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Abstract: In this paper, a bias-compensated least squares (BCLS) method in the closed loop
environment is proposed. It is assumed that the observation noise is a white gaussinan signal
while there are no process noises. It is also assumed that the plant is controlled by a linear
time invariant controller and that the closed loop system is asymptotically stable. The proposed
estimator is unbiased and it does not require the reference input be informative. An iterative
redesign of the prefilters is also considered in order to achieve a minimum variance estimator.
The proposed BCLS method is applied for the iterative redesign of the prefilters in order to
reduce the computational cost.

1. INTRODUCTION

There are increasing demands for the identification under
the feedback control(Ljung et al. [1974], Gustavsson et al.
[1977], Ljung [1999]) due to the safty or economic rea-
sons(Forssell and Ljung [1999]). The difficulty of the closed
loop identification arises from the fact that the input and
the output of the plant correlates with the noise because
of the feedback loop. In order to remove the asymptotic
bias caused by the correlations, a special treatment will be
required for the closed loop identification. Another prob-
lem is the computational cost because unbiased estimation
of the plant parameters becomes a nonlinear optimization
problem and requires an iterative algorithm. Therefore, re-
duction of the iteration or reduction of the computational
cost will be required.

In order to obtain an unbiased estimate in the closed
loop environment, the instrumental variable (IV) methods
(Gilson and Van den Hof [2001, 2005], Gilson et al.
[2006]) are proposed, which require a few iterations to
obtain unbiased estimate. These methods are based on
the indirect approach of the closed loop identification or at
least the instrumental variables are produced based on the
reference input signal. Thus, the estimation error depends
on the informativeness of the reference input. For less
informative reference input, direct approach of the closed
loop identification will be required.

Unbiased estimate is also obtained by using the prediction
error method with an appropriate choise of the prefilters.
Because such suitable prefilters are based on the noise
model, the iterative redesign of the prefilters will be
required as in the IV methods mentioned above. Unlike
the IV methods, this approach requires many iterations
because of the asymptotic bias of the estimate at each
iteration. On the other hand, bias compensated least
squares (BCLS) method(Sagara and Wada [1977]) is a
method based on the analysis of the noise effect on the
estimated parameters and on the estimation of the noise
variance. Therefore, it is expected to reduce the number

of iteration by applying the bias compensation to the
estimate at each iteration.

The main purpose of the closed loop identification is to
improve the control performance by obtaining a more
accurate plant model. Thus, the concern is laid on the
estimation of the plant dynamics rather than on estimation
of the noise dynamics. In such circumstances, it will be
reasonable to estimate the plant model based on the
output error (OE) model. In this paper, OE model is
considered.

In section 2, the problem is formulated and the least
squares method with prefilters is briefly summarized in
section 3. The asymptotic bias of the least squares estimate
in the closed loop environment and the noise variance
are analysed in sections 4 and 5, respectively. Section 6
proposes an iterative algorithm with bias compensation in
the closed loop environment. Section 7 shows numerical
examples in order to illustrate the bias and the variance
of the proposed method. Section 8 concludes the paper.

Notation:

Let E{x} denote an expectation of random variable x.

Let q denote a shift operator i.e. qx[k] = x[k + 1].

2. PROBLEM FORMULATION

Consider a single-input single-output (SISO) n-th order
discrete time plant:

y[k] =
bp(q)
ap(q)

u[k] + ν[k], (1)

ap(q) = qn + a1q
n−1 + · · · + an, (2)

bp(q) = b1q
n−1 + · · · + bn, (3)

where u[k] ∈ R, y[k] ∈ R, and ν[k] ∈ R are the input,
the output, and the observation noise, respectively. The
polynomial ap(q) is monic and of the n-th order, while
bp(q) is polynomial whose degree is less than n.
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The plant to be estimated is assumed to be controlled by
the following feedback compensator:

u[k] =
bc(q)
ac(q)

(y[k] − r[k]), (4)

ac(q) = qm + ac1q
m−1 + · · · + acm, (5)

bc(q) = bc0q
m + bc1q

m−1 + · · · + bcm, (6)
where r[k] ∈ R is a reference input.

