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Abstract: In the literature, several fault diagnosis methods, qualitative as well as quantitative,
are proposed. The main objective of these methods is in one hand, to allow detection, isolation
and identification of faults; and in the other hand to insure safety, reliability and availability
of systems. This paper presents a diagnosis method based on the use of a new and suitable
mathematical tool: bayesian networks. Their learning and inference capabilities allow to model
complex processes by taking into account the uncertainty and the incompleteness of the provided
knowledge. Furthermore, the graphical representation of causal relations existing between
variables, events or physical phenomena makes bayesian networks easy to use and leads to
models which can be understandable by even a non specialist of the modeled domain.
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1. INTRODUCTION

Fault diagnosis consists in isolating and identifying the
causes of an abnormal operation of a given system. This
abnormal situation can be expressed (or characterized)
by a set of symptoms which are incoherences between
the observed behavior and the nominal behavior of the
process. Several diagnosis methods have been proposed
in the literature. These methods can be classified into
two main categories: those using an analytical model and
those which don’t use an analytical model. The first ones
(which include parity space, parameter estimation, state
observers, etc.) [1, 2] can be used in the case where the
process for which one aims to perform a fault diagnosis
is sufficiently known so that we can derive a model that
reflects as faithfully as possible its dynamic behavior. The
derived model is then used to generate what is called
fault indicators (analytical redundancy relations, residu-
als, etc.). The online evaluation and analysis of these indi-
cators allow to detect and to isolate faults that can affect
the process. However, in practice, systems or processes
are often complex and involve several energy domains.
Therefore, the model is either difficult (or even impossi-
ble) to obtain, or unexploitable because of its complexity
(nonlinear model, presence of loops, etc.). The second
category of diagnosis methods [3, 4], which don’t use an
analytical model and which are generally derived from
artificial intelligence techniques (neural networks, expert
systems, case based reasoning, etc.), can be used instead
of model based methods in cases where the model does
not exist or difficult to obtain. However, these methods,
called also qualitative methods, need a rich database (ex-
perience feedback data or experimental data for instance)
to perform a good learning; task which can be difficult

to satisfy (e.g. case of systems in design stage or newly
put in service). Furthermore, in practice the knowledge
one has about the system can be incomplete or uncertain.
Thus, the use of a mathematical tool introducing the
notion of probability to take into account this uncertainty
and/or incompleteness can be a convenient solution. In
the present contribution, we have used bayesian networks
for the possibilities they offer in modeling of complex and
stochastic systems and also for their learning and inference
capabilities [5]. Compared to the previous referenced ap-
proaches, bayesian networks allow graphical representation
of the knowledge under its different types (rules, causal
relationships, experts’ statements, physical laws, etc.). In
addition, parameter as well as graphical structure update
is easy to perform when using this kind of tool [5]. In this
paper, bayesian networks are used to model the knowl-
edge we have about the process and to perform a fault
diagnosis. The tool’s qualitative aspect (directed acyclic
graph) allows to represent graphically the causal relations
between the process variables. The quantitative part of
bayesian networks tool consists in determining the a priori
and conditional probability tables of each variable in the
generated graph. These probabilities can be given by an
expert of the process or obtained by a learning method
or algorithm from an experimental or experience feedback
database. In the literature, many research works have been
proposed on bayesian networks but, most of them are
focused on learning algorithms that allow to construct
the graphical model and estimate the probabilities of each
node of the derived graph [6]. In this contribution, the
diagnosis task consisted in computing the a posteriori
probability of each process component (or node) given a
set of new observations (also called evidences).
The present paper is organized as follows: the second sec-
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tion presents a brief description of the bayesian networks
tool. This description is illustrated by a simple example
of fault diagnosis on a laptop. In the third section, the
proposed approach is applied to diagnose faults on a per-
manent magnet synchronous motor. For this application,
several scenarios are simulated and the results obtained are
discussed. Finally, a conclusion is given in section four.

