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Abstract: This paper proposes a new interval observer design based on a high/low gain concept,
developed for the estimation of the input of a bioreactor. In a first step, a high gain bounded
error observer is proposed, which is able to estimate the unknown input of the considered system.
This observer is useful when an accurate model and noise–free measurements are available. We
show that the error of the high gain observer can be dynamically bounded, and then we generate
guaranteed bounds on this error through an interval observer. The estimation scheme is then
extended to an uncertain framework. Taking advantage of the nature of the interval estimates,
we run in parallel various observers using high or low gains values and then we take the best
estimates. The method is applied to the input estimation of a simple bioreactor model.

1. INTRODUCTION

The lack of accurate information when dealing with
biotechnological processes is a well known problem. For
example, system inputs can be uncertain, measurements
are often biased and only rough approximate model of
the system dynamics is available. These drawbacks have
motivated the development of robust methods for the
control of these processes and also for the estimation of
those variables that cannot be directly measured.

Robust state estimation of uncertain dynamical systems
is a consolidated trend of research. Various techniques in
this field have been developed, for example: state estima-
tion by means of convex sets, such as ellipsoidal methods
(Kurzhanski et al., 1994), interval observers (Gouzé et al.,
2000), bounded error estimators using interval analysis
(Jaulin, 2002), etc. On the other hand, estimation of un-
known inputs appears as a relatively new subject. The ob-
jective is to solve the so called inverse estimation problem,
that is, going back from measured outputs to the unknown
inputs of the system. This problem has been solved with
observers that are constructed to simultaneously perform
estimates over the state and the inputs. Most of these
methods have been formulated for linear models (Kim
and Goodall, 2005). Some approaches apply to nonlin-
ear models where nonlinearities are perfectly known, and
cancel when writing error dynamics equations. In a non-
linear framework, (Liu and Peng, 2002) consider an a-
priori modeling of the disturbance estimates according to
the available system knowledge. Another approach can be
found in (Corless and Tu, 1998), where the disturbance
is treated as a nonlinear non autonomous function. This
method is characterized by Lyapunov functionals for the
stability analysis of the estimations.

In the case of biotechnological processes (in particular in
depollution processes), it can often occur that influent

concentrations are unknown. (Aubrun et al., 2001) present
a method based on a stochastic approach in order to obtain
estimates of the influent substrate. In (Theilliol et al.,
2003) a method that uses online derivatives of available
outputs is provided.

In this paper we propose a new scheme to obtain an in-
terval observer for the input. Our development consists in
obtaining guaranteed bounds of the error of a conventional
observer, which assures convergence for high values of its
feedback gain. In particular, we consider the observer of
the input presented in (Mazenc, 2007), which guarantees
convergence for a high gain value, and then we derive
an interval observer for its error. After considering some
technical details, we construct an interval observer through
a change of coordinates that guarantees stable interval
estimates.

The proposed scheme is then developed and applied con-
sidering an uncertain framework, where the conventional
observer cannot guarantee any convergence result. Taking
advantage of the guaranteed interval estimates, we run
various observers in parallel generating a bundle of ob-
servers (Bernard and Gouzé, 2004). This approach allows
to combine low or high gain observers and then to compare
the obtained estimates.

This paper is organized as follows. In section 2 we present
an example of a general biotechnological model in dimen-
sion two. Properties and hypotheses are also introduced. In
section 3 a conventional observer for the estimation of the
input in presented. Section 4 is devoted to the formulation
of an interval observer for the input. We show some tech-
nical drawbacks to be faced when constructing an interval
observer, and then we present our contribution considering
both perfect knowledge and uncertain frameworks. Finally,
section 5 presents the application of the estimation scheme
with simulation results.
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2. ASSUMPTIONS AND NOTATIONS

Mass balance models of biotechnological processes have
been widely used for automatic control applications. We
consider a simple model (Monod, 1942) which describes
the behavior of the concentrations of a biomass x and a
substrate s in a perfectly mixed bioreactor:

{

ẋ = r(s, x) − ux, x(0) = x0

ṡ = u(v − s) − k1r(s, x), s(0) = s0
(1)

where x stands for the biomass and s for the substrate.
u(t) is the dilution input and k1 is the a conversion yield
coefficient. The biological activity of the system is featured
by the reaction rate r(s, x) ≥ 0, such that r(s, x)s=0 =
0, for which we assume that there is no explicit model
available. v = v(t) ∈ C1(R) corresponds to the unknown
concentration of influent substrate.
Consider that the system output can be written as:

y =

{

y1 = s
y2 = k2r(s, x)

(2)

using equation (2), system (1) can be written as a linear
system plus a term related to the uncertain input, similar
to the one presented in (Moisan and Bernard, 2006).

Property 1. For any positive initial condition, trajectories
of system (1) remain positive and bounded for any positive
time. We denote:

x(t) ≤ x, s(t) ≤ s, ∀t ≥ 0 (3)

Proof. Positivity of variables becomes trivial because
r(s, x)s=0 = 0. Now consider z = s+ k1x. It is clear that:

min{z(0), zin} ≤ z ≤ max{z(0), zin}

which proves the boundedness of the state vector. 2

The following hypotheses are needed for the statement of
our result.

Hypothesis 1. There exists a constant γ ∈ R+ such that:

∫ t

0

u(σ)dσ ≥ γt

Hypothesis 2. There exists a known constant β ∈ R+ such
that:

|v̇(t)| ≤ β

Hypothesis 3. There exist known intervals containing the
initial condition of the state of system (1) and the unknown
initial condition of the input v:

x0 ∈ [x−0 , x
+
0 ], s0 ∈ [s−0 , s

+
0 ], v0 ∈ [v−0 , v

+
0 ]

Our objective is to obtain an interval estimate of the un-
known input v(t), using the available information provided
in equation (2).

In a first step, a conventional observer with convergence
guaranteed for high gain values is considered. Then, on the
basis of a bounded error estimation scheme, an interval
observer for the input is constructed.

3. HIGH GAIN OBSERVER FOR THE INPUT

Let us consider the following input observer candidate for
system (1):

˙̂s = u(v̂ − y1) −
k1

k2

y2 + u(θ + θ2)(y1 − ŝ)

˙̂v = uθ3(y1 − ŝ)
(4)

where θ ∈ R is a tunable gain (for the sake of simplicity,
θ will be considered constant). System (4) is initialised
considering:

ŝ0 = s0 and v̂0 ∈ [v−0 , v
+
0 ] (5)

Equation (4) corresponds to a slightly modified equation of
the input observer proposed by (Mazenc, 2007), following
a scheme similar to the observer introduced in (Gauthier
et al., 1992).

Let us denote es = ŝ−s and ev = v̂−v. The error dynamics
are then expressed by the system:

ės = −u(θ + θ2)es + uev

ėv = −uθ3es − v̇(t)
(6)

Proposition 1. If Hypotheses 1 and 2 are verified, then for
a gain θ > 1 there exists a bound B(θ) ∈ R+ such that
|ev(t)| ≤ B(θ), with:

B(θ) =
2β

θ − 1
+

θ

θ − 1
(v+

0 − v−0 )e−γθt, ∀t ≥ 0 (7)

Proof. See the proof in Appendix A. 2

See also (Mazenc, 2007) for more details.

From equation (7), it is clearly seen that for a high gain
θ, the bound B(θ) can be made as small as desired with
a convergence rate arbitrary fast. Note that if β = 0
(the case where the input is a constant) then asymptotic
exponential convergence is reached.

Remark 1. The bound provided by equation (7) is valid
for well known stoichiometric coefficients k1 and k2, and
noise free measurements y1 and y2.

