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Abstract:
The information content in measurements of offshore oil and gas production is often low,
and when a production model is fitted to such data, uncertainty may result. If production is
optimized with an uncertain model, some potential production profit may be lost. The costs and
risks of introducing additional excitation are typically large and cannot be justified unless the
potential increase in profits are quantified. In previous work it is discussed how bootstrapping
can be used to estimate uncertainty resulting from fitting production models to data with
low information content. In this paper we propose how lost potential resulting from estimated
uncertainty can be estimated using Monte-Carlo analysis. Based on a conservative formulation
of the production optimization problem, a potential for production optimization in excess of
2% and lost potential due to the form of uncertainty considered in excess of 0.5% was identified
using field data from a North Sea field.

Keywords: Uncertainty, Monte Carlo simulation, Loss minimization, Process identification,
Process control, Production systems

1. INTRODUCTION

Production in the context of offshore oil and gas fields, can
be considered the total output of production wells, a mass
flow with components including hydrocarbons, in addition
to water, CO2, H2S, sand and possibly other components.
Hydrocarbon production is for simplicity often lumped
into oil and gas. Production travels as multiphase flow
from wells through flow lines to a processing facility for
separation, illustrated in Figure 1. Water and gas injection
is used for optimizing hydrocarbon recovery of reservoirs.
Gas lift can increase production to a certain extent by
increasing the pressure difference between reservoir and
well inlet.

Production is constrained by several factors, including: On
the field level, the capacity of the facilities to separate
components of production and the capacity of facilities to
compress lift gas. The production of groups of wells may
travel through shared flow lines or inlet separators which
have a limited liquid handling capacity. The production
of individual wells may be constrained due to slugging,
other flow assurance issues or due to reservoir management
constraints.

Multiphase flows are hard to measure and are usually not
available for individual flow lines in real-time, however
measurements of total single-phase produced oil and gas
rates are usually available, and estimates of total water
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Fig. 1. A schematic model of offshore oil and gas produc-
tion.

rates can often be found by adding different measured
water rates after separation. To determine the rates of oil,
gas and water produced from individual wells, the produc-
tion of a single well is usually routed to a dedicated test
separator where the rate of each separated single-phase
component is measured. In single-rate well tests, only the
rates of components with current production settings are
measured, while in multi-rate well tests rates are measured
for different settings. The total amount of gas and water
which can be separated and processed is constrained by
the capacity of facilities, these capacities are themselves
uncertain. Normally production is at setpoints where some
of these capacities are at their perceived constraints, there-
fore a multi-rate well test cannot be performed without
simultaneously reducing production at some other well,
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which may cause lost production and a cost. There is
also a risk that changes in setpoints during testing may
cause some part of the plant to exceed the limits of safe
operation, which may force an expensive shutdown and
re-start of production. Well tests are only performed when
a need for tests has been identified, due to the costs and
risks involved.

In the context of oil and gas producing systems, real-time
optimization (RTO) has been defined in Saputelli et al.
(2003) as a process of measure-calculate-control cycles at
a frequency which maintains the system’s optimal operat-
ing conditions within the time-constant constraints of the
system. Saputelli et al. (2003) suggests dividing real-time
optimization into subproblems on different time scales to
limit complexity, and to consider separately reservoir man-
agement, optimization of injection and reservoir drainage
on the time scales of months and years, and production
optimization, maximization of value from the daily pro-
duction of reservoir fluids. Reservoir management typically
specifies constraints on production optimization to link
these problems. We will refer to models for production
optimization as production models.

The aim of production optimization is to determine set-
points for a set of chosen decision variables which are op-
timal by some criterion. These setpoints are implemented
by altering the settings of production equipment. Decision
variables may be any measured or computed variables as-
sociated with the production system which are influenced
by changes in settings, but the number of decision variables
is limited by the number of settings. We may for instance
determine the settings of a gas lift choke by deciding a
target lift gas rate, a target annulus pressure or a target
gas lift choke opening. On short timescales the flow from
individual wells can be manipulated by production choke
settings, by gas lift choke settings and possibly by routing
settings.

Parameters of production models should be fitted to pro-
duction data through parameter estimation to compen-
sate for un-modeled effects or disturbances and to set
reasonable values for physical parameters which cannot be
measured directly or determined in the laboratory. Erosion
of production chokes is an example of an un-modeled
disturbance.

