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Abstract:
A look-ahead controller is developed for a heavy diesel truck that utilizes information about the
road topography ahead of the vehicle when the route is known. A dedicated prediction model
is formulated where special attention is given to properly include gear shifting. The nature
of the problem is analyzed for the purpose of optimization, and a well performing dynamic
programming algorithm is tailored. A key step for satisfactory solutions with a sufficiently low
computational effort is to avoid numerical problems. The focus here is the choice of discretization
method, and it turns out that a basic analysis give decisive insight into the interplay between
the criterion and the discretization errors. The resulting algorithm is demonstrated to perform
well in real on-line tests on a highway.
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1. INTRODUCTION

A drive mission for a heavy truck is studied, and it is
envisioned that there is road data on-board and that
the current route is known. In the present work, this
information entails the road slope ahead of the vehicle.
A drive mission is given by a route, an allowed velocity
range and a desired maximum trip time. The objective is
to minimize the energy required for a given mission.

Fuel-optimal solutions on basic topographic road pro-
files are obtained in Schwarzkopf and Leipnik (1977);
Monastyrsky and Golownykh (1993); Chang and Morlok
(2005); Fröberg et al. (2006). Predictive cruise control is
investigated through computer simulations in e.g. Latte-
mann et al. (2004); Terwen et al. (2004). In Hellström
et al. (2006) a predictive cruise controller is also developed
where discrete dynamic programming is used to numeri-
cally solve the optimal control problem. In Hellström et al.
(2007) the approach was evaluated in real experiments.

The purpose of the present paper is to study this problem
and to devise a dedicated optimization algorithm. The
algorithm should be sufficiently robust and simple in
order to enable evaluation on board a vehicle in a real
environment. The presentation starts out with a basic
analysis that give insights into the nature of the problem.
In Section 3, common vehicle models of the longitudinal
dynamics including modeling of gear shifts are used to
develop a prediction model of the truck. The look-ahead
control scheme is explained and the control criterion is
defined in the following section. The numerical analysis in
Section 5 gives understanding about how the errors due
to the discretization method and the criterion interacts.
This is a crucial step in the design of the algorithm that
in Section 6 are proven to perform well by computer
simulation results as well as experimental results from a
highway.

2. A BASIC ANALYSIS

Consider the motion of a vehicle in one dimension, see
Figure 1. The driving force is given by the function g(u)

x̂

mf(x, v) g(u)

Fig. 1. A vehicle moving in one dimension.

where u is a scalar control variable. The resisting force
is dependent on the position x and the velocity v and is
denoted by the function f(x, v). It is assumed that this
function is monotonically increasing for positive v, that is

∂f

∂v
≥ 0, v > 0 (1)

which should hold for any physically plausible resistance
function. The problem of finding the velocity trajectory
that minimizes the work required to move the vehicle from
one point x = 0 to another point x = s is now studied.

Newton’s second law of motion in spatial coordinates gives

mv
dv

dx
= g(u) − f(x, v). (2)

The propulsive work equals

W =

s
∫

0

g(u)dx =

s
∫

0

(mv
dv

dx
+ f(x, v)) dx

=
m

2

(

v(s)2 − v(0)2
)

+

s
∫

0

f(x, v) dx (3)
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that is, the sum of the difference in kinetic energy and the
work due to the resisting force along the path.

The problem objective is now stated as

min
v(x)

s
∫

0

(mv(x)
dv(x)

dx
+ f(x, v(x))) dx (4)

with the time constraint expressed as
s

∫

0

dx

v(x)
≤ T (5)

where T denotes the desired maximum time.

If the inequality in (5) is replaced by an equality, the
resulting problem is an isoperimetric problem. The core
in the calculus of variations is the Euler equation, which
for a functional

∫

F (x, y, y′) dx is

∂F

∂y
−

d

dx

∂F

∂y′
= 0. (6)

If the functional has an extremum for a function y(x) but
this function does not yield the desired value of another
functional

∫

G(x, y, y′) dx, there exist a constant λ such
that the Euler equation is satisfied for the functional
∫

F + λG dx (Gelfand and Fomin, 1963).

Only smooth solutions will be considered, so it is assumed
that the studied functional has continuous first and second
order derivatives in the considered interval for arbitrary v
and v′. In the present problem (4) and (5), the functional

s
∫

0

(mv
dv

dx
+ f(x, v) +

λ

v
) dx (7)

is formed where λ is a constant. Then, according to the
Euler equation

m
dv

dx
+

∂f

∂v
−

d

dx
(mv) + λ

(

−
1

v2

)

= 0 (8)

should be satisfied which yields that

v2 ∂

∂v
f(x, v) = λ (9)

is a necessary condition for the objective to have an
extremum for a function v(x). Due to the assumption (1),
the multiplier λ will be positive. Relaxing the equality
constraint to the inequality (5) does not alter the solution.
Every v(x) that becomes admissible when the equality
constraint is replaced with an inequality will have a higher
value of the objective (4) due to (1).

