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Abstract: We study the continuous-time consensus problem where nodes on a graph attempt
to reach average consensus. We consider communication graphs that can be decomposed into a
hierarchical structure and present a consensus scheme that exploits this hierarchical topology.
The scheme consists of splitting the overall graph into layers of smaller connected subgraphs.
Consensus is performed within the individual subgraphs starting with those of the lowest
layer of the hierarchy and moving upwards. Certain “leader” nodes bridge the layers of the
hierarchy. By exploiting the increased convergence speed of the smaller subgraphs, we show
how this scheme can achieve faster overall convergence than the standard single-stage consensus
algorithm running on the full graph topology. The result presents some fundamentals on how the
communication architecture influences the global performance of a networked system. Analytical
performance bounds are derived and simulations provided to illustrate the effectiveness of the
scheme.

1. INTRODUCTION

Recent years have seen a large amount of research focused
on issues relating to multi-agent and cooperative control
(Olfati-Saber et al. (2007)). The task is generally to
have a group of systems/agents collectively achieve a
desired task in a decentralized fashion while making use
of shared information. Examples of specific applications
include those in the areas of; consensus (Olfati-Saber et al.
(2007)), behavior of swarms (Xi et al. (2005)), multi-
vehicle formation control (Fax and Murray (2004)), sensor
fusion (Spanos et al. (2005)) and many others. In this
paper we focus on the problem of consensus, i.e., having a
group of agents reach agreement/consensus on a quantity
of interest.

The average consensus problem, which we consider here,
is to find a distributed algorithm such that a collection of
agents reaches consensus on the average of their initial con-
ditions. To do so the agents must communicate their values
to other agents, but they can only communicate with some
subset of the other nodes. Given certain conditions on the
topology of this communication network, and using an
update rule that changes their value in the direction of
the aggregate value of the nodes they communicate with
the average consensus can be achieved.

? The work by K. H. Johansson was partially done during a
stimulating sabbatical visit at Caltech. The work was partially
supported by the Swedish Foundation for Strategic Research, the
Swedish Research Council, the KTH ACCESS Linnaeus Center,
and the European Commission through the HYCON Network of
Excellence.

In addition to proving consensus can be reached, perfor-
mance of the consensus algorithm has been a key area of
research. One performance measure is in terms of the ro-
bustness to possible communication sharing impediments.
Issues such as communication delays and changes in the
communication topology over time have been examined,
see Olfati-Saber and Murray (2004) and Ren and Beard
(2005). Another performance measure that has been a key
area of research and is the focus of the present work is the
time to reach consensus.

Tools from graph theory (Godsil and Royle (2001)) have
been used to represent the information sharing topology
and aid in the analysis in consensus problems. The key
factor in determining the time to convergence has been
shown to be the second smallest eigenvalue, represented
as λ2, of the graph Laplacian (the matrix representing the
evolution of the agent’s values based on the communica-
tion topology). Yang et al. (2006) attempted to speed up
the time to convergence, while trading-off robustness, by
optimally choosing how much relative weight each node
should give to the other nodal values in the update rule
in order to maximize the ratio λ2/λmax. A version for the
discrete time case was given in Xiao and Boyd (2004). In-
troducing additional communication links into the network
and creating small world networks, as was done in Olfati-
Saber (2005), is another approach. The main idea of these
approaches and others is the attempt to increase λ2.

In this work we introduce a new approach to speed up con-
vergence in consensus algorithms applicable to graphs that
can be decomposed into a hierarchical graph. It consists of
splitting the overall graph into layers of smaller connected
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subgraphs. Consensus is performed within the individual
subgraphs starting with those of the lowest layer of the
hierarchy and moving upwards. Certain “leader” nodes
bridge the layers of the hierarchy. By exploiting the larger
λ2 values of the smaller subgraphs, this scheme can achieve
faster overall convergence than the standard single-stage
consensus algorithm running on the full graph topology.
Furthermore, using consensus for the individual subgraphs
endows them with the benefits associated with standard
consensus algorithm, such as robustness to information
perturbations, no need for a global planner within the sub-
graphs, etc. The contribution of this paper is to extend the
basic understanding of consensus algorithms to situations
when the system may have a hierarchical structure. This
hierarchical structure is typical in layered communication
networks, where some nodes are gateways between clusters
of local nodes and the rest of the network.

The paper is organized as follows. Section 2 provides a
quick review of graph theory and continuous-time consen-
sus algorithms, and introduces the concept of hierarchical
decomposition of graphs. The hierarchical consensus algo-
rithm is described and analyzed in Section 3. Section 4 con-
tains examples and simulations to illustrate the algorithm.
Finally the paper ends with conclusions and a description
of future work in Section 5.

2. GRAPHS AND CONTINUOUS-TIME CONSENSUS

2.1 Graph Theory

Consider a group of N agents with an underlying graph
topology G = {V,E}, where V = {1, . . . , N} is the set
of nodes and the edge set E = {(i, j)} ⊆ V × V is the
node pairs (i, j) where node j sends information to node
i. If the communication link between nodes i and j is
bidirectional then both (i, j) and (j, i) ∈ E. Define the
neighbor set of node i as Ni = {j | (i, j) ∈ E}. The
adjacency matrix is the matrix A = [aij ] where aij = 1
if (i, j) ∈ E otherwise aij = 0, it is usually assumed that
aii = 0. Letting D = diag(di) with di =

∑
j

aij we then

have the Laplacian matrix for graph G given by
L = D −A . (1)

The Laplacian matrix has been widely studied in the
context of graph theory (Godsil and Royle (2001)) and it
plays a central role in the analysis of consensus algorithms
(Olfati-Saber et al. (2007)).

