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Abstract: Attaining high quality from manufacturing systems requires utilizing appropriate
system-level quality performance modeling and analysis tools. This paper describes the applica-
tion of the stochastic-flow-modeling (SFM) approach to represent the quality output behavior
of a manufacturing system. To do this, a basic one-product type SFM is extended to that
of a multiple-product manufacturing system. This work also provides a novel addition to the
SFM approach through the use of a Kalman filter to estimate quality parameters. After a
presentation of the reference manufacturing system, results are given for different examples and
the effectiveness of the SFM model is examined in terms of accuracy and convergence.

1. INTRODUCTION

Quality is a critical component of overall manufacturing
system performance that production managers are con-
tinually striving to improve. Achieving higher production
quality levels requires an effort at all levels of the man-
ufacturing enterprise. At the management level, several
approaches, such as the Shewhart cycle (Plan-Do-Check-
Act) (Shewhart (1939)), Quality Circles (Besterfield et al.
(2003)), Six Sigma (Pande and Holpp (2002)) have been
proven to be highly successful at motivating quality
improvements throughout manufacturing organizations.
These types of quality management techniques with their
corresponding awards effect control at high management
level. In addition, there are other approaches such as
Statistical Quality Control (Woodhall and Montgomery
(1999)) that focus on local, process level improvements.

These types of approaches as well as more specialized
optimal control of individual process parameters also have
achieved great improvements in quality levels. However,
an area that has received less attention because of the
increased modeling and computational complexity until
know has been the intermediate level. This intermediate
level may be thought of as the system or production line
where the level of granularity corresponds to multiple
machines controlled by the supervisor of the system. Ex-
amples of work that has been done at this manufacturing
system level includes that of Cassandras and Lafortune
(1999) or Brandin and Wonham (1994). Some of these
approaches are based on the control optimization and
optimization of queuing systems in manufacturing lines
(Perkins and Skirant (1999), Brandin and Wonham (1994),
Shu and Perkins (1998), Wardi et al. (2001)). In this paper,
the focus is not on the management and optimization
of buffers, but rather on the estimation of quality and
the prediction of quality related parameters for a given

⋆ This work is supported by General Motors.

manufacturing line (Graton et al. (2007)). System level
quality is broadly defined as the ratio of products that
exit the system to the total number that enter indicat-
ing the percentage of those products rejected by quality
monitoring stations.

Quality model of a given manufacturing line with spe-
cific knowledge of the performance behavior can provide
solutions of complex quality failures, decision-making in-
sight and anticipate expected quality performances. Be-
cause of random features of reject occurrences on the
manufacturing line, a stochastic modeling is preferred to
a deterministic modeling. Stochastic flow models (SFM)
take into account the random nature of process operations
and provide a natural framework for quality estimation
in stochastic processes Yu and Cassandras (2004), Wardi
et al. (2001), Cassandras et al. (2002).

With stochastic flow models, distribution parameters cor-
responding to reject rates are estimated from data which
are in turn used in the estimation of quality levels. Pa-
rameter estimation can be done using different algorithms,
for example in Graton et al. (2007), a maximum likeli-
hood approach and an adaptive approach are employed.
These two approaches are essentially based on the mean
estimation of reject rates. Over time, estimations become
increasingly smoother and the instantaneous nature of
reject rate variation becomes less evident. In this paper,
a new approach is proposed that uses Kalman filters to
estimate parameters associated with the instantaneous
update of reject rates. The Kalman filter Kalman and
Bucy (1961) has the advantage that it can incorporate a
wide variety of data while providing an optimal estimation
of the system’s output parameter(s) of interest (assuming
system linearity and measurement and system noise to be
white and Gaussian).

In Jonsdottir et al. (2006), the parameter estimation
for stochastic models is based on the likelihood function
estimated by a Kalman filter. In Gaussian stochastic
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process, the Kalman filter and the maximum likelihood
have the same meaning. In this work, distributions are
exponential and a corresponding approach to estimate
such distribution parameters is presented. In Song and
Speyer (1986), the approach used was based on a modified
gain Kalman filter and where the parameter identification
technique is similar to the one presented in this paper.

In this paper, the first section is devoted to the design
of a closed-loop estimator for the stochastic flow model.
The case of a single station is presented whereupon the
approach is extended to that of an entire manufacturing
line. The entire manufacturing line is modeled with an
enhanced model incorporating quality feedback loops. Fi-
nally, results are provide regarding the accuracy of the
approach based on simulation and convergence behavior.