2. BAYESIAN NETWORKS

2.1 Definition

A bayesian network is defined by:

• a directed acyclic graph G, G=(V ,E), where V is the
set of nodes of G, and E is the set of edges of G;

• a finite probabilised space (Ω,Z,P );
• a set of random variables associated to the nodes of

the graph and defined on (Ω,Z,P ), such that:

P (V1, V2, ..., Vn) =
n∏

i=1

P (Vi|C(Vi) (1)

where C(Vi) is the set of causes (parents) of Vi on the
graph G.
In other words, bayesian networks provide a formalism
to represent a joint probability distribution on a set of
random variables. Bayesian networks can be considered
as a convenient tool allowing to handle two big problems
commonly encountered in artificial intelligence, in applied
mathematics and in engineering: uncertainty and complex-
ity. Bayesian networks are a combination result between
probability theory and graph theory. They are thus:

• models for representing knowledge,
• and machines for computing conditional probabilities.

Modeling by using bayesian networks is performed in two
steps: the qualitative step (construction of the network
or the graph) and the quantitative step (deriving or
estimating the probability distribution tables).

2.2 Modeling

Qualitative step: this step allows to derive the graph-
ical structure of the bayesian network that represents
the causal relations between the different variables of the
process under study. This structure can be obtained by
two different ways: by exploiting the experts’ knowledge
of the process or, by using a well documented database
(learning). To illustrate how this step is performed, we
consider a simple example through which we wish to model
a dysfunction affecting a useful working tool that became
more than indispensable for a researcher: a laptop.
After pushing the power button, the researcher notes that
his/her laptop does not start. So, two possible causes of
this dysfunction come to his/her mind: the problem can
come from the battery which is empty or, from the mother
board which is faulty. For simplicity of the model, we
suppose that the main supply from an AC plug is not
considered in this example. Moreover, we consider that
the battery has a level indicator which allows to know at
each moment if it is loaded or not.
The first step (qualitative) in constructing the bayesian
network of the previous described abnormal situation con-
sists in a graphical representation of the causal relations

between the four variables (or nodes) associated to the
following events or elements: S (doesn’t Start: true, false),
B (Battery: loaded, not loaded), I (level Indicator: full,
half, empty) and M (Mother board: ok, degraded). The
derived graph corresponding to the intuitive analysis of
the researcher is given in figure 1.

Fig. 1. Starting problem of a laptop (qualitative step)

To isolate the cause of the abnormal operation (the laptop
does not start), the researcher decides to have a look on
the level indicator of the battery and notes that this one
indicates the middle position. The researcher concludes
then that the problem would be, more probably, caused
by the mother board (degraded). Thus, the fact that I
indicates that the battery is half loaded strengthens the
belief on M as the most probable cause of the observed
dysfunction. From the general point of view, the sure (or
certain) information (which is sometimes called evidence
or observation), like the fact that the laptop doesn’t start,
propagates on the bayesian network by modifying the
beliefs one had before on the facts. The recent observed
information is then propagated on the graph leading to an
update (recompute) of the nodes’ probabilities.

Quantitative step: it consists in associating to each node
a probability table (definition of all the probabilities of
a variable or a node for each one of its possibles values
(modalities) knowing the values of its parents (causes of
the node)).
To explain this quantitative aspect of bayesian networks,
let’s use again the previous described example related to
a laptop starting problem (see figure 1). We will assimi-
late the belief or probability of a fact to a mathematical
probability and we will show the similarity between the
qualitative results obtained previously and the quantita-
tive ones obtained hereafter.
It is supposed that the a priori marginal probabilities
P (M) and P (B) are obtained by experience on the system
(practically, these probabilities are given by an expert of
the modeled domain or learned from a rich database). For
instance, if we know that the mother board breaks down
in 5% of cases, then one has a probability of 0.05. And,
if we know that the researcher forgets to load the battery
of his/her laptop before it is totaly empty in 10% of cases
then the probability for the battery to be empty is 0.1.

For the a priori conditional probability P (S|B,M), we
consider the values given in the following table.

For example, it is supposed that in the case where the
mother board is out of service or degraded (M=degraded)
and the battery is loaded (B=loaded) the probability that
the laptop does not start is equal to 0.9. Likewise, if the
battery is completely empty then, we know that the laptop
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will not start independently of the state of the mother
board; the associated probability is equal to 1 (remind
that the main supply is not considered in this example). It
remains the case where the mother board works correctly
(M=ok) and the battery is not empty (B=loaded). For this
configuration, one supposes that there is 95% of chance
that the laptop starts correctly (the remaining 5% are
caused by other events which are not taken into account
in the coming calculations).