Planned excitation is some planned variation in one or
more decision variables designed to reveal information on
production through measurements, for instance a multi-
rate well test. The information flow in production opti-
mization may be depicted as in Figure 2.

Lost profit can result if production models are fitted
to production data with a low information content, as
illustrated in Example 1. Throughout this paper variables
with a hat (ˆ) denote estimates, variables with bars (¯)
denote measurements, and variables with a star ( ⋆ ) are
true values in some sense.

Example 1. (Uncertainty in production optimization). This
example illustrates a synthetic field which is producing
at its processing constraints, where only single-rate well
tests are available and where a production model matches
historical production data with a low information content
closely. The example is motivated by observations of pro-
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Fig. 2. Example 1: Relationship between subproblems in
production optimization.

duction data from actual fields. The field produces oil qo,
water qw and gas qg from two wells, each with a gas lift
rate qgl according to equations

qi
o = ci

1
+ ci

2
(qi

gl − q
l,i
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76.62 0.030 −4 · 10−6 0.173 30 0
39.62 0.033 −6 · 10−6 0.185 30 0.85
76.62 0.032 −12 · 10−6 0.160 30 1.5









(4)

The ratio of water to produced liquid (watercut) and the
gas-oil ratio are assumed rate-independent. True param-

eters (θ⋆,1, θ⋆,2) and fitted parameters (θ̂1, θ̂2) produce
predictions of measured total oil qtot

o = q1

o + q2

O, total
gas qtot

g = q1

g + q2

g and total water qtot
w = q1

w + q2

w which
match closely for a typical set of gas lift rates with little
excitation, shown in Figure 3, and which match the single-
rate well test available for (q1

gl, q
2

gl) = (1000, 1000).

Assume that at the current setpoint (q1

gl, q
2

gl) = (1000, 1000)

with oil production qtot
o = 116.1, all gas processing capac-

ity (associated gas + gas lift) and water processing capac-
ity is utilized. The current setpoint is optimal according

to numerical optimization with parameters (θ̂1, θ̂2), yet
with the parameters (θ⋆,1, θ⋆,2) (q1

gl, q
2

gl) ≈ (744, 1238) is

optimal with oil production qtot
o = 116.4. The two models

and the setpoints are illustrated in Figure 4.

This example illustrates that lost profit can result even if
production optimization is based on a model that fits pro-
duction data well if production data has low information
content. �

1.1 Prior work

In Elgsaeter et al. (2007) an analysis of production data
from an oil and gas field determined that information
content appeared low and significant uncertainty should
be expected if production models are fitted to such data.
Handling uncertainty has been identified as a key challenge
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Fig. 3. Example 1: True (solid) and modeled (dashed)
total production rates of oil, gas and water resulting
from gas lift rates (lower graphs) q1

gl (dotted) and q2
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(dashdot).
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Fig. 4. Example 1: True (solid) and modeled (dashed)
production of oil,gas and water, well 1 (upper graphs)
and well 2 (lower graphs). Optimal operating point of
the true production (square) and optimal operating
point of modeled production (circle).

in real-time optimization of oil and gas production in
Bieker et al. (2006a). The concept of a loss resulting from
uncertainty is well established in control theory, it is for
instance used to select controlled variables in Halvorsen
et al. (2003). The concept of the value of information
has been applied previously in reservoir management. In
Branco et al. (2005) an analysis of what the authors
called the value of the new information was used to justify
investments to determine static and dynamic reservoir
behavior. Monte Carlo simulations have been applied
for analysis of uncertainty in production optimization
previously in Bieker et al. (2006b), where it was applied
to well test planning, and in Bieker et al. (2007), where it
was used for optimal well management. In both cases, the

focus was on uncertainty in gas-oil and water-oil ratios for
wells where these ratios do not change when production
change and where no gas-lift was applied and only test
separator measurements were considered.

In Bieker et al. (2007) it has been proposed that uncer-
tainty in production optimization should be related to
production profit to allow structured business cases for un-
certainty mitigation to be created. Elgsaeter et al. (2008)
suggested how uncertainty due to low information content
in production data can be quantified using bootstrapping.
No references have been found which discuss the value of
information in the context of daily oil and gas production
optimization.

1.2 Problem formulation

The objective of this paper is to develop an analytical
framework to quantify the lost potential that results from
the low information content in production data used for
production optimization, suitable to offshore oil and gas
production.

