ2

(

ur
i−1 − f(vi, θ)

)2

−
1 − ρ2

2ρ2

[

(

ur
i−1 − f(vi, θ)

)

−
2ρ3

1 − ρ2
|σi|

]2

+

(

1 +
2ρ4

1 − ρ2

)

|σi|
2

=
(

ur
i − ur

i−1

)

(ur
i + ur

i−1 − 2f(vi, θ))

−
1 − ρ2

ρ2

(

ur
i−1 − f(vi, θ)

)2

= 2qei(u
r
i − f(vi, θ)) − q2e2

i

−
1 − ρ2

ρ2

(

ur
i−1 − f(vi, θ)

)2

+

(

1 +
2ρ4

1 − ρ2

)

|σi|
2. (35)

By similar computation as in the proof of Theorem 1, we
have

∆Ei(t)≤−
1

2
e−λt(e2

i−1(t)) +

(

1 +
2ρ4

1 − ρ2

)

|σi|
2, (36)

which implies that

lim
i→∞

Ei(t) = E0(t) + lim
i→∞

i
∑

k=1

∆Ek

≤E0 − lim
i→∞

−
1

2
umi−1

k=1e
−λt(e2

k(t))

+Mc

(

1 +
2ρ4

1 − ρ2

)

, (37)

where Mc is from (15). This implies that lim
i→∞

e2
i (t) = 0 for

any t ∈ [0, T ], concluding the proof.

Sketch of proof of Corollary 1. The following time-weighted
CEF is employed.

Ei(t) =
1

2
e−λte2

i (t) +
1

2q

∫ t

0

e−λτ
(

∆̄f (ur
i )

)2
dτ

+
1

2q

∫ t

0

e−λτ
(

∆iui

)2
dτ (38)

where λ > 2Lη + 2 ρ2

1−ρ2 + 2q is a finite positive con-

stant, ρ is from (8) and ur
i is from (12), ∆̄f (ur

i ) =

(sat(ur
i ) − f(vr, θ))

2
and ∆iui is defined in (13). By using

Property 1 and Property 2 in Xu et al. (2003), simple
calculations lead to the result.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12479