In order to proceed, assume that the resistance function is
a sum of two functions with explicit dependency on x and
v respectively, that is

f(x, v) = f1(x) + f2(v). (10)

The condition (9) then becomes

v2 ∂

∂v
f2(v) = λ. (11)

For a given λ, the solution to (11) is constant velocity. To
minimize the work for moving the body from one point to

another point, the extremum is thus a constant speed level
adjusted to match the desired trip time.

2.1 Observations

For the problem depicted in Figure 1, constant speed is
shown to be the solution to the problem of minimizing the
needed work to move from one point to another with a trip
time constraint. The assumptions are that the velocity and
acceleration are smooth and that (1), (2) and (10) holds.
However, it is not reasonable to expect that a heavy truck
can keep the optimal cruising speed on all road profiles. If
the speed can not be kept constant, then it is not plausible
that it is possible to always have the same gear engaged
either. Therefore, gear selection should be included in the
problem description.

3. TRUCK MODEL

A model for the longitudinal dynamics of a truck is
formulated in this section (Kiencke and Nielsen, 2005).

The engine torque Te is given by Te = fe(ωe, uf ) where ωe

is the engine speed and uf is the fueling control signal. The
function fe is here made up of a lookup table originating
from measurements. The clutch, propeller shafts and drive

Table 1. Longitudinal forces.

Force Explanation Expression

Fa(v) Air drag 1

2
cwAaρav2

Fr(α) Rolling resistance mg0cr cos α

FN (α) Gravitational force mg0 sin α

shafts are assumed stiff. The resulting conversion ratio of
the transmission and final drive i(g) and their efficiency
η(g) are functions of the engaged gear number, denoted
by g. The models of the resisting forces are explained in
Table 1. The relation

v = rwωw =
rw

i(g)
ωe (12)

is assumed to hold where rw is the wheel radius. When a
gear is engaged, this gives

dv

dt
(x, u, α) =

rw

Jl + mr2
w + η(g)i(g)2Je

(

i(g)η(g)Te(v, uf )

−Tb(ub) − rw (Fa(v) + Fr(α) + Fl(α))
)

(13)

where x = [v, g]
T

, u = [uf , ub, ug]
T

denote the state and
control vector respectively. The states are the velocity v
and currently engaged gear g and the controls are fueling
uf , braking ub and gear ug. The road slope is denoted
by α and the brake torque is denoted by Tb. All model
parameters are explained in Table 2.

Table 2. Prediction model parameters.

Jl Lumped inertia cw Air drag coefficient
Je Engine inertia Aa Cross section area
m Vehicle mass ρa Air density
rw Wheel radius cr Rolling resistance coefficient
g0 Gravity constant
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3.1 Fuel Consumption

The mass flow of fuel ṁ is determined by the fueling level
uf and the engine speed ωe. Assuming again that (12)
holds, the mass flow is

ṁ(x, u) =
ncyl

2πnr

i(g)

rw

vuf (14)

where ncyl is the number of cylinders and nr is the number
of engine revolutions per cycle.

3.2 Gear Shift Modeling

It is assumed that the transmission is of the automated
manual type and that gear shifts are carried out by engine
control. In order to engage neutral gear without using the
clutch, the transmission should first be controlled to a state
where no torque is transmitted. The engine torque should
then be controlled to a state where the input and output
revolution speeds of the transmission are synchronized
when the new gear is engaged.

Approach In the case of a truck with a large vehicle mass,
the time without engine propulsion becomes significant.
Assume that the control signal ug changes value from g1

to g2 at t = 0 and thereby commands a shift. The currently
engaged gear g(t) is then described by

g(t) =

{

g1 , t < 0
0 , 0 ≤ t ≤ τ
g2 , t > τ

(15)

where gear zero corresponds to neutral gear. The time in
neutral gear, denoted by τ , is assumed constant. Fueling
is required to synchronize the engine speed with the
corresponding speed of the next gear in case of a down-
shift. When neutral gear is engaged,

Jeω̇e = Te = fe(ωe, uf ) (16)

holds where Je is the engine inertia. It is here assumed
that the control uf used is known. The time required for
synchronization is then found by simulating (16).