The following assumptions are made for the plant, the
noise, and the I/O data.

(A1) ap(q), bp(q) does not have a common zero outside
of the open unit disc.

(A2) an upper bound of the plant degree is known to
be n.

(A3) the observation noise ν[k] is a zero mean white
gaussian signal with variance

E{ν[k]ν[l]} = σ2
νδkl, (7)

where δkl denotes a Kronecker delta.
(A4) the I/O data is collected in the closed loop en-

vironment and the feedback loop is asymptotically
stable.

(A5) the reference input {r[k]} is independent of the
observation noise {ν[k]}.

From the assumption (A3), the persistently excitation(PE)
condition will be satisfied even if r[k] = 0 because the
closed loop is driven by a white gaussian signal.

Let the characteristic polynomial of the closed loop be
denoted by

dcl(q) = ap(q)ac(q) + bp(q)bc(q), (8)

all the zeros of dcl(q) lie on the open unit disc from the
assumption (A4).

Problem: Estimate the unknown coefficient of ap(q) and
bp(q) from the I/O data {u[k], y[k]} (k = 1, . . . , N).

3. LEAST SQUARES ESTIMATE

In this section, least squares estimate together with pre-
fileters are briefly summarized.

Define the characteristic polynomial of the prefilter as
f(q) = qn + f1q

n−1 + · · · + fn, (9)

where all the zeros of f(q) are selected to lie on the unit
disc. Define the filtered output yf [k] and the filtered input
uf [k] as follows:

yf [k] =
qn

f(q)
y[k] and uf [k] =

qn

f(q)
u[k]. (10)

Multiplying the both side of eq. (1) by ap(q)/f(q), we
obtain

y[k] =
f(q) − ap(q)

f(q)
y[k] +

bp(q)
f(q)

u[k] +
ap(q)
f(q)

ν[k]. (11)

From the equation above, the following linear regression
formula is obtained:

y[k] = ϕ[k]�θ + ε[k], (12)

where

θ = [θ�1 , θ�2 ]�

= [f1 − a1, . . . , fn − an|b1, . . . , bn]�, (13)

ϕ[k] = [yf [k − 1], . . . , yf [k − n],

uf [k − 1], . . . , uf [k − n]]�, (14)

ε[k] =
ap(q)
f(q)

ν[k]. (15)

Adopting the least squares criterion:

J(θ̂) =
N∑

k=1

[
y[k] − θ̂�ϕ[k]

]2

, (16)

the parameter minimizing J(θ̂) is given by

θ̂LS,N = (Φ�
NΦN )−1Φ�

NyN , (17)

where

ΦN = [ϕ[1], . . . , ϕ[N ]]�, (18)

yN = [y[1], . . . , y[N ]]�. (19)
Substituting eq. (12) for eq. (17), another representation
of the least squares estimator is given by

θ̂LS,N = θ + (ΦNΦN )−1Φ�
NεN . (20)

where
εN = [ε[1], . . . , ε[N ]]� (21)

Becase the equation error ε[k] is not white and has
correlation with the regression vector ϕ[k] in general, the
least squares estimator θ̂LS,N has an asymptotic bias.

4. ASYMPTOTIC BIAS IN CLOSED LOOP
ENVIRONMENT

In this section, the asymptotic bias of the least squares
estimator (20) in the closed loop environment is investi-
gated.

The output and the input of the plant are given by

y[k] =
bp(q)bc(q)

dcl(q)
r[k] +

ap(q)ac(q)
dcl(q)

ν[k], (22)

u[k] =
ap(q)bc(q)

dcl(q)
r[k] − ap(q)bc(q)

dcl(q)
ν[k]. (23)