2. ESTIMATING THE LOSS DUE TO UNCERTAINTY

2.1 Prerequisites

Let x be a vector of the flows of each modeled component
of production for each modeled well and let u be a vector
of decision variables.

In this paper we will consider production optimization
problems on the form

[

û(θ̂) x̂(θ̂)
]

= arg max
u,x

M(x, u, d) (5)

s.t 0 = f(x, u, d, θ̂) (6)

0 ≤ c(x, u, d). (7)

θ̂ is a vector of fitted parameters to be determined. û(θ̂)

and x̂(θ̂) are the decision variable value and vector of
flows, respectively, that are the optimal solution of (5)-

(7) for a given θ̂. d is a vector of modeled and measured
disturbances independent of u. M(x, u, d) is a production
profit measure which we seek to maximize subject to a
production model (6) and production constraints (7) for

a given θ̂. We only consider instantaneous optimization,

determining (û(θ̂), x̂(θ̂)) for the current time.

When measurement uncertainty can be neglected, the
relationship between the measured production ȳ and x is
given by the binary routing matrix R[t]:

ȳ[t]
△
= R[t]x[t]. (8)

Routing R[t] may change with time, as wells are routed
through different processing trains or to test separators.
y may consist of test separator rate measurements, total
rate measurements and in some cases multiphase rate
measurements at some or all wells.

Let the modeled output for a given parameter θ̂ be

ŷ
θ̂
[t]

△
= R[t]x̂(θ̂)[t] + β̂y, (9)

where β̂y is the vector of measurement biases due to cali-
bration inaccuracies to be determined. A set of production
data spanning N time steps
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ZN =

[

ȳ[1] d̄[1] ū[1] ȳ[2] d̄[2] ū[2] . . .

ȳ[N ] d̄[N ] ū[N ]
] (10)

has residuals

ǫ[t] = ȳ[t] − ŷ
θ̂
[t] ∀t ∈ {1, . . . , N} . (11)

Parameter estimation determines θ̂ by minimizing the sum
of the squared residuals for the data set:

[

θ̂ β̂y

]

= argmin
θ,βy

N
∑

t=1

w[t]‖ǫ[t]‖2

2
, (12)

where w[t] is a user-specified weighting function. When
ZN has low information content, it may not be possible to

determine θ̂ uniquely from (12), resulting in an uncertainty

in θ̂ that can be quantified in terms of a probability

density function fθ(θ̂) using bootstrapping, see Efron and
Tibshirani (1993) or Elgsaeter et al. (2008). Bootstrapping
is a computational approach which generates an estimate
of uncertainty by re-solving (12) a number of times to
fit the model to number of synthetically generated, or
“re-sampled”, data sets similar to (10). In Monte-Carlo
simulations in subsequent sections we sample entire pa-
rameter vectors rather than sampling parameter values for
each component of θ separately, ensuring that co-variance

between terms in θ̂ are implicitly accounted for.

2.2 Definitions

Let the potential for production optimization P ⋆
o be the

difference between the production profit at the optimal
operating point (x⋆, u⋆, d) and the current operating point
(x, u, d):

P ⋆
o

△
= M(x⋆, u⋆, d) − M(x, u, d) ≥ 0. (13)

If there were no uncertainty, (5)–(7) would yield û(θ) = u⋆

and x̂(θ) = x⋆, P ⋆
o could be found from (13) and the entire

potential could be realized by implementing û(θ).

When θ̂ is uncertain, the solution to (5)–(7) will be

uncertain. Uncertainty may cause estimates û(θ) and P̂o(θ̂)
to differ from u⋆ and P ⋆

o , and when implementing û(θ) we
must expect some of the potential P ⋆

o to remain unrealized.
This discussion motivates

expected potential of production optimization(P̂o)
△
=

expected realizable potential (P̂o,r) +

expected lost potential due to uncertainty (L̂u).
(14)

Let

Q̂
△
=

L̂u

P̂o

, (15)

be the quotient of potential that is lost due to uncertainty.

In this paper, we will determine probability density func-
tions fPo(P̂o), fLu(L̂u), discussed below. In addition to
depending on parameter uncertainty, these probability
density functions will depend on production constraints
and on the operational strategy, defined below.