Neutral Gear Modeling When neutral gear is engaged
g = 0, the engine transmits zero torque to the driveline.
The ratio i and efficiency η are undefined since the engine
is decoupled from the rest of the powertrain. The approach
taken here is to define the ratio and efficiency of neutral
gear to be zero. Then, Equation (13) with i(0) = η(0) = 0
describes the vehicle motion. When neutral gear is en-
gaged, it is assumed that the control uf is at a constant
level that gives the desired idle speed of the engine.

4. LOOK-AHEAD CONTROL

Look-ahead control is a predictive control scheme with ad-
ditional knowledge about some of the future disturbances
to the controlled system. In the current application, this
additional knowledge includes the road topography ahead
of the vehicle. An optimization is then performed with
respect to a criterion that involves predicted future behav-
ior of the system. This is accomplished through dynamic
programming (DP) (Bellman and Dreyfus, 1962).

The prediction model (13)– (16) is discretized in order to
obtain a discrete process model

xk+1 = f(xk, uk, αk)

where xk, uk denotes the state and control vectors. The
known disturbance, the road slope, is denoted by αk.
Divide the distance of the entire drive mission into M
steps. The problem faced is to find

J∗

0 (x0) = min
u0,...,uM−1

ζM (xM ) +

M−1
∑

k=0

ζ(xk, uk, αk) (17)

where ζ and ζM defines the running and the terminal
cost respectively. A look-ahead horizon is constructed by
truncating the entire drive mission horizon of M steps to
N < M steps and approximating the cost-to-go at stage
N . The shorter horizon is used in the online optimization.
Rewrite the problem (17) as

J∗

0 (x0) = min
u0,...,uM−1

{

ζM (xM ) +

M−1
∑

k=0

ζ(xk, uk, αk)

}

= min
u0,...,uN−1

{

N−1
∑

k=0

ζ(xk, uk, αk)

+ min
uN ,...,uM−1

{

ζM (xM ) +

M−1
∑

k=N

ζ(xk, uk, αk)

}}

and define the residual cost

J∗

N (xN ) = min
uN ,...,uM−1

ζM (xM ) +

M−1
∑

k=N

ζ(xk, uk, αk) (18)

as the cost-to-go function at stage N . Replace this function
with an approximation J̃∗

N (xN ) that should be available
at a low computational effort. The problem is now only
defined over the look-ahead horizon and

min
u0,···,uN−1

J̃∗

N (xN ) +

N−1
∑

k=0

ζ(xk, uk) (19)

is to be solved. The control u0 is applied to the system
and the procedure restarts with a horizon that has moved
forward in order to calculate the next control according to

min
u1,···,uN

J̃∗

N+1(xN+1) +

N
∑

k=1

ζ(xk, uk) (20)

where the control u1 is applied. This procedure is then
repeated.

4.1 Criterion

The current objective is to minimize the energy for a given
drive mission. Denote by M the fuel use and by T the time
required for a trip from s = s0 to s = sf ,

M =

sf
∫

s0

ṁ(x, u)
ds

v
, T =

sf
∫

s0

ds

v
. (21)

To weigh fuel and time use, the criterion chosen is

I = M + βT (22)
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where β is a scalar parameter which can be tuned to receive
the desired trade off. The parameter is here chosen in order
to receive a stationary solution at a desired cruising speed
on flat road for the model (13).

Running Cost The running cost is chosen from the
continuous criterion (22) as

ζ(xk, uk, αk) = mk + βtk (23)

where

mk =

(k+1)h
∫

kh

ṁ(x, u)
ds

v
, tk =

(k+1)h
∫

kh

ds

v
. (24)

Residual cost Known methods for approximating the
residual cost (18) involve offline and online calculations
(Bertsekas, 2005). One offline approach is to simplify the
present model and use it for deriving the approximation.
Online calculations can e.g. be based on a heuristic control
law where the cost is computed analytically or through
simulations.

The residual cost function will here be constructed offline
under simplifying assumptions. The disturbance αk, the
road slope, is assumed to be zero for the next N steps
and the cost-to-go with these conditions is calculated. The
residual cost J∗

N (xN ), defined in (18) is thus approximated

by J̃∗

N (xN ), where

J̃∗

N (xN ) = min
uN ,...,u2N−1

2N−1
∑

k=N

ζ(xk, uk, 0). (25)

The running cost ζ is given in (23) and the terminal cost
ζM is here chosen to zero. This approximation is obviously
not dependent on the current position and therefore, the
solution to (25) can be obtained offline and stored as a
tabulated function.

4.2 Dynamic Programming Algorithm

Denote by Uk the set of allowed controls and by Sk the
set of allowed states at stage k. The DP solution to the
look-ahead problem (19) is as follows.