2. CLOSED-LOOP ESTIMATOR

2.1 Single Station

Quality model This section proposes an approach to
estimate the instantaneous value of the quality parameter
of a single station within a production line. The knowledge
of this quality parameter is important since it is required
to implement a stochastic flow model. Prior to defining
a parameter for instantaneous quality and its estimation
approach, we first define the global quality of a station.
Thus, the quality at a single station may be calculated
using the following equation:

Q(t) =

∫ t

0
v(s)ds −

∫ t

0
r(s)ds

∫ t

0
v(s)ds

=
V (t) − R(t)

V (t)
(1)

where Q represents the quality at time t using the ouput
function v(s) and the reject function r(s) over the interval
[0, t], the engine output of the station v is defined by
v(t) = 1 if an engine exits the station, otherwise v(t) = 0
and the reject function r by r(t) = 1 if a reject appears,
otherwise r(t) = 0.

Using the production data V and reject data R associ-
ated with the station equation (1) provides the quality
measurement Q. The quality measurement can be seen as
the average of the instantaneous quality q over the time
interval [0, t]. The instantaneous quality parameter p is
linked to the instantaneous quality as follows:

p(t) =
1

1 − q(t)
(2)

When Q(t) =
∫ t

0
1 − 1

p(s)ds, the direct expression of the

quality parameter function p(t) is defined as:

p(t) =
1

1 − tQ̇(t) − Q(t)
(3)

To avoid possible chattering problems (see figure 1) of
equation (3), an observer is implemented to estimate the
instantaneous quality parameter.

Kalman filter The Kalman filter is defined around the
quality measure Q(t) from Equation (1) where the state
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Fig. 1. Chattering problems from the direct estimation of
equation (2)

space representation uses the differentiation of Q(t) as
follows:

ẋ(t) = A(t)x(t) + wx(t) (4)

where x(t) = [Q(t), Q̇(t), Q̈(t), 1 − 1
p(t) ] represents the

state, A(t) the time-varying matrix and wx(t) the state
noise.

The measurement equation is given by:

y(t) = Cx(t) + wy(t) (5)

where y(t) represents the measurement, C the measure-
ment matrix and wy(t) the measurement noise.

Noises wx(t) and wy(t) are assumed to be non-correlated,
white, gaussian with, respectively, a covariance matrix Wx

and Wy.

Matrices A and C are defined by:

A(t) =







−1/t 0 0 1/t
0 0 1 0
0 0 0 0
0 2 t 0






, C = ( 1 0 0 0 )

The calculation of the eigenvalues of A gives the state-
space representation as defined by equation (4) and is a
non-stable system. Three poles are zero, where the last
pole has a negative real part and depends on 1

t
. To satisfy

convergence of the instantaneous quality estimations, an
observer need to be implemented. The basic principle of
an observer is to close the loop using the measurement as
input information and to optimize the correlation between
the measurements and the output estimations while mini-
mizing the noise effects. In this work, an observer is given
by:

˙̂x(t) = A(t)x̂(t) + K(t)(y(t) − Cx̂(t)) (6)

ŷ(t) = Cx̂(t) (7)

where x̂ corresponds to the state estimation, ŷ the output
estimation, K the observer gain matrix.

The dynamic equation of the error x̃ between the state x
and its estimation x̂ can be calculated:

˙̃x(t) = ẋ(t) − ˙̂x(t)

= (A(t) − K(t)C)x̃(t) + wx(t) − K(t)wy(t) (8)
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From equation (8), the choice of matrix K yields the
stability of the observer, if the real part of the (A(t) −
K(t)C)-eigenvalues are negative. Moreover the choice of
K can be realized by minimizing the covariance of the
estimation error:

Ṗ (t) = Cov[ ˙̃x(t)]

= (A(t) − K(t)C)P (t) + P (t)(A(t) − K(t)C)T + Wx

+K(t)Wy(t)K(t)T (9)

To find the matrix K which minimizes the covariance error
P , the influence of K on P is calculated from:

∂trace(Ṗ (t))

∂K(t)
=−P (t)CT − P (t)CT + 2K(t)Wy (10)

If ∂trace(Ṗ (t))
∂K(t) is equal to 0, that gives the necessary

condition for the minimum of P , such that K(t) is:

K(t) = P (t)CT W−1
y (11)

If the expression of K(t) given by equation (11) is replaced
in equation (10), then:

Ṗ (t)=A(t)P (t)+P (t)A(t)T−P (t)CT W−1
y CP (t)+Wx(12)

is a Riccati equation with the asymptotic convergence
property of the eigenvalues and the greatest estimation
error tends to 0.