P̂o = 0 and L̂u = 0 can be interpreted as production being
optimal. The probability density functions fLu

(L̂u) and

fPo
(P̂o) may consist of spikes near P̂o = 0 and L̂u = 0 and

a distribution in interval away from zero. To allow these
two parts of fLu

(L̂u) and fPo
(P̂o) to be studied separately,

we define the two events

H0 : production is optimal (16)

H1 : production is suboptimal. (17)

Estimates p̂(H0) and p̂(H1) can be found from estimated

probability density functions fLu
(L̂u) and fPo

(P̂o).

2.3 Estimating the potential of production optimization

An estimate P̂o(θ̂) of (13) for a given parameter estimate

θ̂ when (x, u, d) is the current operating point is

P̂o(θ̂) = M(x̂(θ̂), û(θ̂), d) − M(x, u, d). (18)

When θ̂ is uncertain, we may exploit an estimate of the

probabilty density function fθ(θ̂) to estimate a probability
density function for (18) using a Monte Carlo method,
generating suitable random numbers and observing the
fraction of the numbers obeying some property or prop-
erties, see Metropolis and Ulam (1949). The approach is
outlined in Algorithm 1 in Appendix A.

2.4 Estimating lost potential due to uncertainty

A setpoint û(θ̂) calculated with an uncertain θ̂ may be
found to violate production constraints (7) when imple-
mented. Therefore, a strategy for constraint handling is
required. Lost potential due to uncertainty will depend on
the strategy employed to deal with constraint handling,
and to estimate lost potential due to uncertainty we must
express this strategy as an algorithm. We will refer to such
an algorithm as an operational strategy function.

Let u0 be the setpoint implemented on the field prior to

implementing û(θ̂). When altering setpoints from u0 along

some path toward û(θ̂), constraints may be encountered
at an operating point (xc, uc) due to uncertainties. Lost
potential due to uncertainty can be estimated in a Monte
Carlo fashion by determining the profit that is lost when

a setpoint û(θ̂f ) is implemented and the true parameter

value is actually θ̂t, drawing estimates (θ̂t, θ̂f ) from the

estimated probability density function fθ(θ̂):

L̂u(θ̂t, θ̂f , d) = M(x̂(θ̂t), û(θ̂t), d)−

M(xc(θ̂f , θ̂t), u
c(θ̂f , θ̂t), d).

(19)

The first term in (19) is the optimal profit with the true

parameter value θ̂t, while the second term is an estimate of

the profit obtained when θ̂f is erroneously assumed to be

the true parameter. (xc(θ̂f , θ̂t), u
c(θ̂f , θ̂t)) is determined by

an operational strategy function. The proposed algorithm
for determining fLu

(L̂u) is summarized in Algorithm 2 in
Appendix A.

2.5 Discussion

In Algorithms 1 and 2 samples are drawn at random,
Monte-Carlo approach in this paper. It may be pos-
sible to improve accuracy and reduce computational
burden through the use of sampling techniques based
on Hammersley-sequences, see Diwekar and Kalagnanam
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(1997). Algorithms 1 and 2 can also be combined with
more efficient bootstrap methods, see for instance Gigli
(1996). To limit the scope and complexity of this paper,
we leave such extensions for further work.

3. APPLICATIONS

In this section we will study applications of the suggested
approach, first on a set of synthetic examples, then on data
from a real field.

3.1 Introduction

We will consider oil, gas and water rates for each well i
as elements in x̂, that is qi

o, q
i
g and qi

w, respectively. The
production of individual wells are assumed independent of
each other, or decoupled, as will typically be the case for
so-called platform wells. We will consider two alternative
production models, (20) and (21),

q̂i
p = max{0, ql,i

p fz(z
i, zi,l)

(

1 + αi
p∆qi

gl

)

} (20)

q̂i
p = max{0, ql,i

p fz(z
i, zi,l)

(

1 + αi
p∆qi

gl + κi
p(∆qi

gl)
2
)

},

(21)

for all wells i and for oil, gas and water p ∈ {o, g, w},
based on Elgsaeter et al. (2008). qi

gl is gas lift rate and

zi ∈ [0, 1] is the relative production valve opening of

well i. ∆qi
gl

△
=

qi
gl

q
l,i

gl

− 1, where q
l,i
gl is the gas lift rate

measured at the time of optimization for well i, and ql,i
p

is the measured rate of component p of well i at the
most recent well test, respectively. fz(z

i, zl,i) is a nonlinear
kernel which expresses the nonlinear relationship between
valve opening and production, which obeys fz(0, zl,i) = 0
and fz(z

i, zl,i) = 1. zl,i is the relative valve opening at the
most recent well test. In this paper we choose

fz(z
i, zl,i) =

1 − (1 − zi)k

1 − (1 − zl,i)k
, (22)

and choose k = 5. During optimization, we consider
u = ∆qgl, d = z. We will consider θ = [αo αg αw] for
(20) and θ = [αo αg αw κo κg κw] for (21).