(1) For x ∈ SN , let JN (x) = J̃∗

N (x).
(2) Let k = N − 1.
(3) For x ∈ Sk, let

Jk(x) = min
u∈Uk

{ζ(x, u, αk) + Jk+1(f(x, u, αk))} .

(4) Repeat (3) for k = N − 2, N − 3, . . . , 0.
(5) The solution is made up of the control with the

associated optimal cost J∗

0 (x0) = J0(x0).

5. DISCRETIZATION ANALYSIS

Performing numerical optimization of dynamical systems
inevitable leads to errors such as rounding and truncation
errors. It is of course desirable, but hard to guarantee, that
such errors do not lead to that the numerical solution differ
from the true solution to the original problem.

The choice of discretization method affects algorithm com-
plexity, and two well known and simple methods for solv-
ing ordinary differential equations are the Euler forward

and backward method. The Euler methods are used in the
optimization formulation due to their simplicity.

In the following first some potential problems that can
occur are presented. These must be avoided, and there-
fore test problems and guiding examples are analyzed to
accomplish this.

5.1 Potential Discretization Problems

Potential problems caused by discretization errors are
presented in the following setting. Flat road is assumed
for these examples. The shown solutions are obtained by
applying the DP algorithm with a grid of 20 steps of 50 m
and a velocity quantization of 0.2 km/h.

Oscillating solutions are obtained when the Euler forward
method is used to discretize the model equations. Figure 2
shows characteristic appearance. The forward method
applied to the prediction model is stable for the step
lengths used so a stability analysis can not explain the
behavior. The oscillating solution obtained when using
Euler forward is shown to the left. The more stable solution
to the right is obtained with Euler backward. Using a
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Fig. 2. Using different methods to discretize the model
used for optimization. Left: Euler forward. Right: Eu-
ler backward.

finer grid does not remove the oscillating behavior, but
the amplitude decreases.

5.2 Basic Analysis Continued

The vehicle in Figure 1, with one additional assumption,
will be used as a test problem. The resisting force is
assumed to be independent of x, that is f(x, v) = f(v).
A model for the system is given by (2). The objective
considered is to minimize the work needed to bring the
system from x = 0, v(0) = v0 to x = s, v(s) = v0.
According to (3), the work needed is

W =

s
∫

0

g(u) dx =

s
∫

0

f(v) dx (26)

since the kinetic energy at the start and the end of the
interval is the same. The time is constrained by

∫ s

0
dx
v

≤ T .

Assume now that the integration interval is subdivided
into only three mesh points 0 < h < 2h where h denotes
the step size. The control u is assumed constant on each
subinterval,

u(x) =

{

u0 , 0 ≤ x < h
u1 , h ≤ x < 2h
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The objective can then be stated as

J = min
u0,u1

h (g(u0) + g(u1)) (27)

using Equation (26) and where v(0) = v0, v(h) = v1. The
maximum time T is chosen as T = 2h

v0

. The expected
solution to the discretized problem is constant speed, that
is v1 = v0 according to Section 2.

5.3 Interplay between Criterion and Errors

The forward Euler method applied on the model (2) gives

vi+1 − vi

h
=

dv

dx
(xi) =

1

mvi

(g(ui) − f(vi)) (28)

and Euler backward
vi+1 − vi

h
=

dv

dx
(xi+1) =

1

mvi+1
(g(ui) − f(vi+1)) . (29)

Now, study the value of the objective (27) when using
these different methods. Letting i = {0, 1}, the equations
(28) and (29) can be solved for g(u0) and g(u1) in each
case. Due to the terminal constraints, v2 = v0. Insertion
into the objective (27) gives when using the forward Euler
method,

WEF (v0, v1) = h (f(v0) + f(v1)) − m (v1 − v0)
2

(30)

and when using the backward Euler method,

WEB(v0, v1) = h (f(v0) + f(v1)) + m (v1 − v0)
2
. (31)

Note that f(v1) > f(v0) for v1 > v0 holds by the assump-
tion (1).

The minimum of the objective is expected to occur for
v1 = v0. Therefore,

WEF (v0, v0) < WEF (v0, v1) ∀ v1 > v0 (32)

should hold. By inserting (30) into (32),

f(v1) − f(v0)

v1 − v0
> m

v1 − v0

h
(33)

is obtained. Approximating the differences with the corre-
sponding derivatives yields

df

dv
> m

dv

ds
. (34)

Let the resisting function f correspond to air drag, i.e.
f(v) = 1

2cwAaρav2 where cw is the air drag coefficient, Aa

is a cross section area and ρa is the air density. For typical
values of a heavy truck with m = 40·103 kg at v = 20 m/s,
cwAaρa ≈ 0.6 · 10 · 1.2 = 7.2 < 8. Then according to (34),

dv

dt
= v

dv

ds
<

cwAaρav2

m
<

8 · 202

40 · 103
= 0.08 m/s

2

should hold but a greater maximum acceleration is not
unreasonable for such a truck at the considered velocity.