For the probability P (I|B), we suppose that the researcher
often forgets to completely load the battery of his/her
laptop. We consider then a probability of 25% for the
battery to be completely loaded knowing that it is not
empty, and a probability of 75% for the battery to be
half loaded in the same case. And finally, we are sure that
the battery is empty knowing that it has not been loaded
before. Now, in the case where the laptop does not start,
which one of the two conditional causes (the mother board
is degraded or the battery is empty) is the most probable?
This question can be mathematically answered by using
probability calculations detailed hereafter.

Probability calculations: in the example given in figure
1, one would like to know the probability P (B,M |S =
true). This probability can be obtained by using the basic
probability formulas. The main formula expressing the
relation between the conditional probability and the joint
probability is given by the following equation:

P (a, b) = P (a|b)P (b) = P (b|a)P (a). (2)
Equation (2) leads to the well known Bayes formula:

P (a|b) =
P (b|a)P (a)

P (b)
, (3)

which can be expressed under the following global form:

P (a|b, c) =
P (b|a, c)P (a|c)

P (b|c)
. (4)

In addition to these given relations, one needs the mar-
ginal law used to calculate the marginal probability on a
bayesian network:

P (A) =
∑
B

P (A,B). (5)

Note that for each bayesian network is associated a uni-
verse U represented by the joint probability distribution
P (U). This probability is obtained by the multiplication of
all the a priori marginal probabilities (for nodes without
parents) and the conditional probabilities (for nodes with
parents) (Eq. (1)). By using the previous relations, one can
compute the probability P (B,M |S = true). According to
equation (1), we can write:

P (M,B, S, I) = P (M)P (B)P (S|M,B)P (I|B). (6)
The achieved calculations lead then to the results pre-
sented in table 1.

Table 1. Joint probability table

By using the results given in table 1, one can calculate any
desired probability. The universe P (M,S, B, I) contains

the desired probability P (B,M |S), which can be derived
from Eq.(2) and Eq.(5):

P (B,M |S) =
P (B,S, M)

P (S)
, (7)

with
P (S) =

∑
B,M,I

P (M,B, S, I), (8)

and
P (B,M,S) =

∑
I

P (B,M,S, I). (9)

The results obtained by using Eq. (7) are given by the
following table. From this latter, one can also calculate the

probabilities P (M |S) and P (B|S) by using the marginal
probability law:

P (M |S) =
∑
B

P (B,M |S), (10)

and
P (B|S) =

∑
M

P (B,M |S). (11)

The two following probability tables present the obtained
results.

M degraded ok
P (M |S = true) 0.248285 0.751704
P (M |S = false) 0.00551 0.99449

B loaded not loaded
P (B|S = true) 0.454287 0.545702
P (B|S = false) 1 0

According to the two last tables we note that in the case
where the laptop doesn’t start, S = true, one has tendency
to think that the battery is not loaded with a probability
equal to 0.5457 (P (B = not loaded|S = true) = 0.5457).
But, after verifying the level indicator position, we observe
that this latter is at the middle position (the battery is half
loaded). This new information will then change our belief
on the fact that the battery was the cause of the abnormal
operation (dysfunction) of the laptop (doesn’t start). The
probability calculation P (M,B|S = true, I = 1

2 ) will
allow to diagnose the most probable cause of the observed
problem.

P (M,B|S = true, I = 1
2 ) = P (M,B,S,I)∑

M,B
P (M,B,S=true,I= 1

2 )

(12)

The achieved calculations lead to the results given in the
following table:

In other words, in the case where the level indicator shows
that the battery is half loaded, the abnormal operation
(dysfunction of the laptop) would have been most probably
due to the mother board which is degraded (with a
probability equal to 0.9). This confirms the conclusions of
the intuitive reasoning performed during the qualitative
step.
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2.3 Bayesian inference

