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Abstract: The design approach based on tridiagonal structure combines the structure analysis
with the design of stabilizing controller. During the design procedure, the original nonlinear
affine systems is transformed into a stable system with special tridiagonal structure. In this
study, the method is proposed for synchronizing chaotic systems. There are several advantages
in this method for synchronizing chaotic systems: (a) it presents a systematic procedure for
construct a proper controller in chaos synchronization; (b) it can be applied to a variety of
chaotic systems with lower triangular structure. Examples of Lorenz system, Chua’s circuit and
Duffing system are presented.

1. INTRODUCTION

Synchronizing chaotic systems and circuits has received
great interest in recent years. Generally the two chaotic
systems in synchronization are called drive system and
response system respectively. The idea of synchronization
is to use the output of the drive system to control the
response system, and make the output of the response
system follow the output of the drive system. Many ap-
proaches have been proposed for chaos synchronization
Ott [1990],Carroll [1991],Bai [1997] and Liao [2000]. Back-
stepping method Sepulchre [1997] has become one of the
most important approaches for synchronizing chaotic sys-
tems Li [2006],Zhang [2004] in recent years. The main
advantage of this method is the systematic construction of
a Lyapunov function for the nonlinear systems, and control
goal can be achieved with reduced control effort.

Notice the original systems is transformed into the sys-
tem with special tridiagonal structure using backstepping.
There are a class of design methods proposed in Liu
[2007] including direct design method and recursive de-
sign method based on tridiagonal structurem, which is to
transform the original systems into the system with stable
tridiagonal structure by inputs and coordinate change.
The recursive design method is similar to backstepping
and can design the controllers with more parameters than
backstepping for nonlinear systems.

This paper focuses on showing the effectiveness of the
recursive design method based on tridiagonal structure to
a wider variety of chaotic systems. The paper is organized
as follows: In Section 2 the class of chaotic systems
considered in this work and the problem formulation are
presented. In Section 3, two theorems about systems with
tridiagonal structure are given and the recursive design
method based on special tridiagonal structure is given.
In Section 4, the method is utilized for several systems
such as Lorenz system, Chua’s circuit and Duffing system.
Numerical simulations are carried out to confirm the

validity of the proposed theoretical approach. In Section 5
conclusion is presented.

2. PROBLEM FORMULATION

In general, typical dynamics of chaotic systems such as
Lorenz system, Chua’s circuit and Duffing system all
belong to the system as following:

ẋ = f(x) (1)

where x = [x1, · · · , xn]T ∈ Rn are state variables.

Assume that drive system is expressed as Eq. (1). Then
response system which is coupled with system (1) by u is
as following:

ẏ = f1(y) + g1(y)u (2)

where y = [y1, · · · , yn]T ∈ Rn are state variables and
u ∈ Rm are inputs.

Let us define the state errors between the response system
and the drive system as

e1 = y1 − x1, e2 = y2 − x2 · · · en = yn − xn (3)

e = [e1, · · · , en]T (4)
Subtract (1) from (2). Notice Eqs.(3) and (4), finally error
system can be derived as

ė = f1(y)− f (x) + g1(y)u (5)
The problem to realize the synchronization between two
chaotic systems now is transformed into another problem
on how to choose control law u to make e converge to zero
with time increasing.

3. CONTROL BASED ON TRIDIAGONAL
STRUCTURE

In this section, nonlinear control methods based on tridi-
agonal structure are introduced. First of all, two theorems
about systems with specially tridiagonal structure are in-
troduced.
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Theorem 1. Consider the systems with state-dependent
coefficients as follows:

ẋ = A(x)x (6)

where x = [x1, · · · , xn]T , A (x) is called coefficient matrix
and has a class of tridialognal structure. If the A (x) =
[aij ] ∈ Rn×n, i, j = 1, · · · , n satisfies the following condi-
tions:

(1) |i− j| > 1, aij = 0;
(2) |i− j| = 1, aij/aji = const ∈ R−;
(3) |i− j| = 0, aij < 0;

the system (6) is asymptotically stable.

Proof.

Let ki = −aij

aji
, (j − i = 1), and take the matrix Λ as

Λ = diag{d1, d2, · · · , dn} (7)
where d1 = 1, d2 = k1, · · · , di = di−1

√
ki. Choose the

Lyapunov function candidate as

V =
1
2
xT Λ−2x (8)

The derivative of V is given by
V̇ = −xT Px (9)

where matrix P = diag{−a11, · · · ,−ann}is a positive
matrix. Therefore, the equilibrium x = 0 is globally stable.