Let

qtot
o

△
=

nw
∑

i=1

qi
o (23)

qtot
g

△
=

nw
∑

i=1

qi
g + qi

gl (24)

qtot
w

△
=

nw
∑

i=1

qi
o (25)

where nw is the number of wells. Let q̂tot
o (θ̂), q̂tot

g (θ̂) and

q̂tot
w (θ̂) be estimates derived by combining (23)–(25) with

(20) or (21) for a given θ̂.

In this paper we will consider the following measurement
vector when solving (12)

y =
[

qtot
o qtot

g qtot
w

]T
. (26)

The objective function is chosen as (27) and production
constraints as (28)-(31):

û(θ̂) = arg max
u

q̂tot
o (θ̂) + bo(θ̂) (27)

s.t. q̂tot
g (θ̂) + bg(θ̂) ≤ qmax

g (28)

q̂tot
w (θ̂) + bw(θ̂) ≤ qmax

w (29)

−Uprc ≤ u ≤ Uprc (30)

ui > ul,i ∀i ∈ Wc. (31)

(28) is a constraint on gas processing capacity and qmax
g

is the processing capacity for gas. (29) is a constraint
on water processing capacity and qmax

w the processing
capacity for water. (31) constrains the gas lift rate of wells
with indices in the set Wc which may not have their gas-lift

rates decreased due to flow assurance issues. bo(θ̂), bg(θ̂)

and bw(θ̂) are biases which may be calculated separately

for each θ̂. All constraints are considered hard in this
paper.

What model structure describes the relation between u
and y is itself uncertain. It is reasonable to expect a fitted
model to be a valid description locally around setpoints
(u, d) similar to those observed in the tuning set. The
mismatch between modeled outputs ŷ and measurements
ȳ will grow when setpoints outside the range of setpoints
observed in (10) are considered. If production optimization
considers large changes in u, structural uncertainties may
dominate and this observation motivates (30). Uprc limits
u to within Uprc · 100% of its current value and is a design
paramter that must be chosen sufficiently small.

qmax
g and qmax

w are themselves uncertain in practice, but
identifying or mitigating this uncertainty is beyond the
scope of this paper. To avoid overstating qmax

g and qmax
w ,

and thereby overestimating L̂u and P̂o, we assume con-
servatively that the field is producing at its constraints in
water and gas capacity at the time of optimization. We
wish to solve (27)–(31) at time t = N , the end of the
tuning set (10). Measurements ȳ have a high-frequency,
low-amplitude, seemingly random component which is not
modeled. If we choose qmax

g = q̄tot
g [N ] and qmax

w = q̄tot
w [N ],

solutions of (27)–(31) will depend to some degree on these
high-frequency disturbances. For this reason, we choose to
consider tuning sets where no significant changes are visi-
ble in ū[t] and no large disturbances visible in ȳ[t], d̄[t] for
the interval t ∈ [N −L, N ] where L << N . Capacities are
estimated as average measured rates during this interval,
to reduce dependency on high-frequency disturbances:

qmax
g = avg(q̄tot

g [t]) t ∈ [N − L, N ] (32)

qmax
w = avg(q̄tot

w [t]) t ∈ [N − L, N ]. (33)

Similarly, we desire q̂tot
o (θ̂), q̂tot

g (θ̂) and q̂tot
w (θ̂) to equal

averaged observations over t ∈ [N −L, N ] which motivates




bo(θ̂)

bg(θ̂)

bw(θ̂)



 = avg(





q̄tot
o [t] − q̂tot

o (θ̂)[t]

q̄tot
g [t] − q̂tot

g (θ̂)[t]

q̄tot
w [t] − q̂tot

w (θ̂)[t]



) t ∈ [N − L, N ].

(34)

bo(θ̂) is included in the objective function (27) so that (18)

yields P̂o = 0 if (27)–(31) returns û(θ) equal to the imple-

mented u at the time of optimization. (bo(θ̂), bg(θ̂), bw(θ̂))

may differ from elements of β̂y, as β̂y is an estimate of the

bias over in the tuning set, while bo(θ̂), bg(θ̂) and bw(θ̂) are
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biases calculated for a short time interval at the end of the
tuning set.