Stochastic flow model using Kalman filter estimations
Using the estimation q̂(t) of the state estimation x̂(t), the
estimation of the instantaneous quality parameter gives
the parameter of the distribution law E(p̂(t)). Quality is
estimated by the Stochastic Flow Model (SFM) which
uses information about the probability of the occurrences
of reject codes for each engine model type and each
production shift to compute the number of rejects on the
line for any given period of time. Figure 2 shows a single-
station discrete SFM.

Fig. 2. Stochastic Flow Model

where u(t) (parts/sec) is the rate of parts entering the
station while v(t) (parts/sec) is the output rate equal to
the production rate ρ(t) at which the station is able to pro-
duce parts. The buffer size is given by xb(t) (parts). Note
that the station switches between two states, 0 (OFF) or
1 (ON), such that:

s(t) =

{

1 machine working
0 otherwise

(13)

where s(t) denotes the operational state of the system.

The working and non-working states are triggered by
random events that cause the station to change its current

state. More elaborate logical statements may also be
considered in practice.

The rate of parts entering the station, u(t), is determined
by production planning and scheduling. The rate at which
the station produces parts, v(t), is a more complex func-
tion of processing conditions. A simple rule-based oper-
ational constraint for the output rate is formulated as
follows:

v(t) =

{

0 if s(t) = 0 or xb(t) = 0
ρ(t) otherwise

(14)

where the buffer content xb(t) is determined by the follow-
ing ordinary differential equation:

ẋb(t) = u(t) − v(t) (15)

The model uses information about the probability of
the occurrences of reject codes for each engine type and
each shift to compute the number of rejects on the line
for any given period of time. At each station, the total
number of rejects is calculated using the following ordinary
differential equation:

ẋr(t) = ∆(t)δ(t) (16)

where xr is the number of rejects (with initial conditions
xr(0) = 0), δ(t) is a unit impulse.

Before defining the function ∆(t), additional definitions
are required. First, a parameter called λ is introduced to
represent the average rate of engines produced between
the occurrence of two rejects.

Following the definition of the reject occurrence distri-
bution, a threshold th must be introduced to isolate the
reject probabilities from the non-reject probabilities. The
exponential distribution E(p̂(t)) has a probability density
function fE(p̂(t))(t) defined by:

fE(p̂(t))(t) = p̂(t)e−p̂(t)t (17)

From the definition of the density function, the integral of
fE(p̂(t))(t) from the limits 0 to ∞ is equal to 1 (100 %)

but there is also 100
p̂(t) % that corresponds to the reject

rate and thus
(

100 − 100
p̂(t)

)

% for the non-reject rate.

The boundary between these two modes (reject and non-
reject) is defined by the threshold th. In other words,
this threshold, deduced from the exponential distribution

E(p̂(t)), is defined such that:
∫ th

0
fE(p̂(t))(t)dt = 1

p̂(t) where

the solution of this equation yields an expression for th:

th =
1

p̂(t)
ln

(

p̂(t) − 1

p̂(t)

)

(18)

From the exponential distribution E(p̂(t)), a random sam-
ple, called tp̂(t), is obtained for each engine exiting the work
station. This sample is compared to the reject threshold
th defined above. If the sample tp̂(t) is under the threshold
when the engine exits the station, then a reject flag is given
to the engine. To complete this section, the function ∆(t)
which generates rejects on the station is defined by:

∆(t) =

{

1 if v(t) 6= 0 and tp̂(t) ≤ th
0 otherwise, i.e.: no reject

(19)
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This type of model just described can be used to provide
high-level abstractions of discrete event systems (DES)
models. In a DES (or a timed-DES), the ability to monitor
single parts is limited since each action taken on each part
must be tracked. As a result, representative DES models
tend to be very complex and therefore this paper presents
an alternative modeling approach based on SFMs.

2.2 Multiple Station Manufacturing System

Quality models In the previous section, quality is defined
locally for each specific station. Local quality is defined by
Qi where i refers to the station number and is given by
equation (1). Also as a global quality was introduced to
provide insight regarding the first time quality of the entire
manufacturing line. The modeling of the global quality is
given for example in Graton et al. (2007) and is based
on equation (1) where v(t) is replaced by the output flow
at the last station of the entire manufacturing line and
r(t) is defined as a boolean function which equals 1 when
the engine has a reject in at least one station of the
manufacturing line.