The probabilist inference, also called update of probabil-
ities, corresponds to any calculation related to a proba-
bility distribution associated to a bayesian network [7].
The problem of computing the a posteriori probabilities
on a bayesian network is NP-difficult [8]. However, to
overcome this difficulty several algorithms are proposed
in the literature.
The first exact algorithms related to bayesian inference
have been proposed in [7]. They were based on a message
passing architecture and were limited to graphs in form
of trees. In these kind of algorithms, at each node is
associated a processor which sends messages asynchro-
nously to its neighbors until an equilibrium is reached on
a finite number of steps. This method (or algorithm) has
been extended to any type of network and led to what
is called JLO algorithm. This latter, also called junction
tree algorithm, is well developed in [9] where a method is
proposed to transform any kind of network to a tree in
order to facilitate the inference.
Though the inference in any network is NP-difficult, The
time consuming of each method previously mentioned is
computable in advance. Thus, when the result exceeds
a reasonable limit, one prefers to use an approximative
method or algorithm instead of an exact one [7]. These
approximative methods exploit the topology of the net-
work and perform a sampling on local subsets of variables
in a sequential and concurrent way [10].
Other methods have been proposed in the literature like
that one of Shafer–Shenoy [11] or the symbolic probabilist
inference proposed by D’Ambrosio [12]. All these methods
have been since studied by Zhang and Poole and a com-
parison between them has been performed to underline the
advantages and the drawbacks of each one of them [13].

3. APPLICATION : FAULT DIAGNOSIS ON AN
ELECTRICAL MOTOR

In this part, bayesian networks are used as a tool for
diagnosing faults on an electrical system. We will try
to apply the approach detailed in the previous sections
on a permanent magnet synchronous motor and we will
focus our study on a specific function of the system: the
generation by the rotor of a rotating torque.

Remark: the original application is in fact a new generation
of a real permanent magnet synchronous motor designed
and developed by a well known French train manufacturer.
For confidentiality reasons, we are not allowed to publish
any document related to the system. Instead, we have re-
placed the studied system by a generic permanent magnet
synchronous motor.

3.1 System description

A permanent magnet synchronous motor (see figure 2) is
mainly composed of a rotor and a stator that generate a
rotation motion transmitted by a transmission shaft to a
load. The stator is supplied by a three-phase signal and
creates a rotating field. Thanks to magnets, the rotor
rotates at the same speed than that one of the rotating
field created by the stator.

Fig. 2. Permanent magnet synchronous motor

The main objective of this application is to perform a
diagnosis on the rotation motion of the motor’s shaft (we
will focus on the availability or not of the rotation motion).

3.2 Modeling

To build the bayesian network used in the diagnosis step
of the motor, we have used a database, given by the expert
of the system, which includes a functional decomposition
of the entire electrical motor. From this database, one
can easily define all the causal relations existing between
the different nodes (representing the components) of the
graph (qualitative step) and then estimate the conditional
probability tables related to each node (quantitative step).

Qualitative step: the available functional decomposition
of the motor is used hereafter in order to identify the
different nodes of the corresponding graphical model and
the causal relations existing between them. In the current
bayesian network, three types of nodes which allow to
achieve the diagnosis are introduced: the nodes related
to components of the motor, the action nodes (don’t
confuse with action nodes used in some softwares) and the
monitored nodes (for which the state can be observed by
sensors or any other observation mean). After identifying
the nodes, the modes corresponding to each node and the
causal relations between the different variables or nodes
(qualitative step); we have proceeded to the construction
of the bayesian network used in the diagnosis of possible
faults that can affect the components involved in the
rotation motion of the motor’s shaft (see figure 3).

Quantitative step: this consists in estimating the a priori
marginal and conditional probabilities of each node of the
network. This estimation is obtained from the knowledge
provided by the expert of the motor. We have questioned
the expert by asking him to position his expertise on
a probability scale as shown in figure 4 (more details
on this method are given in reference [5]). The expert’s
appreciations are then transposed to numerical values cor-
responding to probabilities of occurrence of events. These
values can then be modified (or updated) according to sim-
ulation or experimental results. The number of estimated
probabilities depends particularly on the number of nodes
and on the number of modes associated to each one of the
nodes. In our case, we have estimated this number to 292
probabilities.

The calculations on the bayesian network of figure 3
are manually tedious to do. To overcome this difficulty,
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Fig. 3. Bayesian network used for fault diagnosis

Fig. 4. Scale used for an a priori probability estimation

we have used a software called BayesiaLab in order to
compute the joint, marginal and conditional probabilities.
BayesiaLab is a suitable software which can be used to
model, learn and analyze bayesian networks. However,
there exists a large choice of other softwares and toolboxes
that deal with bayesian networks (BNT : Bayesian Net-
works Toolbox, Hugin, NETICA, etc.) and which can be
used successfully.