We know the stable systems with special structure. Then,
the stabilization of nonlinear affine systems can be trans-
formed into the construction of the system from the orig-
inal nonlinear affine systems. There exist a method based
on tridiagonal structure for the systems with lower trian-
gular structure. The method is suitable for the systems
with lower triangular structure. Consider the system with
lower triangular

ẋ1 = f1 (x1) + g1 (x1) x2

ẋ2 = f2 (x1, x2) + g2 (x1, x2) u
(10)

where x = [x1, x2]
T ∈ Rn,u ∈ R. The objective of control

based on tridiagonal structure is to transform the systems
into a system that has a special tridiagonal structure and
satisfies the conditions of theorem 1. The design procedure
is as follows:

(1) Take the variable x2 as virtual input, and design the
controller of the systems as follows:

ẋ1 = f1 (x1) + g1 (x1) x2 (11)
The virtual controller can be got as

x2 = α1 (x1) =
1

g1 (x1)
(−f1 (x1)− k1x1)

(2) The variable x2 is not the practical controller, and
the error between x2 and α1 (x1) is z2 = x2−α1 (x1).
The derivative of z2 is as follows:

ż2 = f2 (x2) + g2 (x2) u− α̇ (x1) (12)
Take the practical controller as

u =
1

g2 (x1, x2)
(−l1g1 (x1)− f2 (x1)− k2z2 + α̇ (x1))

(13)
We can get the new systems as follows:[

ż1

ż2

]
=

[−k1 g1 (z1)
−l1g1 (z1) −k2

] [
ż1

ż2

]
(14)

where z1 = x1. The asymptotical stability of (14) can
be guaranteed by Theorem 1.

The similar procedure can be used for the system with
lower triangular structure as follows:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

...
ẋn = fn(x1, · · · , xn) + gn(x1, · · · , xn)u

(15)

where gi (·) 6= 0. The above system can be transformed
into the system as follows:

ż =




−k1 g1 (z)

−l1g1 (z) −k2
. . .

. . . . . . gn−1 (z)
−ln−1gn−1 (z) −kn


 z (16)

where ki > 0, z ∈ Rn. The objective of the design method
is to transform the system (15) into the systems (16) by
using coordinate changes and inputs. In the next section,
the design method is used to synchronize chaotic systems.

4. SYNCHRONIZATION VIA THE DESIGN BASED
ON TRIDIAGONAL STRUCTURE

In this section, Lorenz system, Chua’s circuit and Duffing
system are presented for synchronizing by the design
method based on tridialognal structure.

4.1 Lorenz system

In Lorenz system, external excitation does not exit. Drive
Lorenz system and response Lorenz system can be de-
scribed respectively as (17) and (18)

ẋ1 = σ (y1 − x1)
ẏ1 = ρx1 − y1 − x1z1

ż1 = −βz1 + x1y1

(17)

ẋ2 = σ (y2 − x2)
ẏ2 = ρx2 − y2 − x2z2

ż2 = −βz2 + x2y2 + u
(18)

where σ, ρ, β > 0. Let
ex = x2 − x1, ey = y2 − y1, ez = z2 − z1 (19)

Subtract Eq. (17) from Eq. (18), consider Eq. (19), and
obtain

ėx = σ (ey − ex)
ėy = ρex − ey − exez − exz1 − x1ez

ėz = −βez + exey + exy1 + x1ey + u
(20)

The problem of synchronization between drive and re-
sponse system can be transformed into a problem on how
to realize the asymptotical stabilization of system (20).
Now the objective is to find a control law u for trans-
forming the system (20) into a system with tridiagonal
structure.

