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Abstract: Motivated by the widespread use of networked and embedded control systems,
an algorithm for stability analysis is proposed for sampled-data feedback control systems
with uncertainly time-varying sampling intervals. The output feedback case with a dynamic
compensator is considered. The algorithm is based on the robustness of related discrete-time
systems against perturbation caused by the variation of sampling intervals. The validity of the
algorithm is demonstrated by numerical examples.

1. INTRODUCTION

The sampled-data control theory (See Chen and Francis
[1995] and references therein) has been well-developed in
the last two decades, where the crucial properties is the
periodicity of the closed-loop systems which comes from
the periodic sampling. It is reasonable to consider the
periodic sampling in the conventional implementation of
sampled-data systems. We, however, recently encounter
applications where the periodic sampling is almost impos-
sible. In particular, resources for measurement and control
are restricted in networked and/or embedded control sys-
tems (See Hristu-Varsakelis and Levine [2005], Hespanha
et al. [2007] and references therein) and hence the sampling
operation results to be aperiodic and uncertainly time-
varying. In view of the widespread use of networked and/or
embedded control systems, it is theoretically and practi-
cally important to study the robustness of such systems
against variation of sampling intervals. One can find pio-
neering work for the issue in the literature including Walsh
et al. [1999], Zhang et al. [2001], Zhang and Branicky
[2001].

Recently the so-called input delay approach was proposed
in Fridman et al. [2004], Yue et al. [2004] to treat the
systems with aperiodic sampling, and a significant reduc-
tion of the conservatism is achieved. The basic idea of the
approach is modeling the aperiodic sample and hold opera-
tions by a time-varying uncertain time delay at control in-
put, and hence one can apply methodologies developed for
delay systems to the aperiodic sampled-data systems. One
can find applications of the input delay approach to several
analysis and synthesis problems: Fridman et al. [2004],
Yue et al. [2004], Fridman et al. [2005], Naghshtabrizi and
Hespanha [2005], Yue et al. [2005], Suplin et al. [2007]. This
approach also has inspired the discussion of the problem
from the viewpoints of hybrid systems in Naghshtabrizi
et al. [2006, 2007] and robust control in Mirkin [2007],
Fujioka [2007b].

The existing results listed above verify the stability by
showing the existence of a continuous-time Lyapunov func-
tion, although it might be implicit. As a different approach,

one can check the stability by showing the existence of
a discrete-time quadratic Lyapunov function as shown in
Zhang and Branicky [2001]. They constructed a random-
ized algorithm for the search the Lyapunov function. Their
algorithm, however, checks the quadratic stability of a set
of discrete-time systems corresponding to finite number
of prespecified sampling intervals between bounds of sam-
pling intervals. In other words, the algorithm in Zhang
and Branicky [2001] determines if a necessary condition
(for a sufficient condition for the stability) holds or not,
and hence cannot conclude the stability. In order to solve
the issue, an algorithm of checking the quadratic stabil-
ity for all sampling intervals uncertainly varying between
given lower and upper bounds has been recently derived
in Fujioka [2007a], by exploiting the robustness against
perturbation caused by the variation of sampling intervals
based on the small-gain condition.

The purpose of this paper is to extend the results in
Fujioka [2007a], where the state feedback with a constant
gain is considered, to a more practical setup. To be more
concrete, we will consider the output feedback case where
the controller is dynamic. The dynamic compensators have
also been considered in the continuous-time approach,
e.g., Fridman et al. [2005], Naghshtabrizi and Hespanha
[2005], Suplin et al. [2007], mainly for the synthesis. They
assume that the dynamics of the controller is given by
differential equations, and the output of the controller
generates the control input to the plant through sample-
and-hold devices. In contrast the controller is given in
terms of difference equations in this paper, and the output
of the controller generates the control input to the plant
through a zeroth-order hold device, as in the standard
sampled-data control setup. The existing setups and that
considered in this paper will be compared later in detail.