We will consider the operational strategy function

uc(θ̂f , θ̂t) = u0 + s(û(θ̂f ) − u0) (35)

0 = f(xc(θ̂f , θ̂t), u
c(θ̂f , θ̂t), d, θ̂t) (36)

where s = max ŝ (37)

s.t 0 ≤ ŝ ≤ 1 (38)

u = u0 + ŝ(û(θ̂f ) − u0) (39)

0 ≤ c(x, u, d). (40)

0 = f(x, u, d, θ̂t). (41)

(35)-(41) simulates moving the setpoint from u0 to-

ward û(θ̂f ) in a straight line until a constraint is met,

when the system is described by θ̂t. If implementing

(xc(θ̂f , θ̂t), u
c(θ̂f , θ̂t)) results in a decline in production

profits, we will assume that the operating point is returned
to is value prior to optimization when solving (19).

The set of operating points which are feasible is non-
convex in general, and the conservative statement of gas
and water capacities qmax

g and qmax
w means that the choice

u0 = 0 may cause (35)–(41) to meet a constraint close to
u0, producing a large estimate of loss due to uncertainty
L̂u. Instead, we choose u0 = −Uprc, as simulations have
shown this estimate to produce far more conservative
estimates of L̂u. The real-world analogy to u0 = −Uprc

is a field where production is moved toward a calculated

setpoint û(θ̂) as production is re-started after a shutdown.

We will consider two different formulations of the problem
(27)-(31):

Formulation A: production model (20), a linear pro-
gramming problem

Formulation B: production model (21), a nonlinear pro-
gramming problem

The applications in the following section were imple-
mented in MATLAB 1 and all optimization problems were
solved with the TOMLAB 2 toolbox. All nonlinear pro-
gramming problems were solved sequentially with global
solvers Jones et al. (1993) and local solvers based on se-
quential quadratic programming, for parameter estimation
based on Huschens (1994), and for production optimiza-
tion based on Schittkowski (1982). In all cases analytical
Jacobians and Hessians were supplied.

3.2 Synthetic example

We will revisit Example 1 in the following, to illustrate the
the suggested methodology on a set of data where the true
model is known.

Example 2. (Example 1 revisited: fPo
(P̂o) and fLu

(L̂u)).
We apply Algorithms 1 and 2 to the synthetic production
data described in Example 1 with Nt = Nf = 100 for
different Uprc. Results are shown in Figure 5. For this ex-

ample, all estimates produced by Algorithm 1 gave P̂o > 0
using both formulations A and B, or p̂(H1) = 100%.

1 The Mathworks,Inc., version 7.0.4.365
2 TOMLAB Optimization Inc., version 5.5
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Fig. 5. Example 2: Estimated potential and lost potential
for formulation A (plus) and B(circles). Center graphs
are expected values, upper and lower graphs denote
95% confidence intervals.

q
gl

1

q
o

1

q
gl

1

q
g

1

q
gl

1

q
w

1

q
gl

2

q
o

2

q
gl

2

q
g

2

q
gl

2

q
w

2

Fig. 6. Example 2: Production models (20) (dotted) and
(21)(dashed) based on parameters derived using boot-
strapping, operating point (xl, ul) (circle). Vertical
line illustrates span of decision variable values in
tuning set. The solid line illustrates the true model.
To reduce clutter, only every fifth model based on
resampled parameters are plotted.

The use of a nonlinear production model in formulation B
resulted in estimates P̂o and L̂u that were less dependent
of Uprc than those found with formulation A. While

estimates of P̂o remained in the region of P ⋆
o = 0.29%

with formulation B as Uprc grows, estimates P̂o found
with formulation A grow without bounds as Uprc grows.
A closer analysis reveals that formulation A tends to find
estimates û(θ) at the constraint (30), while formulation B
finds estimates û(θ) within this constraint, and this may
explain the difference observed.
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As seen in Figure 6, the linear models used in formulation
A predicts oil, gas and water rates within a narrow span
as qi

gl change compared with the nonlinear models used
in formulation B. The narrow span in predicted rates
with formulation A causes comparatively small estimates

(L̂u, Q̂) compared with formulation B. Estimates of Q̂
found with formulation A decreases as Uprc increases,
which seems counter-intuitive.