3.3 Fault diagnosis

After having built the bayesian network (qualitative step)
and estimated the a priori probabilities of each node
(quantitative step), the obtained graphical model is used
to perform a fault diagnosis on the motor. For this appli-
cation, the diagnosis consists in computing the a posteriori
conditional probabilities according to new observations
described in each one of the following scenarios.

Scenario 1: this scenario is related to the system’s nom-
inal operating mode. The bayesian network corresponding
to this mode is given in figure 5. In this case, given the
fact that there is no observed fault on the system, the
joint probability is equal to 1. One can then compute for
each node its own marginal probability value. According to
the obtained results (see figure 5), we note that the prob-
ability for the rotation motion to be available is equal to
92.71% and that the stator, the rotor and the transmission
shaft remain in their respective nominal state (ok mode),
with probabilities equal to 99.49%, 95.92% and 98.88%;
respectively.

Scenario 2: in this second scenario we suppose that the
rotation motion is unavailable (P (MvtRot = no) = 1).
According to the conditional probabilities obtained by
using BayesiaLab (figure 6), one can note that the fault

Fig. 5. Scenario 1: nominal operating mode

which is responsible of this abnormal operation can not
be isolated with certainty. In fact, in absence of further
information (measures, operator’s observation, etc.) it is
difficult to discriminate the origin of the dysfunction.
However, we have the probability distributions on the
participation of different possible causes in the occurrence
of the observed fault. One tends then to believe that
the unavailability of the rotation motion could have been
caused by a fault on the rotor (with a probability value
of P (rotor =damaged|MvtRot = no) ≈ 0.56). This result
is practically more plausible given the number of elements
and components that are involved in its function and which
can produce this faulty situation.

Fig. 6. Scenario 2: rotation motion unavailable
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Scenario 3: we consider the hypotheses of scenario 2
and, in addition to that, we suppose that there exists a
sensor which measures the vibratory spectrum intensity
(SV node on the graph of figure 3). In the case where
strong vibrations are detected (which can be considered as
observation or evidence), the probability of the node SV
changes and becomes then a certitude: P (SV = high) = 1.
According to this information, we do an update on the
bayesian network of the system and calculate again all the
a posteriori conditional probabilities (figure 7).
The results obtained by using BayesiaLab (figure 7)
strengthen the belief on the fact that the rotor component
would be the most probable cause of the observed malfunc-
tioning situation. Indeed, strong vibrations can cause on
the one hand degradation of the bearings and on the other
hand a bad positioning of the equilibrium masses which
can cause at their turn a degradation of the rotor. This
justifies the increase in the probability value (from 0.56 to
0.87) that the rotor would be the cause of the unavailability
of the rotation motion (P (rotor =damaged|MvtRot =
no, SV =high) ≈ 0.87).

Fig. 7. Scenario 3: presence of sensors

4. CONCLUSION

In this paper, a bayesian based fault diagnosis method is
presented. The use of this graphical and intuitive tool can
be justified by the fact that, in practice, it is sometimes
difficult to work with analytical model-based approaches,
especially for complex systems, because of the difficulty to
derive the corresponding model. Furthermore, for complex
systems another factor has to be taken into account: the
uncertainty. It is shown in the first part of this contribution
how bayesian networks are used for fault diagnosis on
a simple example related to a laptop starting problem.
This method is then applied to diagnose faults on a real
application: a permanent magnet synchronous motor. The
construction of the graphical model of the system (iden-
tification of variables and their modes, causal relations,
quantification of the probabilities, etc.) has been achieved
according to the knowledge provided by an expert of the
motor. Another way for deriving the model is by learning
the structure and/or the parameters from a rich existing
experimental or experience feedback database. This pos-
sibility has not been considered in this work because the
studied motor was in fact at its design stage.

The availability of commercial as well as free softwares
and toolboxes rend the use of bayesian networks more
interesting. In our case, we have used the capabilities of
the BayesiaLab software to simulate the different scenarios
related to the rotation motion function of the transmission
shaft. The analysis of the obtained results allowed to
identify the vulnerable and critical components and thus,
helped in designing and in planing appropriate mainte-
nance tasks to perform in order to increase the system’s
availability and reliability.
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