4. AN INTERVAL OBSERVER FOR THE INPUT

Interval observers are based on positive differential sys-
tems (Smith, 1995) and offer a way to deal with uncer-
tainty in the system, when known bounds of the uncertain
terms are available (Gouzé et al., 2000).
Let us note that, as there is no model available for the
unknown input v(t), proposing an interval observer is not
straightforward.

We develop an interval observer for the input, assuming
known bounds on the initial conditions.

Remark 2. The operator ≤ applied between vectors or
matrices should be understood as a set of inequalities
applied component by component.

The idea is to dynamically compute guaranteed upper and
lower bounds for the error system (6), that is, if:

[

e−s (0)
e−v (0)

]

≤

[

es(0)
ev(0)

]

≤

[

e+s (0)
e+v (0)

]

, then
[

e−s (t)
e−v (t)

]

≤

[

es(t)
ev(t)

]

≤

[

e+s (t)
e+v (t)

]

, ∀t ≥ 0

(8)
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and then, to obtain the bounds on the input considering:

v̂(t) − e+v (t) ≤ v(t) ≤ v̂(t) − e−v (t) (9)

We propose an interval observer considering a similar
framework of the observers proposed in (Moisan and
Bernard, 2006). The following concepts are required:

Definition 1. A matrix K is said to be cooperative if all
its off–diagonal elements are nonnegative: kij ≥ 0, ∀i 6= j.

Property 2. Consider a dynamical system of the form

ż = Kz + c

with z ∈ R
n, K ∈ R

n×n a cooperative matrix and c ∈ R
n
+,

then:

∀z0 ≥ 0 ⇒ z(t) ≥ 0

This means that z(t) remains nonnegative if z0 ≥ 0.

Proof. See (Moisan and Bernard, 2006) for a demonstra-
tion. 2

Now consider the error dynamics given by equation (6).
Denoting e = [es ev]T , it can be rewritten in the following
form:

{

ė(t) = uAe(t) + b(t)
z = Ce

(10)

with:

A =

[

−(θ + θ2) 1
−θ3 0

]

, b(t) =

[

0
−v̇(t)

]

, C = [1 0]

(11)
It is clear that, from Hypothesis 2, the term b(t) is bounded
by:

b−(t) =

[

0
−β

]

and b+(t) =

[

0
β

]

(12)

It is not difficult to verify that the interval observer
structure introduced in (Moisan and Bernard, 2006), given
by the pair of systems:

{

ė+(t) = Ae+(t) + b+ + Γ(Ce+(t) − z)
ė−(t) = Ae−(t) + b− − Γ(Ce−(t) − z)

(13)

where Γ = [γ1, . . . , γn]T does not provide at the same
time stability and cooperativity. Indeed, construct the
differential comparison e⋆ = [e+ − e, e− e−]T :

ė⋆(t) =

[

A+ ΓC 0
0 A+ ΓC

]

e⋆(t) +

[

b+(t) − b(t)
b(t) − b−(t)

]

(14)

where, considering equation (10), it is possible to check
that matrix A+ ΓC can be written as:

A+ ΓC =

[

−(θ + θ2) + γ1 1
−θ3 + γ2 0

]

(15)

which is cooperative if γ2 ≥ θ3, however the resulting
matrix is not stable.
To overcome this problem we propose a change of coor-
dinates of system (6) in which stable estimates can be
obtained.

4.1 Change of coordinates

It appears that matrix A is stable, with real and strictly
negative eigenvalues given by λ1 = −θ and λ2 = −θ2.
Therefore, it admits the diagonalization:

A = P∆P−1 (16)

where:

∆ =

[

−θ 0
0 −θ2

]

, P−1 =
1

θ − 1

[

−1 1/θ
θ2 −1

]

(17)

Consider the change of variables:

ζ = P−1e (18)

then, in the new coordinates system (10) is expressed by:

ζ̇(t) = u∆ζ(t) + P−1b(t) (19)

Taking advantage of the diagonal (and thus cooperative)
structure of matrix ∆, plus its stability for a gain θ ∈
R+ − {0, 1}, an interval observer can be obtained in the
ζ-coordinates, considering the bounds on the term b(t)
provided by Hypothesis (2).