This example indicates that nonlinear models on the form
(21) may be more suitable than linear models (20) in
conjunction with the methods suggested in this paper. �

3.3 Case study: North Sea field

The set of data we will study is from a North Sea field with
20 gas lifted platform wells, producing predominantly oil,
gas and water. Sporadic single-rate well tests are available,
and no routing options are considered in u. The operator
of the field requested that all data be kept anonymous,
therefore all variables will be represented in normalized
form. We choose a tuning set of 180 days. The sampling
time was one hour, and production was not significantly
changed for the last L = 10 hours prior to t = N .

fPo
(P̂o) was estimated with Algorithm 1 and fLu

(L̂u) was
estimated with Algorithm 2, both with Nf = Nt = 100.
When estimating parameters, bounds 0 < α < 1 and −1 <
κ < 0 based on physical knowledge were applied. Based on
the knowledge that the watercut is rate-independent, soft
constraints which penalize deviation from αo = αw and
κo = κw were added to the objective function. A decline
in q̄tot

o was visible in the tuning set, and we chose to de-
trend q̄tot

o and chose w[t] to weigh older measurements less
than newer measurements when solving (12). For further
details on the modeling, refer to Elgsaeter et al. (2008).
The set of indices of wells with flow assurance issues was
Wc = {1, 4, 10, 13, 14, 16}.

Results The distribution of estimates P̂o, L̂u and Q̂ for
varying Uprc are shown in Figure 7. The models used are
shown in Figure 8. For formulation A p(H1) = 100% while
p(H1) = 95% for formulation B.

Discussion Uprc limits change in decision variables to
a certain range for which structural uncertainties can be
neglected, and P̂o and L̂u depend on this design parameter.
As we do not know with certainty when structural uncer-
tainties become significant, we cannot determine a single
value for Uprc and so when estimating P̂o and L̂u we have
considered a range of Uprc. A conservative assumption
of Uprc = 0.1 indicates Po ≈ 2%. The quotient Q is
relatively invariant of Uprc, so from the analysis it seems
fair to conclude that on average, we should expect to loose
about 25% of the P̂o due to uncertainty, or L̂u ≈ 0.5%
when Uprc = 0.1. Unfortunately, we are unable to verify

estimates P̂o and L̂u made in this paper without further
experiments, and such experiments are associated with
great cost and risk. However, the methods presented in this
paper may be used motivate such experiments in further
work, as the presented methods allow the associated ben-
efits to be estimated. In this paper we have not considered
constraint uncertainty. It is possible that at the time of the
analysis the field was producing below its actual process-
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Fig. 7. Case study, North Sea field data: estimated poten-
tial and lost potential for formulation A (plus) and
B (circles). Center graphs are expected values, upper
and lower graphs denote 95% confidence intervals.

ing capacities. In this case, the potential for production
optimization would be larger than our estimates.

4. CONCLUSIONS

Based on a conservative formulation of the production
optimization problem, we could identify potential for pro-
duction optimization in excess of 2%, and lost potential
due to the form of uncertainty considered in excess of
0.5%. As sales revenues from an oil and gas field may
be very large and the costs of mitigating uncertainty are
independent of revenue, we believe that further work may
prove that these potentials are sufficient to justify the costs
of mitigating uncertainty and optimizing production.

The methodology presented may have extensions to other
processes optimized using models fitted to process mea-
surements with low information content.

Appendix A. ALGORITHMS

Algorithm 1. (Estimating fPo
(P̂o)). Given a dataset ZN

on the form (10)

• determine θ̂ using (12),

• determine fθ(θ̂), for instance by bootstrapping as
described in Elgsaeter et al. (2007),

• sample fθ(θ̂) Nt times,
• determine (x̂(θ), û(θ)) using (5)-(7) for each of the Nt

samples, and
• insert all determined (x̂(θ), û(θ)) in (18) to obtain the

probability density function fPo
(P̂o).

Algorithm 2. (Estimating fLu
(L̂u)). Given a dataset ZN

on the form (10), an operational strategy function, the
current operating point (x, u, d) and a probability density

function fθ(θ̂).

• do Nt times
· draw a sample θ̂t from fθ(θ̂).

· draw Nf samples θ̂f from fθ(θ̂).
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· for each of the Nf samples of θ̂f and the sample

θ̂t obtain a point estimate of Lu by solving (19)

• the distribution of Nt × Nf point estimates of L̂u is

an estimate of fLu
(L̂u)
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