This paper is organized as follows: The problem is formu-
lated in Section 2. Section 3 provides a stability criteria
and an algorithm to verify the stability based on the
criteria. The validity of the algorithm is demonstrated in
Section 4.
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Fig. 1. Feedback control with aperiodic sample and hold
actions

2. PROBLEM FORMULATION

Let the continuous-time plant Pc be given in the state-
space form:

Pc :

[

ẋc(t)
yc(t)

]

=

[

Ac Bc2

C2 0

] [

xc(t)
uc(t)

]

(1)

where xc, uc, and yc respectively denote the state, the
control input, and the measurement output taking values
in R

nc , R
m2 , and R

p2 . Ac, Bc2, and Cc2 are matrices of
compatible dimensions. The feedback compensator Kd,
which is a discrete-time system, is also given in the state-
space form:

Kd :

[

xK [k + 1]
u[k]

]

=

[

AK BK

CK DK

] [

xK [k]
y[k]

]

(2)

where xK , y, and u respectively denote the state, the input,
and the output of the controller taking values in R

nK , R
p2 ,

and R
m2 . AK , BK , CK , and DK are matrices of compatible

dimensions.

Finally we suppose that Pc and Kd are connected in feed-
back to compose the closed-loop system T , as depicted in
Fig. 1, through the following sample and hold operations:

• The k-th input to the controller is the sampled version
of the measured output of the plant at t = τk (k = 0,
1, . . .)

y[k] = yc(τk)

where {τk} is an uncertain set of discrete time in-
stances satisfying

τ0 = 0

and
0 < hℓ ≤ τk+1 − τk ≤ hu <∞ (3)

for given hℓ and hu.
• The control input uc is determined by the output of

the controller in the zero-th order hold fashion:

uc(t) = u[k], ∀t ∈ [τk, τk+1). (4)

Applications of this scenario can be found in networked
and/or embedded control systems, where resources for
measurement and control are restricted. Readers are re-
ferred to, e.g., Hristu-Varsakelis and Levine [2005], Hes-
panha et al. [2007]. Note that (3) implies

lim
k→∞

τk =∞

since hℓ > 0.

The purpose of this paper is to provide stability criteria
for T . If τk’s satisfy

τk+1 − τk = h̃

for some h̃ ∈ [hℓ, hu], the resultant feedback control
system is periodic. This special scenario is the one well-
studied in the so-called sampled-data control theory, e.g.,
Chen and Francis [1995]. Indeed the stability can be easily

verified by checking the spectral radius of Φ(h̃) for the
special scenario, where

Φ(h) :=

[

A(h) + B2(h)DKC2 B2(h)CK

C2BK AK

]

, (5)

A(h) := eAh, B2(h) :=

∫ h

0

eA(h−η)B dη, C2 := Cc2.

It is, however, obvious that our general scenario is much
more complicated, because of the uncertainly time-varying
nature.

The scenario given above can be regarded as a natural
generalization of the standard sampled-data control setup
to the time-varying sampler. Here we compare it to the
existing setups in the literature from the following three
viewpoints:

• The sample and the hold operations are synchronized
or not.
• The control input uc is piece-wise constant or not.
• The discrete-time controller is time-invariant or not.

In our setup, the sample and the hold operations are
synchronized, uc is piece-wise constant, and Kd is time-
invariant.

The type 2 controller in Suplin et al. [2007] is similar
to our controller; the sample and the hold operations
are synchronized, and uc is piece-wise constant, but the
controller is time-varying in the discrete-time domain. The
type 2 controller generates uc from y as follows:

{

ẋC(t) = AC0xC(t) + AC1xC(τk) + BCy[k],
uc(t) = CCxC(τk)

where t ∈ [τk, τk+1) and xC is the state of the controller.
This can be recovered by (4) and

[

x̄K [k + 1]
u[k]

]

=

[

ĀK [k] B̄K [k]
CC 0

] [

x̄K [k]
y[k]

]

instead of (2), where

ĀK [k] := eAC0(τk+1−τk) +

∫ τk+1

τk

eAC0(τk+1−η)AC1 dη,

B̄K [k] :=

∫ τk+1

τk

eAC0(τk+1−η)BC dη.