In order to calculate the expectation of the asymptotic
bias, the expectations E{yf [k−i]ε[k]} and E{uf [k−i]ε[k]},
i = 1, . . . , n are to be calculated. Because {r[k]} and
{ν[k]} are independent from the assumption (A5), the
expectation of the correlation between the equation error
and the r-dependent part of each regressor becomes zero.
Thus, we assume r[k] = 0 without loss of generarity in this
section. The noise dependent parts of the filtered output
yf [k − i] and the filtered input uf [k − i] are given by

yf [k − i] =
qn−iac(q)

dcl(q)
ε[k], (24)

uf [k − i] =−qn−ibc(q)
dcl(q)

ε[k]. (25)

Eqs. (24), (25) together with eq. (15) have a state space
representation as follows:
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X̄ [k + 1] = ĀX̄[k] + b̄ν[k], (26)

ϕ[k] = [ Ccl 0 ]X̄[k], (27)

ε[k] = [ 0 h ]X̄ [k] + ν[k], (28)
where Ā and b̄ are defined by

Ā =
[

Acl bclh
0 F

]
, (29)

b̄ =
[

bcl

g

]
, (30)

and (Acl, bcl, Ccl) and (F, g, h, 1) are the system matrices
of the state space representations of the transfer functions
as follows:

[
Acl | bcl

Ccl | 0

]
=

[
s(q)ac(q)
−s(q)bc(q)

]

dcl(q)
, (31)

s(q) = [qn−1, . . . , q, 1]�, (32)[
F | g
h | 1

]
=

ap(q)
f(q)

. (33)

From eqs. (26), (27) and (28), and taking into account that
E{X̄[k]ν[k]} = 0, E{ϕ[k]ε[k]} can be calculated as

E{ϕ[k]ε[k]} = [ Ccl 0 ]E{X̄[k]X̄�[k]}
[

0
h�

]
. (34)

Covariance matrix of X̄ [k] is given by

E{X̄[k]X̄�[k]} = Pσ2
ν , (35)

where P = P� > 0 is a solution of the Lyapunov equation
P = ĀP Ā� + b̄b̄�. (36)

Finally, we obtain
E{ϕ[k]ε[k]} = CclP12hσ2

ν , (37)

where P12 ∈ R(n+m)×n is a 1-2 block of P .

The asymptotic bias of the least squares estimator in the
closed loop environment is given by the following theorem.
Theorem 1. Consider the closed loop defined by eqs. (1)
and (4) together with the assumptions (A1) to (A5). The
expectation of the least squares estimate defined by eq.
(17) is given by

E
{

lim
N→∞

θ̂LS,N

}

= θ + lim
N→∞

(
1
N

Φ�
NΦN

)−1

CclP12h
�σ2

ν , (38)

where P12 is a 1-2 block of P defined by eqs. (29) to (33)
and (36).

Proof: It is obvious from the discussions above and
the fact that the correlation between (Φ�

NΦN )/N and
(Φ�

NεN )/N goes to zero as N → ∞.
Remark 2. When F and g are realized as a controller
canonical form, h becomes a coefficient vector of ap(q) −
f(p). This implies that there are no asymptotic bias when
the prefilters are designed to satisfy f(q) = ap(q) if the
plant is stable.

Remark 3. When the plant has an unstable pole, define
āp(q) such that ap(q)/āp(q) becomes an inner function.
Then the equation error can be represented as

ε[k] =
āp(q)
f(q)

ν†[k], ν†[k] =
ap(q)
āp(q)

ν[k]. (39)

Because |ap(ejω)/āp(ejω)| = const., the power spectrum of
ν†[·] is proportional to that of ν[·], which concludes ν†[·]
is a white noise. Therefore, the asymptotic bias becomes
zeros if the design parameters of the prefilters are chosen
as f(q) = āp(q) when the plant is unstable.

Consider the case when the plant is unstable. Let (F, g)
in eq. (33) be a controller canonical form and define h†
be a coefficient vector of āp(q) − f(q) where āp(q) is
defined in remark 3. Then, (F, g, h†, 1) is a realization of
āp(q)/f(q). And define P † be a positive definite solution
of the Lyapunov equation

P † = Ā†P †(Ā†)� + b̄b̄� (40)

where

Ā† =
[

Acl bclh
†

0 F

]
. (41)

Then, the expectation E{ϕ[k]ε[k]} = CclP12h
�σ2

ν has
another representation

E{ϕ[k]ε[k]} = CclP
†
12(h

†)�σ2
ν† (42)

where P †
12 is a 1-2 block of P † and σ2

ν† is a variance of ν†.