4.2 An interval observer with perfect knowledge

Consider the following system:
[

ζ̇+(t)

ζ̇−(t)

]

= u

[

∆(θ) 0
0 ∆(θ)

] [

ζ+(t)
ζ−(t)

]

+ M(θ)

[

b+

b−

]

[

e+(t)
e−(t)

]

= G(θ)

[

ζ+(t)
ζ−(t)

]

(20)

where M(θ) and G(θ) are linear transformations that fulfil
the following properties:

Property 3. For e ∈ [e, e] ⊂ R
n and z = P−1e:

M(θ)

[

e
e

]

=

[

z
z

]

such that z ≤ z ≤ z

Property 4. For ζ ∈ [ζ, ζ] ⊂ R
n and ε = Pζ:

G(θ)

[

ζ
ζ

]

=

[

ε
ε

]

such that ε ≤ ε ≤ ε

See Appendix B for more details about M(θ) and G(θ).

Proposition 2. Given ζ−0 , ζ
+
0 such that ζ0 ∈ [ζ−0 , ζ

+
0 ] and

a gain θ ∈ R+ − {0, 1}, then system (20) is an interval
observer of system (10), leading to bounds on the input
v(t) by equation (9).

Proof. We need to prove that the error generated by
comparing systems (19) and (20) is a positive system. The
error dynamics are expressed by the equation:

[

ė+ζ (t)

ė−ζ (t)

]

= u

[

∆(θ) 0
0 ∆(θ)

] [

e+ζ (t)

e−ζ (t)

]

+ B(θ, b(t), b−, b+)

(21)

It can be shown that the residual term B(.) ∈ R
2n

is nonnegative (see Appendix B for details), and then
Proposition 2 holds. 2

Remark 3. This observer inherits the convergence charac-
teristic of the conventional observer (4).
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4.3 Interval observer with uncertainties

Consider now that the stoichiometric coefficients k1 and
k2 and the measurements are uncertain quantities. The
following hypotheses are considered:

Hypothesis 4. The stoichiometric coefficients k1 and k2 are
unknown but bounded by known positive values.

k1 ∈ [k−1 , k
+
1 ] and k2 ∈ [k−2 , k

+
2 ] (22)

Hypothesis 5. Online measurements y1(t) and y2(t) are
perturbed respectively by noises δs(t) and δq(t). We as-
sume that these perturbations are of multiplicative nature:

y1(t) = s(t)(1 + δs(t)) and y2(t) = k2(1 + δq(t))r(.)
(23)

Moreover, these noise signals are bounded such that
|δs(t)| ≤ ∆s < 1 and |δq(t)| ≤ ∆q < 1.

Considering Hypotheses 4 and 5, observer equation (4)
leads to error dynamics with the same structure as equa-
tion (10), except for the vector b(t) which now depends
on the uncertain values and on the gain θ. b(t) is then
expressed by:

b(t) =







usδs(θ + θ2 − 1) − y2

(

k1

k2(1 + δq)
−
k̃1

k̃2

)

uθ3sδs − v̇(t)







(24)

where k̃1 ∈ [k−1 , k
+
1 ] and k̃2 ∈ [k−2 , k

+
2 ]. From the previ-

ously introduced hypotheses it is easy to see that b(t) ∈
[b−(t), b+(t)], with:

• for θ ∈]0, θ⋆]:

b±(t) =





∓us∆s(θ + θ2 − 1) + y2

(

k±1
k∓2 (1 ∓ ∆q)

−
k∓1
k±2

)

±uθ3sδs ± β





(25)

• for θ > θ⋆, θ 6= 1:

b±(t) =





±us∆s(θ + θ2 − 1) + y2

(

k±1
k∓2 (1 ∓ ∆q)

−
k∓1
k±2

)

±uθ3sδs ± β





(26)

where θ⋆ is the positive solution of θ + θ2 − 1 = 0.