One can similarly show that all the discrete-time con-
trollers considered in Fridman et al. [2005], Naghshtabrizi
and Hespanha [2005], Suplin et al. [2007] are time-varying,
although they are not explicitly given. The time depen-
dence could improve the performance, but it would be
practical to consider the time-invariant discrete-time dy-
namics which results a simple implementation.

The control input uc is not supposed to be piece-wise
constant in Fridman et al. [2005], the type 1 controller
in Suplin et al. [2007], and the anticipative controller in
Naghshtabrizi and Hespanha [2005].

The asynchronous sample and hold operations are consid-
ered in Naghshtabrizi and Hespanha [2005] and the type 3
controller in Suplin et al. [2007] where, if the control input
is piece-wise constant, (4) is replaced by

uc(t) = u[k], ∀t ∈ [σk, σk+1)

and σk’s denote the instants updating the control input. It
would be natural to consider the case of σk ≥ τk according
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to time delay at the path from Kd to Pc, as considered
in Naghshtabrizi and Hespanha [2005]. The discussion in
the sequel can be extended for the case by using the
transformation in Hara et al. [1994] if the delay is constant.
The method developed in Kao and Rantzer [2007] could
be combined for the time-varying delay.

3. MAIN RESULTS

3.1 The Discrete-Time Approach

The purpose of this paper is to extend the results in
Fujioka [2007a], where the state feedback with a constant
gain is considered, for the more practical setup provided
in the previous section. To be more concrete we will verify
the stability of T based on the following lemma which is an
extension of that in Zhang and Branicky [2001], Hespanha
et al. [2007] for the state feedback case:

Lemma 1. The origin of T is exponentially stable, i.e.,
there exist α, β > 0 satisfying

∥

∥

∥

∥

[

xc(t)
xK [k]

]∥

∥

∥

∥

≤ αe−βt

∥

∥

∥

∥

[

xc(0)
xK [0]

]∥

∥

∥

∥

for all t ∈ [τk, τk+1) and k = 0, 1, . . ., if there exists a
matrix 0 < P = P ∗ ∈ R

n×n satisfying

(Φ(h))∗ PΦ(h)− P < 0 (6)

for all h ∈ [hℓ, hu], where Φ(·) is defined in (5).

The proof is parallel to that for the original lemma so it is
omitted.

Note that Lemma 1 is based on the quadratic stability of
the accompanying discrete-time system Td defined by

ξ[k + 1] = Φ(τk+1 − τk)ξ[k]

with the discrete-time Lyapunov function

V (ξ[k]) := ξ∗[k]Pξ[k]

where ξ[k] := x(τk).

It is hard to find a matrix P in Lemma 1 since the
inequality must hold for all values in [hℓ, hu], and Φ is
a strongly nonlinear function of h.

For the state feedback case, Zhang and Branicky [2001]
proposed a randomized algorithm to search a P on a grid
between hℓ and hu, although it determines a necessary con-
dition and cannot conclude the stability. Fujioka [2007a]
developed an algorithm which can verify the stability
based on the robustness of discrete-time systems against
the perturbation caused by the variation of sampling in-
terval.

The basic idea of the stability analysis in this paper follows
that in Fujioka [2007a], i.e., we will verify the existence of
P > 0 satisfying (6) for all h ∈ [hℓ, hu] from that of P > 0
satisfying (6) for all h ∈ G where G is a grid:

G = {h1, h2, . . . , hN} ⊂ [hℓ, hu].

Hence in the sequel we will first discuss the robustness
of systems with uniform sampling interval against the
perturbation caused by the variation of sampling interval.
After that we will derive a method to combine robustness
results for each point of the grid.