From the discussions above, an optimal prefilter which
achieves unbiased estimate will be defined such that the
characteristic polynomial of the prefilter becomes f(q) =
ap(q) when the plant is stable and f(q) = āp(q) when the
plant is unstable. However, in order to obtain an optimal
prefilter, an iterative redesign of the prefilter and the re-
calculation of the regression vector will be required.
Remark 4. The matrix P12 can be obtained by solving
the following Sylvester equation instead of solving the
Lyapunov equation (36):

P12 = AclP12F
� + bclh

�P22F
� + bclg

� (43)

where P22 is a solution of the Lyapunov equation
P22 = FP22F

� + gg�, (44)

which is independent of the plant parameters when (F, g)
is realized as a controller canonical form.

5. ESTIMATION OF THE NOISE VARIANCE

Based on the similar idea of Sagara and Wada [1977], the
noise variance σ2

ν is to be estimated from the residuals.

Define the residuals as

e[k] = y[k] − θ̂�LS,Nϕ[k], (45)

eN = [e[1], . . . , e[N ]]�. (46)
Then, from eq. (20), the residuals becomes

eN = εN − ΦN

(
1
N

Φ�
NΦN

)−1 (
1
N

ΦNεN

)

Its mean squared error becomes
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1
N

e�NeN =
1
N

ε�NεN

−
(

1
N

Φ�
NεN

)� (
1
N

Φ�
NΦN

)−1 (
1
N

Φ�
NεN

)
. (47)

The expectation of the first term of the r.h.s can be
calculated as

E

{
1
N

ε�NεN

}
= (1 + hP22h

�)σ2
ν (48)

where P22 ∈ Rn×n is a the positive definite solution of the
Lyapunov equation (44). The expectation of the second
term of the r.h.s. can be calculated by using eq. (37) when
N goes to infinity. Thus, the following theorem is obtained.
Theorem 5. The expectation of the squared error of the
residuals is given by

E

{
lim

N→∞
1
N

e�NeN

}
= (1 + hP22h

�)σ2
ν

−hP�
12C

�
cl lim

N→∞

(
1
N

Φ�
NΦN

)−1

CclP12h
�σ4

ν . (49)

Proof: It is obvious from the discussions above.

From the theorem above, the expectation of the noise
variance is given by

E{ lim
N→∞

σ2
ν} = lim

N→∞
2γN

β +
√

β2 − 4αNγN

(50)

where

αN = NhP�
12C

�
cl (Φ

�
NΦN )−1CclP12h

�, (51)

β = 1 + hP22h
�, (52)

γN =
1
N

e�NeN . (53)

6. BCLS IN CLOSED LOOP ENVIRONMENT

Based on the analysis in the previous two sections, a
bias compensated least squares method in closed loop
environment is to be proposed.

Let Acl and bcl be realized as a controller canonical form.
Then Ccl ∈ R2n×(n+m) becomes as follows:

Ccl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ac1 · · · acm 0
. . . . . . . . .

0 1 ac1 · · · acm

−bc0 −bc1 · · · −bcm 0
. . .

. . .
. . .

0 −bc0 −bc1 · · · −bcm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (54)

Also, let F and g be realized as a controller canonical form.

The proposing estimate is give by the following algorithm.
Algorithm 1. Iterative redesign of the prefilters with
BCLS in Closed Loop Environment

(1) Initialize the prefileter parameter f (0)(q) for example
f (0)(q) = qn. Let i = 0.

(2) Define y
(i)
f and u

(i)
f by using f (i)(q) as in eq. (10) and

define ϕ(i)[k] and Φ(i)
N as in eqs. (14) and (18).

Calculate θ̂
(i)
LS,N and γ

(i)
N as in eqs. (17) and (53).