Remark 4. When considering uncertainties, the residual
vector b(t) and its bounds depend on the gain θ which
may dramatically amplify the uncertainties when using
high values of θ.

The observer candidate also keeps the same structure as
equation (20), then the following proposition holds.

Proposition 3. Given ζ−0 , ζ
+
0 such that ζ0 ∈ [ζ−0 , ζ

+
0 ] and

a gain θ ∈ R+ − {0, 1}, then system (20) (for bounds
b−(t) and b+(t) expressed by equation (25) and (26)) is
an interval observer of system (10), leading to bounds on
the input v(t) by equation (9).

Proof. The proof is the same as the one of Proposition 2.
2.

4.4 Bundle of observers

Taking advantage of the guaranteed nature of the interval
estimates provided by equation (20), we run simultane-
ously several observers with different fixed values of the
gain θ, which provide different behaviors of the estimates.
By means of a bundle of observers (Bernard and Gouzé,
2004), we can then compare various interval estimates and
take advantage of the good transient behavior of some
estimates and the good steady state estimates of others.
A bundle of observers let us relax the requirement of high
gain values of the observer (4): it is possible to run in
parallel observers considering either low or high values for
gain θ.

4.5 A simple biomass interval observer

An interval observer for the biomass x(t) can be proposed,
that uses the computed bounds of the input. Consider
the change of variables z(t) = k1x(t) + s(t) (Bastin and
Dochain, 1990), which eliminates the reaction rate r(x, s)
obtaining an observer whose convergence rate is given by
u.
{

ż+(t) = u(v+(t) − z+(t)), ż−(t) = u(v−(t) − z−(t))
x+(t) = (z+(t) − y1(t))/k1, x

−(t) = (z−(t) − y1(t))/k1

(27)

It is is possible to check that the interval estimates for
the biomass depend directly on the width of the interval
estimates of the unknown influent concentration.

5. APPLICATION

A simple application of the estimation scheme is presented,
inspired from anaerobic digestion processes. In this kind of
processes, the output y2 corresponds to the methane flow
rate and is usually online monitored.

Dilution and influent substrate (unknown input) are shown
in Fig. 1. Available outputs y1(t) (substrate) and y2(t)
(methane flow rate) are shown in Fig. 2.
We have run the proposed interval observer considering
a perfect knowledge of the system and noise–free mea-
surements. Simulation results for a single interval estimate
considering θ = 100 are shown in Fig. 3. Fast convergence
of the interval estimates toward the influent substrate
unknown value is verified.

A bundle of interval estimates has been run under an
uncertain framework. We considered a ±10% uncertainty
for the stoichiometric coefficients and a multiplicative
noise on the measurements up to a 3% (see Table 1). An

Table 1. System parameters and uncertainty.

parameter meaning value uncertainty

k1 biomass yield coef. 1.28 [1.15,1.4]
k2 methane yield coef. 25 [22.5,27.5]
∆s y1 noise upper bound - 0.03
∆q y2 noise upper bound - 0.03
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Fig. 1. Dilution and unknown influent substrate.
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Fig. 2. Online measurements y1 and y2.
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Fig. 3. Interval estimates for the unknown input and
biomass under perfect knowledge of the system. Con-
tinuous lines: interval estimates, dashed lines: real
values.

illustrative example is shown in Fig. 4, where two interval
estimates are shown: one for a low gain value θ = 1.1 and
other for a higher gain value θ = 50. A more dense bundle
of observers, with 30 interval estimates running in parallel,
with θ ∈ [0.1, 50] is then shown in Fig. 5, giving a more
accurate final interval estimate.