When using the Euler backward method (31), it is seen
that there is no v1 > v0 such that the objective becomes
lower than when v1 = v0. Thus, only the Euler backward
method guarantee that the solution to the test problem is
preserved.

Also note that if the same dynamical model is used with an
objective of maximizing instead of minimizing the criterion
(26), the Euler forward method would not cause trouble
but the Euler backward might.

Alternative Problem Description For the test problem,
an alternative problem description can be achieved by
using that

dv

dt
= v

dv

dx
=

1

2

d

dx
v2.

By introducing the state y = 1
2mv2 of kinetic energy

instead of the velocity v, the model

dy

dx
= g(u) − f(

√

2

m
y)

is obtained. The objective value (27) then becomes

WEF = WEB = h (f(v0) + f(v1))

regardless of which method that is used. Reformulating the
problem may thus be beneficial. Applying a higher order
method, such as a two-step Runge-Kutta, on the original
problem also avoid these numerical problems according to
our experience.

6. REALIZATION

By avoiding numerical problems, it is possible to devise a
well performing DP algorithm that is used in a predictive
control strategy. This look-ahead control strategy is evalu-
ated through computer simulations as well as in a demon-
strator vehicle. The software needed for the controller
is run on a standard portable computer. With the used
algorithm parameters, a solution is calculated in tenths of
a second.

A demonstrator vehicle was developed in collaboration
with scania. More details of these experiments are given
in Hellström et al. (2007). The trial route is a 120 km
segment of a Swedish highway. In average, the fuel con-
sumption is decreased about 3.5% without increasing the
trip time and the number of gear shifts is decreased with
42% traveling back and forth, compared to the standard
cruise controller. The tractor and trailer have a gross
weight of about 40 tonnes. In Figure 3, measurements
from a 2.5 km segment of the trial route are shown. The
look-ahead controller performs well in the sense that the
optimal velocity trajectory is rather smooth and intuitive
and, compared to the cruise controller, a gear shift is
avoided.

To further demonstrate the gain of properly including gear
shifts in the prediction model, simulation results presented
in the following pinpoint the advantages.

6.1 Shifting Behavior

The DP algorithm is let to control a simulation model of a
heavy truck. The parameters are set to resemble a typical
heavy truck with a gross weight of 40 tonnes. With two
choices of gear shift times τ = {0.0, 1.0} s in Equation (15),
simulation results on road data from a 4.5 km segment of
a Swedish highway are shown in Figure 4. The velocity
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Fig. 3. Measured data from one road segment. The LC
gains speed at 200 m prior to the uphill and avoids
a gear shift. At 1400 m the LC slows down and the
truck is let to accelerate in the downslope.

trajectories are similar, but with τ = 1.0 s, the number of
gear shifts is reduced from six to three by shifting several
steps. The values of the simulated fuel and time use are
close, but the gain is the shifting behavior.
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Fig. 4. Simulations of different control trajectories.

The gear shift model is simple but clearly gives different,
and more intuitive, controller characteristics. The loss of
speed and the increase of the criterion due to a shift is
captured in a way that can not be done by e.g. including
a penalty term on shifts in the criterion.

7. CONCLUSIONS

By a basic analysis of a general longitudinal vehicle model,
it was shown that with few assumptions, constant speed is

optimal. However, due to the large mass of a heavy truck, it
is not possible to keep a desired cruising speed and the loss
of propulsion force when shifting gear has a noteworthy
influence on vehicle motion. The mass is therefore the most
important parameter in the current context and causes a
challenging optimization problem.

An analysis has been carried out to avoid discretization
problems in the DP algorithm. Oscillating solutions may
appear despite established stability and convergence prop-
erties of the discretization method. The interplay between
the objective and the errors was shown to be crucial. A key
step in the design of a well performing algorithm was to
avoid problems due to discretization errors, and this was
achieved by insights from the analysis.

The algorithm gives satisfactory solutions with a suffi-
ciently low computational complexity and this allowed
experimental evaluation via realization in a demonstrator
vehicle. The experimental results confirm that, by look-
ahead control, it is possible to reduce the fuel consumption
without increasing the travel time.
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