(3) Define Â
(i)
cl , ĥ(i), Ā(i) as the estimates of Ā, Acl, h in

eqs. (29), (31), and (33) by using θ̂
(i)
LS,N .

(4) Calculate P̂ (i) as a positive definite solution of the
Lyapunov equation

P̂ (i) = Ā(i)P̂ (i)(Ā(i))� + b̄b̄� (55)
and define

α̂
(i)
N = ĥ(i)(P̂ (i)

12 )�C�
cl ((Φ

(i)
N )�Φ(i)

N )−1CclP̂
(i)
12 (ĥ(i))�,

(56)

β̂(i) = 1 + ĥ(i)P22(ĥ(i))� (57)

where P̂
(i)
12 is a 1-2 block of P̂ (i).

(5) Estimate the variance of the noise as

λ̂(i)
ν =

2γ
(i)
N

β̂(i) +
√

(β̂(i))2 − 4α̂
(i)
N γ

(i)
N

, (58)

and update the parameter estimate as

θ̂
(i)
BC,N = θ̂

(i)
LS,N − N((Φ(i)

N )�Φ(i)
N )−1CclP̂

(i)
12 (ĥ(i))�λ̂(i)

ν

(59)

(6) Define â
(i)
p (q) and b̂

(i)
p (q) be the estimates of the

denominator and the numerator of the plant by using
the estimated parameter θ̂

(i)
BC,N .

(7) Let f (i+1) = â
(i)
p (q) for a stable plant, or

let f (i+1) = ˆ̄a(i)
p (q) for an unstable plant.

Increase i by 1 and go to step (2).

Remark 6. The least squares estimate θ̂LS,N is obtained
in the framework of the direct approach in closed loop
identification and does not require the information on the
compensator. However, information on the compensator is
required for the compensation of the bias. This means the
proposed method is no more a direct approach in closed
loop identification.

7. NUMERICAL EXAMPLE

7.1 Illustration of the theorems

In order to illustrate theorems 1 and 5, the least squares
estimate (17) is compensated by using eq. (38) and σ2

ν is
estimated by using eq. (50) where the true values of P12

and h are used in this subsection.

Consider the following first order plant:

y[k] =
b

q − a
u[k] + ν[k] =

0.5
q − 0.8

u[k] + ν[k],

where the variance of the noise ν[k] is σ2
ν = 1. The

control input u[k] is defined by the following feedback
compensator:

u[k] =
0.2289

q − 0.09004
(r[k] − y[k]). (60)

The reference input r[k] is set to be 0. The number of the
samples is N = 4096.
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0.75 0.8 0.85âBC

b̂BC

0.3

0.4

0.5

0.6

Fig. 1. BCLS estimate by using true P12, P22, and h

0.75 0.8 0.85âopt

b̂opt

0.3

0.4

0.5

0.6

Fig. 2. Parameter estimate by using the optimal prefilter

The estimate θ̂BC,N , in which the design parameter of the
prefilter is set f = 0.5, is compared with the optimal
estimate θ̂opt,N , in which the design parameter of the
prefilter is set f = 0.8.

One thousand pairs of I/O data are prepared for the
estimation of the plant parameters. The proposed estimate
and the optimal estimate are plotted in figs. 1 and 2,
respectively. The estimated parameter for each pair of
I/O data is plotted by dot and the ellipses calculated
by the estimated covariance matrices are drawn by solid
lines. In fig. 1, the ellipse defined by the covariance of the
optimal estimate is plotted by a dashed line, while in fig.
2, the ellipse defined by Cramér-Rao bound is plotted by
a dashed line.

From figs. 1 and 2, each of the proposed estimate and the
optimal estimate has almost zero bias. Fig. 1 shows that
the covariance of the proposed estimate is slightly larger
than that of the optimal estimate, while fig. 2 shows that
the covariance of the optimal estimate is almost the same
as the Cramér-Rao bound. As a result, the covariance of
the proposed estimate achieves almost the minimum value.