Stochastic flow model using Kalman filter estimations
This section describes the use of the stochastic flow model
to estimate the global quality of the entire manufacturing
line. As explained before, each station uses a Kalman
filter to obtain an estimation of the instantaneous quality
parameter. This parameter is an estimation of the rate of
engines with rejects which flow through the station and
appears in the stochastic flow model as the parameter of
exponential distribution E(p̂i(t)), where i is the station
number. Figure 3 illustrates the use of the filter in the
parameter estimation of the manufacturing system.

Though the model for an entire plant is far more com-
plex than that proposed in Figure 3, the model may be
enhanced by incorporating quality repair loops to better
represent quality behavior that could not otherwise be
characterized solely with the use of inline stations. Figure
4 presents a slightly more complex configuration of a
segment of a manufacturing line with five stations that
are still simple enough to model yet more realistically
represent the flow of parts that meet quality requirements
and those that do not.

Fig. 4. Simple five-station SFM quality system

In Figure 3, each station is given an index i with i ∈
{1, 2, ..., n} and the relation vi = ui+1 is used to link sta-
tions. However, this five-station model presents a further
complication with the introduction of a parallel station
which measures quality (station S4 in Figure 4).

Thus, in Figure 4, stations S1 and S5 are defined as
processing stations, stations S2 and S3 are control stations
and finally, station S4 is a quality station Q1. Products can
move from one station to the next (for example, from S1

to S2). But, in some instances, as at the exit of station S3,
two paths are possible. From S3, engines can be directed to
S4 or station S5. If the product has not triggered a quality
rejects before station S3, this product goes to station S5.
If a reject has occurred, the product must be repaired, and
is therefore sent to station S4. In station S4, the problem
identified at station S3 on the engine is repaired. The
product then returns to station S2 to be processed and
diagnosed a second time.

As the manufacturing system grows in size, it becomes
more complex and modifications to the model are required.
To complete the model, new definitions are added to
generalize equations (13) to (18). Now, a set Li is defined
as the set of all stations linked with the input of station
i, for example in Figure 4, L2 = {S1, S4}. The input ui of
the station i can be defined as:

ui(t) =
∑

l∈Li

bl,i(t)vl(t) (20)

where bl,i is a boolean function (with the property
∑

i bl,i = 1) that determines in which line the product is
produced from station l to station i. In Figure 4, after sta-
tion S3 two choices are possible, if for example the product
must be repaired then b3,4(t) = 1 and also b3,5(t) = 0.

The same functions, as defined previously in equations(13)
to (18) can be defined for each station i ∈ I,

ẋbi
(t) = ui(t) − vi(t) (21)

where the input ui is defined by (20) and the output vi(t)
follows:

vi(t) =

{

0 if si(t) = 0 or xbi
(t) = 0

ρi,j,k(t) otherwise
(22)

and the operational state si(t) is defined by:

si(t) =

{

1 if a product is made in station i
0 otherwise

(23)

These equations together give the dynamics of engines
through the entire manufacturing line. Now, reject func-
tions need to be introduced to complete the stochastic flow
model. First, a reject function associated with an engine e
is defined as:

Re,i =

{

1 if si(t) = 0 and tp̂i(t) ≤ thi

0 otherwise
(24)

where the variable tp̂i(t) is a random variable with an
exponential distribution E(p̂i(t)) having a parameter p̂i(t)
defined for station i. The variable thi is a threshold
extracted from E(p̂i(t)) as explained in (??). Each station
has its own reject function ri(t) correlated to:

ri(t) = Re,iδ(t) (25)

where
∫ t

0
ri(s)ds is the number of rejects at station i over

time [0, t] (with initial conditions ri(0) = 0).

When engine e exits the last station of the manufacturing
line, the global reject function is updated:
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Fig. 3. Kalman filter with the SFM

r(t) =

{

1 if
∧

Re,i 6= 0 i is not a quality station

0 otherwise
(26)

where
∧n

1 Re,i represents the OR operator on reject func-
tion over stations except quality stations.

3. RESULTS: FTQ SIMULATION

As explained previously, the calculation of the first time
quality (global quality) is initiated when the first engine
exits the last station of the manufacturing line. After the
last station and as the engine leaves the manufacturing
line, equations (22), (26) and (1) are computed. When an

engine exits the line, one unit is added to
∫ t

0
vn(τ)dτ . If

the engine p has no reject then r stays constant otherwise
one unit is added.