6. CONCLUSION

An interval observer for the estimation of the input of a
biotechnological process has been proposed. The only con-
dition imposed on the unknown input is the boundedness
of its time derivative, which is not restrictive. The interval

0 10 20 30 40 50 60 70
0 

20

40

60

80

time

in
fl
u

e
n

t 
s
u

b
s
tr

a
te

Fig. 4. Two interval observers. Dotted lines: low gain inter-
val estimates, continuous lines: high gain estimates.
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Fig. 5. Interval estimates for the unknown input and
biomass under uncertainty. Continuous lines: interval
estimates, dashed lines: real values.

estimates are obtained by bounding the error of a con-
ventional observer (Mazenc, 2007), and then extended to
an uncertain framework. Interval observers introduce some
advantages with respect to classical observation methods.
In particular for this development, we relaxed the high
gain requirement of the proposed conventional observer,
constructing interval estimates with both low and high
gain values. Moreover, interval estimates allow us to verify
the convergence of observer and assess the estimation
accuracy. A simple observer for the biomass has been also
tested, that uses the bounds generated for the input. In
is worth to remark that the interval estimates obtained
for the biomass can be improved using more sophisticated
interval observers, as it is shown in (Moisan et al., 2006).
As a future work, the application of the method to a real
industrial setup is expected.
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Appendix A. PROOF OF PROPOSITION 1

Consider the time parametrization:

τ =

∫ t

0

u(σ)dσ ≥ γt, γ, t ≥ 0 (A.1)

then system (10) can be rewritten as:

d

dτ

[

es

ev

]

= A

[

es

ev

]

+

[

0
−ψ(τ)

]

(A.2)

where

ψ(τ) =
dv
dt

(τ)

u(τ)
∈

[

−β

γ
,
β

γ

]

(A.3)

now, considering the change of variables ζ1 = θes − ev and
ζ2 = −θ2es + ev, it follows that:

d

dτ
ζ1 = −θζ1 + ψ(τ),

d

dτ
ζ2 = −θ2ζ2 − ψ(τ) (A.4)

Bounds for the term ψ(τ) in equation (A.3), let us write:

|ζi(τ)| ≤
β

γθi
+ |ζi(0)|e−θiτ , i = 1, 2 (A.5)

Now we can come back to the original coordinates:

|v̂(τ) − v(τ)| ≤
(θ + θ−1)β/γ + θ2(|ζ1(0)| + |ζ2(0)|)e−θτ

θ2 − θ
(A.6)

and finally considering equation A.1:

|v̂(t)−v(t)| ≤
2β

θ − 1
+

θ

θ − 1
(v+

0 −v−0 )e−γθt, ∀t ≥ 0 (A.7)

Then Proposition 1 holds. 2

Appendix B. PROOF OF PROPOSITION 2

For the proof of Proposition 2 we need to specify transfor-
mations M and G, and then verify that B is a nonnegative
vector.
Transformations M and G provide a link between e–
coordinates and ζ–coordinates. Considering the change of
variables ζ = P−1e used in section 4 to obtain stable
estimates, we specify M as follows:

M =

[

P−1
+ P−1

−

P−1
− P−1

+

]

(B.1)

Denote P−1 = {p̃ij}, ∀ i, j = 1, . . . , n. Matrices P−1
− and

P−1
+ ∈ R

n×n are defined as:

P−1
+ =

{

p̃ij if p̃ij ≥ 0
0 otherwise

and P−1
− = P−1 − P−1

+ (B.2)

that is, the positive and negative parts of matrix P−1 have
been separated.
Vector B can be written as:

B =

[

P−1
+ b+ + P−1

− b− − P−1b
P−1b− P−1

− b+ − P−1
+ b−

]

(B.3)

Considering b(t) ∈ [b−, b+] = [b(t) − ǫ−, b(t) + ǫ+] with
ǫ−, ǫ+ ∈ R

n
+, it follows that:

B =

[

P−1
+ ǫ+ − P−1

− ǫ−

P−1
+ ǫ− − P−1

− ǫ+

]

(B.4)

then, from equation (B.2) it is easy to see that B ≥ 0. Ma-
trix G is obtained in an analogous way (considering matrix
P ), assuring the bounding in the original coordinates. 2
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