Kd

�

Gh0

-

�∆(θk)

-

Fig. 2. Alternative representation of Td

3.2 Stability Criteria

In order to discuss the robustness against the variation of
sampling interval, we consider the following manipulation
of Φ: Fix h0 ∈ (hℓ, hu) and then one can define θk so that

τk+1 − τk = h0 + θk.

One has the following property, which is simple but plays
a key role in this paper:

Proposition 2. The function Φ(·) defined in (5) satisfies

Φ(τk+1 − τk) = Φ(h0) + Γ∆(θk)Ψ(h0), (7)

where

Γ :=

[

B1

0

]

, B1 := I,

Ψ(h) := [C1(h) + D12(h)DKC2 D12(h)CK ] , (8)

C1(h) := AcA(h), D12(h) := AcB2(h) + Bc2,

∆(θ) :=

∫ θ

0

eAη dη.

Proof. By definition one has

A(τk+1 − τk) = eAc(h0+θk) = eAcθkA(h0)

= (I + ∆(θk)Ac)A(h0)

= A(h0) + ∆(θk)C1(h0),

and

B2(τk+1 − τk)

=

∫ h0+θk

0

eAc(h0+θk−η)Bc2 dη

=

∫ h0

0

eAc(h0+θk−η)Bc2 dη +

∫ h0+θk

h0

eAc(h0+θk−η)Bc2 dη

= eAθkB2(h0) + ∆(θk)Bc2

= (I + ∆(θk)Ac)B2(h0) + ∆(θk)Bc2

= B2(h0) + ∆(θk)D12(h0).

Then it is straightforward to derive (7) by substituting the
above results. This completes the proof.

Now one can regard Td as a feedback connection of an LTI
discrete-time system Σh0

:

Σh0
[z] := Ψ(h0)(zI − Φ(h0))

−1Γ

and a time-varying matrix ∆(θk). See Fig. 2, where we in
addition use the identity

Σh0
[z] = Fℓ (Gh0

, K) [z],
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Gh[z] :=

[

C1(h)
C2

]

(zI−A(h))−1 [B1 B2(h)]+

[

0 D12(h)
0 0

]

.

Thus we obtain the following lemma as a simple applica-
tion of the small-gain theorem 1 :

Lemma 3. Let an interval H ⊆ (0, ∞) be given. There
exists a matrix 0 < P = P ∗ ∈ R

n×n satisfying (6) for all
h ∈ H if ρ(Φ(h0)) < 1 and

γ ‖∆(θ)‖ ≤ 1 (9)

for all θ ∈ H − h0, where γ is an upper bound of ‖Σ‖
∞

:

γ > ‖Σ‖
∞

. (10)

Since minimization of γ in (10) is routine, one can ver-
ify the stability from (9) by bounding ‖∆(θ)‖. For the
purpose, as in Fujioka [2007a], we invoke the following
property found in, e.g., Loan [1977]:

Lemma 4. For given A ∈ R
n×n and t ≥ 0 one has

∥

∥eAt
∥

∥ ≤ eµ(A)t (11)

where µ(A) denotes the log norm of A:

µ(A) = λmax

(

A + A∗

2

)

.

Remark 1. One can continue the following discussion by
replacing the bound in (11) by other bounds found in,
e.g., Loan [1977], Kågström [1977].

In order to state the main results of this paper we need
the following interval defined with given h > 0 and γ > 0:

H(h, γ) := [hL, hU ] ∩ (0, ∞) (12)

where hL and hU are given as follows:

L1) If µ(−Ac) = 0, hL = h− γ−1,
L2) else if µ(−Ac) ≤ −γ, hL = −∞,
L3) else

hL = h− 1

µ(−Ac)
log

(

1 + γ−1µ(−Ac)
)

.