3.1 Quality estimation for single configuration

Prior to examining the results of the FTQ simulation for
the entire manufacturing line, this section is dedicated
to reviewing the accuracy of the instantaneous quality
estimations performed on a single configuration. If this
section were exhaustive, all stations would be tested one
at a time. Thus, only important results are presented and
the approach is limited to several stations which can attest
to the effectiveness of the SFM model. As such, six stations
are presented in each figure.
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Fig. 5. Instantaneous quality at six stations.

In Figure 5, the estimations of the instantaneous quality
is plotted. The instantaneous quality is, as its name
indicates, a quality index and can not be greater than
one. Notice that the estimations (figure 5) are sometimes
greater than one, the estimations are not filtered and no
thresholds are applied. But, for the SFM simulation, an

upper threshold to the value one will be applied to avoid
any physical problems. Figure 5 shows important quality
variations over time. Moreover, the estimations seem not
to be influenced by the differentiator properties of the
state-space representation (equation 7).
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Fig. 6. Measured quality, SFM quality and expected value
of the quality over 6 stations.

Figure 6 shows different simulations and is decomposed
into six sub-figures corresponding to six specific stations.
On each sub-figure, the measured quality represented is
plotted as a bold line, and the ten simulations of the
quality estimated by the SFM are represented by dotted
lines. The expected values (normal line) along with the
confidence interval of 5% of rejected values (upper and
lower lines) are also shown. Notice that the expected
value from ten simulations using the SFM are below the
measured quality, however the relative error is less than
0.1%.

The figures above show that the instantaneous quality pa-
rameter estimations using a Kalman filter provide accurate
results and the quality of each station estimated by SFM
is close to that of the measured quality.

3.2 Global quality for an entire manufacturing line

The previous section provided results on the quality es-
timations at individual stations. In particular, Figure 5
showed that the estimated quality is less than the mea-
sured quality, which raises certain questions, such as: Does
this error have an effect on the global quality? And if yes,
what is the effect? Furthermore, are these errors additive?

Global quality is computed using equation 1 replacing
function v by vn for the last station where r is the
boolean function obtained if the engine had one reject (or
more) over the entire manufacturing line. In Figure 7, the
measured quality is plotted as a bold line.
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Fig. 7. Global quality comparisons over 60 hours

Using the measured quality of each station in the entire
manufacturing line, the Kalman filter provides an estima-
tion of the instantaneous quality parameter which then is
used in the stochastic flow model. In this section, the global
quality based on performing ten simulations is shown in
Figure 7 (represented by the dotted lines). From these
simulations, an average value is calculated and represented
by a normal line in Figure 7. Also, with the standard
deviation from the simulation, a confidence interval of 95%
and 105% is given around the expected value (illustrated
by the upper and lower normal lines).

Figure 7 also illustrates the accuracy of the estimation
of global quality using the Kalman filter approach. The
difference between the measured quality and the average
quality from ten simulations tends to zero. Moreover, the
confidence interval in Figure 7 appears to decrease over
time. In addition, only 5% of estimations have an error
greater than 1%, with the upper and lower bounds of the
confidence interval separated by 2%. Figure 8 and 9 reflect
the convergence characteristics of the quality estimations.
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Fig. 8. Absolute error between the measured global quality
and the average quality of 10 SFM simulations

In particular, Figure 8 illustrates the convergence to zero
of the mean value of the global quality estimations. After
less than 7 hours of simulation, the error is less than 2%,
and after 23 hours it is less than 1%. At the end of the
simulation, the error is around 0.2%.

Lastly, Figure 9 shows the standard deviation of the error
between the global quality measurement and the global
quality estimations. The asymptotic convergence of the
standard deviation is clearly visible as convergence is
provided by the Kalman filter. Finally, Figures 8 and 9 also
provide evidence that using a Kalman filter is an effective
approach to estimate the instantaneous quality parameters
for global quality calculated using a stochastic flow model.
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Fig. 9. Standard deviation of the difference between the
quality measurement and the average quality of 10
SFM simulations

4. CONCLUSION

The results presented in this paper proof the good ac-
curacy of the stochastic flow model estimation using the
Kalman filter approach for the parameter estimation. The
SFM provides a very good tool for quality modeling in
assembly lines. This new approach provides a mechanism
that accounts for non-stationary behavior of the model
parameters. With the work, quality can be studied and
analyzed station by station, or as a global quality (Fig. 3),
this last point is useful for a good tracking of parameter
values.
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