First we consider the system (21)
ėx = σ (ey − ex) (21)

Take ey as a virtual control, we can get
ey = α1 (ex) = 0, k1 > 0 (22)

Define a new variable e2 = ey − α1 (ex), and obtain the
system

ėx = −σex + σz2

ė2 = f2 (ex, ey, z1, ėx) + g2 (ex, ey, z1) ez
(23)
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Fig. 1. Synchronized states x1, x2 of modified Lorenz
system

where
f2 (ex, ey, z1, ėx) = ρex − ey − exz1

g2 (ex, ey, z1) = −ex − x1
(24)

Suppose g2 (·) 6= 0, and take ey as a virtual control, we
can get

ez = α2 (ex, ey, z1)

=
1

g2 (ex, ey, z1)
(−f2 (ex, ey, z1, ėx)−

l1σex − k2e2) (25)

Define a new variable e3 = ez − α2 (ex, ey, z1), and obtain
the system

ėx = −σ (k1 − 1) ex − σz2

ė2 = l1σex − k2e2 + g2 (ex, ey, z1) e3

ė3 = f3 (ex, ey, ez, z1) + g3 (ex, ey, ez, z1) u
(26)

where

f3 (ex, ey, ez, z1, α̇2) =−βez + exey + exy1 + x1ey

−α̇2 (ex, ey, z1) (27)

g3 (ex, ey, ez, z1) = 1 (28)

Let the controller as

u =
1

g3 (ex, ey, ez, z1)
(−f3 (ex, ey, ez, z1, α̇2)

−k3e3 − l2g2e2) (29)

Substitute (29) into (26), and obtain

[
ėx

ė2

ė3

]
=

[−k1 σ 0
−l1σ −k2 g2 (·)
0 −l2g2 (·) −k3

][
ex

e2

e3

]
(30)

The globally asymptotical stability of (30) can be assured
according to theorem 1, that is ex, e2, e3 → 0. From the
definition of e2, e3, we can get ex, ey, ez coverage to zero
with time increasing.

The parameters are selected as σ = 10, β = 8/3, ρ =
28, l1 = l2 = k1 = k2 = k3 = 2 and initial condition is
taken as x1 (0) = 20, y1 (0) = 5, z1 (0) = 20, x2 (0) = 24,
y2 (0) = 20, z2 (0) = 28. With the control law (29), as
we can see from Fig. 1-Fig. 3, the slave system is driven
to chaotic state gradually, which synchronizes with the
master system.

Fig. 2. Synchronized states y1, y2 of modified Lorenz
system

Fig. 3. Synchronized states z1, z2 of modified Lorenz sys-
tem

4.2 Chua’s circuit

In order to further test the effectiveness of the method,
Chua’s circuit, which was the first physical dynamical
system capable of generating chaotic phenomena in the
laboratory, is proposed for synchronizing. The circuit
considered here contains a cubic nonlinearity and the drive
system (31) and response system (32) are described by the
following set of differential equations:

ẋ1 = α
(
y1 − x3

1 − cx1

)
ẏ1 = x1 − y1 + z1

ż1 = −βy1

(31)

ẋ2 = α
(
y2 − x3

2 − cx2

)
ẏ2 = x2 − y2 + z2

ż2 = −βy2

(32)

Subtract (32) from (33), and obtain the error systems as
follows:

ėx = −αey − αex

(
e2
x + 3x1ex + 3x2

1

)− αcex + u
ėy = ex − ey + ez

ėz = −βey

(33)

where ex = x2 − x1, ey = y2 − y1, ez = z2 − z1. Now the
objective is to find a control law u for transforming the
system (33) into a system with tridiagonal structure.

First we consider the system (34)
ėz = −βey (34)

Take ey as a virtual control, we can get
ey = α1 (ez) = k1ez, k1 > 0 (35)
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Take a new variable e2 = ey − α1 (ez), and obtain the
system as follows:

ėz = −k1βez − βz2

ė2 = f2 (ez, ey) + g2 (ez, ey) ex
(36)

where

f2 (ez, ey) =−ey + ez − α̇1 (ez)

g2 (ez, ey) =−1 (37)
Suppose g2 (·) 6= 0, and take ey as a virtual control, we
can get

ex = α2 (ex, ey, z1)

=
1

g2 (ex, ey, z1)
(−f2 (ex, ey, z1, ėx)

+l1βez − k2e2) (38)
Take a new variable e3 = ex − α2 (ez, ey, z1), and obtain
the system

ėz = −k1βez − βe2

ė2 = l1βez − k2e2 + g2 (ez, ey) e3

ė3 = f3 (ex, ey, ez, z1) + g3 (ex, ey, ez, z1) u
(39)

where

f3 (ex, ey, ez, x1) =−αey − αex

(
e2
x + 3x1ex + 3x2

1

)− αcex

−α̇2 (ex, ey, z1)

g3 (ex, ey, ez, z1) = 1 (40)
Let the controller as

u =
1

g3 (ex, ey, ez, z1)
(−f3 (ex, ey, ez, z1, α̇2)− k3e3 − l2g2)

(41)
Substitute (41) into (41), we can obtain[

ėz

ė2

ė3

]
=

[−k1β −β 0
l1β −k2 g2 (·)
0 −l2g2 (·) −k3

][
ex

e2

e3

]
(42)

The globally asymptotical stability of (42) can be assured
according to theorem 1, that is ez, e2, e3 → 0. From the
definition of e2, e3, we can get ex, ey, ez coverage to zero
with time increasing.