7.2 Estimation of the bias

In order to estimate the noise variance and the bias of the
least squares estimate, P12 and h have to be estimated.
As a result, the bias compensated least squares estimate
may be biased especially when the reference input is less

0.4 0.6 0.8 1.0âBC

b̂BC

0.3

0.5

0.7

0.9

Fig. 3. BCLS estimate

0.4 0.6 0.8 1.0âLS

b̂LS

0.3

0.5

0.7

0.9

Fig. 4. LS estimate

informative. However, the bias of the BCLS estimate is
expected to be smaller than that of the LS estimate. In
this subsection, the bias of the LS estimate is compared
with the bias of the BCLS estimate in which P12 and h in
eqs. (38) and (50) are estimated based on the LS estimate
θ̂LS,N .

The plant to be estimated, the feedback controller, the
number of I/O data, the noise variance, and the design
parameter of the prefilter f are the same as in the
previous subsection. In this subsection, the reference input
r[k] is produced by a random binary sequence with the
magnitude 0.5 and the bandwidth 1/16. The estimated
results of the BCLS and of the LS methods are shown in
fig.3 and in fig.4, respectively.

The average of âBC is 0.6751 and is still biased. However,
the bias is improved compared to the average of âLS

0.5442. Thus, if âBC is used as the next design parameter
of the prefilter f , the convergence of the iterated algorithm
will be accelerated.

7.3 Iterative redesign of the prefilters

In this section, the proposed iterative algorithm is com-
pared with the iterative algorithm without bias compen-
sation and the IV method(Gilson et al. [2006]).

The plant to be estimated, the feedback controller, the
number of I/O data, the noise variance, and the reference
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Fig. 5. Parameter estimate of the proposed method

0.4 0.6 0.8 1.0âIV

b̂IV

0.3

0.5

0.7

0.9

Fig. 6. Parameter estimate by using the IV method

input r[k] are the same as in the subsection 7.2. The
initial design parameter of the prefilter is f = 0.7 in
each method. The iteration stops when the norm of the
parameter improvement becomes less than 0.001. In the
IV method, a noise model is not estimated because the
OE model is used in this simulation.

The estimated results of the proposed method and the
IV method are shown in figs.5 and 6, respectively. The
estimated result of the iterative algorithm without bias
compensation is almost the same as the proposed method.
So, the graph of the result is omitted here. In fig.5, the
ellipse defined by the covariance matrix calculated by the
proposed estimates is plotted in a solid line, while the
ellipse calculated by the IV estimates is plotted in a dotted
line. The covariance matrix of the proposed method is
slightly improved compared to that of the IV method.

The computational costs of the three methods are com-
pared in table 1. The averaged number of iterations in
the prosed method is improved compared to that of the
iterative algorithm without bias compesnsation. The com-
putational cost consuming part of the proposed method
is the calculation of the filtered I/O in step (2), which
is also required in the method without bias compensation.
Therefore, the reduction of the number of iterations results
in the reduction of the CPU time as in table 1. The number
of iterations required for the IV method is very small.
However, the IV method requires the calculation of the
instrumental variables and their filtered values as well as

Table 1. Number of iteration and CPU time

method averaged number
of iterations

CPU time [s]
for 1000 estimates

Proposed method 10.15 32.5828

iterative redesign of
prefilters without BC

15.88 42.7188

IV method 3.355 68.2813

the filtered I/O for each iteration. This results in a large
CPU time in the IV method.

8. CONCLUSION

The asymptotic bias of the least squares estimate in the
closed loop environment and the variance of the resid-
uals are analysed. An estimation method with iterative
redesign of the prefilters in which the BCLS method is
applied for each iteration is proposed. Numerical example
shows that the computational cost is reduced by applying
the bias compensation at each iteration. It is also shown in
the numerical simulation that the variance of the proposed
method is smaller than that of the IV method. Variance
analysis of the proposed estimate is a future work.
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tion of Processed in Closed Loop — Identifiability and
Accuracy Aspects—. Automatica, 13:59–75, 1977.

L. Ljung. System Identification 2nd ed. —Theory for the
User—. Prentice Hall, 1999.

L. Ljung, I. Gustavsson, and T. Söderström. Identification
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