U1) If µ(Ac) = 0, hU = h + γ−1,
U2) else if µ(Ac) ≤ −γ, hU =∞,
U3) else

hU = h +
1

µ(Ac)
log

(

1 + γ−1µ(Ac)
)

.

Now we are ready to state the basic robustness results,
which is a natural generalization of that in Fujioka [2007a]:

Theorem 5. Let h0 > 0 be given so that ρ(Φ(h0)) < 1. For
γ > 0 satisfying (10), there exists a matrix 0 < P = P ∗ ∈
R

n×n satisfying (6) for all h ∈ H(h0, γ).

Proof. See Appendix.

3.3 Algorithm for Stability Analysis

Theorem 5 provides a robustness condition for T based
on the property of the nominal system determined by
the fixed sampling period h0. A direct use of Theorem 5,
however, can be conservative in the sense that there might
not exist an h0 > 0 such that [hℓ, hu] ⊆ H(h0, γ) even
though there exists a matrix P satisfying (6) for all h ∈
1 Readers are referred to, e.g., Khargonekar et al. [1990] on the
relationship between the quadratic stability and the small-gain
condition.

[hℓ, hu], mainly because of the small-gain type modeling
of ∆(θk).

In order to reduce the conservatism we introduce the
multi-model to obtain the following theorem which is a
natural generalization of that in Fujioka [2007a]:

Theorem 6. Let hi > 0 (i = 1, 2, . . . , N) be given. If
there exist a matrix 0 < X = X∗ ∈ R

n×n and αi > 0
(i = 1, 2, . . . , N) satisfying N matrix inequalities

[

Φ(hi) Γ
Ψ(hi) 0

] [

X 0
0 I

] [

Φ(hi) Γ
Ψ(hi) 0

]∗

−
[

X 0
0 αiI

]

< 0 (13)

then (6) is satisfied with P = X−1 for all

h ∈
N
⋃

i=1

H(hi,
√

αi)

where Φ(·), Ψ(·), H(·, ·) are defined in (5), (8), and (12),
respectively.

Proof. The proof is parallel to that in Fujioka [2007a].
Consider the case i = 1. The condition (13) with i = 1 is
an equivalent representation of

∥

∥Ψ(h1)(zI − Φ(h1))
−1Γ

∥

∥

∞
<
√

αi.

Hence, by invoking Theorem 5, there exists a matrix
0 < P = P ∗ ∈ R

n×n satisfying (6) for all h ∈ H(h1,
√

α1).
Moreover we can verify that one of such P is given by X−1

from the standard procedure. With similar discussion, we
can conclude that there exists a matrix 0 < P = P ∗ =
X−1 ∈ R

n×n satisfying (6) for all h ∈ H(hi,
√

αi), i = 2,
. . ., N . This concludes the proof.

Once we find a matrix P > 0 satisfying (6) on a grid by any
methods, e.g., one proposed in Zhang and Branicky [2001],
we can verify the robustness by invoking Theorem 6. In
this paper we propose the following concrete algorithm
instead for stability analysis which is again a natural
generalization of that in Fujioka [2007a] and generates a
grid effectively based on Theorem 6:

Algorithm 1. Given 0 < hℓ < hu <∞, and a large positive
integer N0.

0. Initialization: G ← {(hℓ + hu)/2}
1. If there exists an h ∈ G satisfying ρ(Φ(h)) ≥ 1, the

origin of T is unstable. Stop.
2. If #(G) ≥ N0, stop without deciding the stability of

the origin of T . Here #(G) denotes the number of
elements in G.