Choose α = 10, β = 16, c = −0.143, l1 = l2 = k1 = k2 =
k3 = 2 and take initial condition as x1 (0) = 1, y1 (0) =
2, z1 (0) = 1,x2 (0) = 10, y2 (0) = 5, z2 (0) = 5. With the
control law (41), as we can see from Fig. 4-Fig. 6, the
slave system is driven to chaotic state gradually, which
synchronizes with the master system.

4.3 Duffing system

Lorenz system and Chua’s circuit discussed above can
generate chaotic phenomena under no external excitation
condition while Duffing system can generate chaotic phe-
nomena only under external excitation. So here we classify
Duffing system to another chaotic system and make Duff-
ing system an example to illustrate how to use this method
to synchronize chaotic systems with external excitation.
The following set of differential equations formulates two
Duffing systems. The first is drive system and the second
response system

ẋ1 = y1

ẏ1 = αx1 + by1 − x3
1 + c cos(0.4t) (43)

Fig. 4. Synchronized states x1, x2 of modified Chua ’s
circuit

Fig. 5. Synchronized states y1, y2 of modified Chua ’s
circuit

Fig. 6. Synchronized states z1, z2 of modified Chua ’s
circuit

ẋ2 = y2

ẏ2 = αx2 + by2 − x3
2 + c cos(t) (44)

where a > 0, b < 0, c are known parameters.

Subtract (43) from (44), and obtain the error system as
follows:
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Fig. 7. Synchronized states x1, x2 of modified Duffing
system

ėx = ey

ėy = aex + bey − ex

(
e2
x + 3x1ex + 3x2

1

)

+c [cos t− cos (0.4t)] + u (45)
where ex = x2 − x1, ey = y2 − y1. Now the objective is to
find a control law u for transforming the system (33) into
a system with tridiagonal structure.

First we consider the system (46)
ėx = ey (46)

Take ey as a virtual control, we can get
α1 (ex) = −k1ex, k1 > 0 (47)

Take a new variable e2 = ey − α1 (ex), and obtain the
system

ėx = −k1ex + z2

ė2 = f2 (ex, ey, t) + g2 (ex, ey) u
(48)

where

f2 (ex, ey, t) = aex + bey − ex

(
e2
x + 3x1ex + 3x2

1

)

+c [cos t− cos (0.4t)]− α̇1 (49)

g2 = 1 (50)
Take the controller as

u =
1

g2 (ex, ey, t)
(−f2 (ex, ey, t)− k2e2 − l1g1ex) (51)

Substitute (41) into (41), we can obtain[
ėx

ė2

]
=

[−k1 1
−l1 −k2

] [
ex

e2

]
(52)

The globally asymptotical stability of (42) can be assured
according to theorem 1, that is ex, e2 → 0. From the
definition of e2, we can get ex, ey coverage to zero with
time increasing.

Take the parameters as a = 1.8, β = −0.1, c = −1.1, l1 =
k1 = k2 = 2, and select initial condition as x1(0) =
1, y1(0) = 1, x2 (0) = 2, y2 (0) = 2. With the control
law (51), as we can see from Fig. 7 and Fig. 8, the
slave system is driven to chaotic state gradually, which
synchronizes with the master system.

5. CONCLUSION

In this paper, the design method based on tridiagonal
structure has been proposed and used to synchronize

Fig. 8. Synchronized states y1, y2 of modified Duffing
system

chaotic systems. The advantages of this method can be
summarized as follows: (a) it presents a systematic proce-
dure for selecting proper controllers in chaos synchroniza-
tion; (b) it can be applied to a variety of chaotic systems
with lower triangular structure. The technique has been
successfully applied to the Lorenz system, Chua’s circuit
and Duffing system. Numerical simulations have verified
the effectiveness of the method.
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