3. Minimize
#(G)
∑

i=1

βi

‖Σi‖2∞
subject to

[

Φ(hi) Γ
Ψ(hi) 0

] [

X 0
0 I

] [

Φ(hi) Γ
Ψ(hi) 0

]∗

−
[

X 0
0 βiI

]

< 0

for all hi’s and X > 0, where

Σi[z] := Ψ(hi)(zI − Φ(hi))
−1Γ,

and hi is the i-th smallest element in G.
4. If

[hℓ, hu] ⊆
#(G)
⋃

i=1

H(hi,
√

αi),

the origin of T is exponentially stable. Stop. Here

αi := λmax(Ri − S∗
i (Qi −Xi)

−1Si) + ε
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where ε is a small positive number and
[

Qi Si

S∗
i Ri

]

:=

[

Φ(hi) Γ
Ψ(hi) 0

] [

X 0
0 I

] [

Φ(hi) Γ
Ψ(hi) 0

]∗

.

5. Update G by

G ← G ∪ {(Lj + Uj)/2}
for all j ∈ {1, 2, . . . , M} where Lj, Uj and M are
determined so that

L1 < U1 < L2 < U2 < · · · < LM < UM ,

M
⊕

j=1

(Lj , Uj) = (hℓ, hu)\



(hℓ, hu) ∩
#(G)
⋃

i=1

H(hi,
√

αi)





are satisfied. Go to Step 1.

Algorithm 5 has similar features to that in Fujioka [2007a]:
Step 2 is introduced to avoid numerical issues which
could happen when #(G) is too large. The performance
of the algorithm can be tuned by modifying the objective
function in Step 3. Note that αi satisfies (13) with X
determined in Step 3 and αi ≤ βi with sufficiently small
ε. The integer M in Step 4 is #(G) + 1 at most.

4. ILLUSTRATIVE EXAMPLE

Consider the following parameters found in Naghshtabrizi
and Hespanha [2005]:

Ac =

[

0 1
0 −0.1

]

, Bc2 =

[

0
0.1

]

, Cc2 = [1 0] .

They have reported that their results guarantee the stabil-
ity of closed-loop system by the following observer-based
controller:

ẋC(t) = AcxC(t) + Bc2uc(t) + L(y[k]− Cc2xC(τk))

uc(t) = −FxC(σk)

if τk = khs, hs = 0.5 and σk = kha as long as ha ≤ 0.733,
where F and L are given by

F = [3.3348 9.9103] , L =

[

0.6772
0.1875

]

.

By using the parameters we determine Kd by

AK = eAchs −
∫ hs

0

eAc(h
s
−η)(BF + LC) dη,

BK =

∫ hs

0

eAc(h
s
−η)L dη, CK = −F, DK = 0

and check the stability of the closed-loop system.

We have implemented Algorithm 1 on MATLAB 7.4 with
Robust Control Toolbox as an LMI solver and YALMIP
(R20070810) in Löfberg [2004] as an LMI parser. The sta-
bility of the closed-loop system is verified by Algorithm 1
for hℓ = 0.17 and hu = 0.88, with

P = X−1 =







1.0540 −0.5882 −1.1648 0.1586
−0.5882 2.8879 0.3702 −2.5441
−1.1648 0.3702 1.7945 1.2804
0.1586 −2.5441 1.2804 7.1118






×10−3.

We cannot compare the results to that in Naghshtabrizi
and Hespanha [2005] since the formulation is different,
however, hu is larger than 0.733, which is guaranteed for
the time-varying discrete-time component, while Kd is
time-invariant. Hence we could conclude the effectiveness
of the proposed analysis method.

The search took 29.16 [s] on a laptop with Intel Core Solo
(1.20GHz) running Linux 2.6.22, and the maximal #(G)
in the search was 48.

5. CONCLUDING REMARKS

We have considered the stability of sampled-data feed-
back control systems where the measurement output is
sampled aperiodically, motivated by the widespread use of
networked and embedded control systems.

We have proposed a stability analysis algorithm by show-
ing robustness of sampled-data systems against perturba-
tion caused by variation of sampling intervals based on
the small-gain framework, as a generalization of Fujioka
[2007a] for the state feedback case. The effectiveness of
the proposed algorithm has been shown by numerical
examples.

In this paper we have considered an analysis problem, how-
ever, application to more practical analysis and synthesis
problems are not hard and under development.
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J. Löfberg. YALMIP : A toolbox for modeling and
optimization in MATLAB. In Proceedings of the IEEE
CACSD Conference, 2004.

L. Mirkin. Some remarks on the use of time-varying delay
to model sample-and-hold circuits. IEEE Transactions
on Automatic Control, 52:1109–1112, 2007.

P. Naghshtabrizi and J. P. Hespanha. Designing an
observer-based controller for a network control system.
In Proceedings of the 44th IEEE Conference on Deci-
sion and Control, and the European Control Conference
2005, pages 848–853, 2005.

P. Naghshtabrizi, J. P. Hespanha, and R. Teel. On
the robust stability and stabilization of sampled-data
systems: A hybrid system aproach. In Proceedings of the
45th IEEE Conference on Decision and Control, pages
4873–4878, 2006.

P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel. Sta-
bility of delay impulsive systems with application to
networked control systems. In Proc. American Control
Conf., 2007.

V. Suplin, E. Fridman, and U. Shaked. Sampled-data H∞

control and filtering: Nonuniform uncertain sampling.
Automatica, 43:1072–1083, 2007.

G. C. Walsh, H. Ye, and L. Bushnell. Stability analysis of
networked control systems. In Proc. American Control
Conf., pages 2876–2880, 1999.

D. Yue, Q. L. Han, and C. Peng. State feedback controller
design of networked control systems. IEEE Transactions
on Circuits and Systems II, 51:640–644, 2004.

D. Yue, Q. L. Han, and J. Lam. Network-based robust
H∞ control of systems with uncertainty. Automatica,
41:999–1007, 2005.

W. Zhang and M. S. Branicky. Stability of networked con-
trol systems with time-varying transmission period. In
Allerton Conf. Communication, Contr. and Computing,
2001.

W. Zhang, M. S. Branicky, and S. M. Phillips. Stability
of networked control systems. IEEE Control Systems
Maganine, 21:84–99, 2001.

Proof of Theorem 5

We here prove that (9) holds for all h ∈ [h0, hU ]. The
proof for the interval [hL, h0] is similar so it is omitted.
Although the proof is almost the same to that in Fujioka
[2007a] we show it for the paper completeness. Note that
H(h0, γ) ⊆ [hL, hU ].

Invoking Lemma 4 we have

‖∆(θ)‖ ≤
∫ θ

0

∥

∥eAct
∥

∥ dt ≤
∫ θ

0

eµ(Ac)t dt

when θ ≥ 0. If µ(Ac) = 0

‖∆(θ)‖ ≤ θ.

Hence (9) holds as long as γθ ≤ 1. This completes the
proof for the case U1.

Let us next consider the case of µ(Ac) 6= 0. In this case

‖∆(θ)‖ ≤ eµ(Ac)θ − 1

µ(Ac)
. (.1)

Suppose that µ(Ac) < 0. Noting that the right hand side
goes to −1/µ(Ac) when θ tends to ∞. Hence (9) holds for
all θ > 0 if

− γ

µ(Ac)
≤ 1.

This completes the proof for the case U2.

Finally let us consider the case of µ(Ac) 6= 0 and

− γ

µ(Ac)
> 1.

The small gain condition (9) holds for all θ > 0 if

γ
eµ(Ac)θ − 1

µ(Ac)
≤ 1.

Noting that 1 + γ−1µ(Ac) > 0 in this case, this condition
turns to

Case A) If µ(Ac) > 0

µ(Ac)θ ≤ log(1 + γ−1µ(Ac)).

Case B) If µ(Ac) < 0

µ(Ac)θ ≥ log(1 + γ−1µ(Ac)).

Hence we have

θ ≥ 1

µ(Ac)
log(1 + γ−1µ(Ac)).

for both cases. This completes the proof for the case U3.
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