2.2 Hierarchical Graph Decomposition

The algorithm presented in this paper is applicable to
graphs that can be hierarchically decomposed. In this
section we provide a formal definition for a hierarchical
decomposition and present some associated properties.
Definition 1. An M -layer hierarchical decomposition of a
connected graph G = {V,E} consists of a collection of
subgraphs Gi

j = {V i
j , Ei

j}, with i = 1, . . . M , of G. The
vertex set of Gi

j is denoted by V i
j ⊆ V and Ei

j = {(m,n) ∈
E | m,n ∈ V i

j } ⊆ E denotes the edge set. Let Si denote
the number of subgraphs, Gi

1,Gi
2, . . . ,Gi

Si , at layer i. Let

Vi =
Si⋃

j=1

V i
j be the set of all nodes in layer i. The collection

of subgraphs Gi
j must satisfy the following properties:

(1) Each Gi
j is connected and

∣∣V i
j

∣∣ ≥ 1.
(2) There is only one top-layer graph, i.e., SM = 1.
(3) The lowest-layer graphs contain all the nodes of the

graph, i.e., V1 = V .
(4) The subgraphs at the same layer i are disjoint, i.e.,

V i
j

⋂
V i

k = ∅ for all j 6= k and j, k ∈ {1, . . . , Si}.
(5) For each Gi

j , i < M , there exists exactly one parent
subgraph Gi+1

m that shares a single node, i.e., exactly
one m ∈ {1, . . . , Si+1} satisfies|V i

j

⋂
V i+1

m | = 1.

An example of a hierarchical decomposition is given in
Fig. 1. Notice the hierarchical decomposition does not
require that all available links be utilized since the links
between nodes 2 and 3 as well as between nodes 5 and 6 are
never used. Of course each graph does not necessarily have
a unique hierarchical decomposition, and others could be
created that utilize these links.

Fig. 1. Example hierarchical decomposition.

We introduce a few more definitions and properties associ-
ated to the subgraphs of a hierarchical decomposition. All
nodes present in a given layer i < M have an associated
parent node for that layer. If node k is in subgraph Gi

j ,
then node k’s parent node is the one node in Gi

j that is
also in some subgraph of the next layer Gi+1

m . Let p(k, i)
denote the parent node of node k for layer i, i.e., if k ∈ V i

j

and its parent node is in V i+1
m then p(k, i) = V i

j

⋂
V i+1

m . A
node can be its own parent node. As an example, referring
to the hierarchical decomposition in Fig. 1 we see that in
layer 1 node 1 is the parent node for both itself and node
2, i.e., p(1, 1) = p(2, 1) = 1.

For every layer i each node k also has an associated leader
node denoted by Li

k whose definition is slightly different
than its parent node. If a node k is in layer i, k ∈ Vi, then
it is its own leader node Li

k = k. If the node is in layer i−m
but is not in any of layers from i−m + 1, i−m + 2, . . . , i,

i.e., k ∈ Vi−m but k 6∈
m−1⋃
l=0

Vi−l, then its leader node is
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the successive parent node from layer i−m to i− 1, i.e.,
Li

k = p(p(· · · p(p(k, i−m), i−m−1), · · · ), i−1). The leader
node will be shown to be important later on as each node
will “follow” the value of their leader node. In Fig. 1 we see
that node 2’s leader nodes in layers 1, 2 and 3 are nodes
2, 1 and 3 respectively, i.e., L1

2 = 2, L2
2 = 1 and L3

2 = 3.

The total node set for the subgraph Gi
j , denoted Vi

j , is the
set of all nodes whose leader node is in subgraph Gi

j , i.e.,
Vi

j =
{
k | Li

k ∈ V i
j

}
. For the first layer we see V1

j = V 1
j for

all j = 1, . . . , S1. For each layer i associate to each node k
a total neighbor set that is given by N i

k = Vi
j for Li

k ∈ V i
j ,

where this set represents node k and all nodes that are
connected to it across layers 1 through i. We let N 0

k = k
and note that if node k is in layer i the nodes that “follow”
it are those in the set N i−1

k \k. Since all the subgraphs of
any layer i are disjoint, then for any nodes k and j if there
is any overlap in their total neighbor sets, N i

k

⋂
N i

j 6= ∅,
the sets must be identical,N i

k = N i
j , and their leader nodes

must be in the same subgraph of layer i. From this we can
see that every total neighbor set N i

k is repeated
∣∣N i

k

∣∣ times
and there are a total of Si unique neighbor sets for layer
i. The union of the total neighbor sets at any layer equals
V . We also have the following relationship

N i+1
k =

⋃
m∈V i+1

j

N i
m , for Li+1

k ∈ V i+1
j . (2)

Note in the final layer VM
1 = NM

k = V for all k, meaning
both the total node set and every total neighbor set in the
final layer is the set containing all nodes of the graph. Now
we refer to Fig. 1 to see the total node sets for layer 2 are
V2

1 = {1, 2, 3, 4, 5} and V2
2 = {6, 7}. Focusing on node 2,

the total neighbor sets are N 1
2 = {1, 2}, N 2

2 = {1, 2, 3, 4, 5}
and N 3

2 = {1, · · · , 7}.

2.3 Continuous-Time Consensus

Denote the state of node i as xi. The standard consen-
sus algorithm consists of each agent’s dynamics evolving
according to

ẋi =
N∑

j=1

aij (xj − xi) , i = 1, . . . , N , (3)

with aij defined by the adjacency matrix as given above.
If we let the vector x = [x1, . . . , xN ]T then we can write
the consensus dynamics of the group as

ẋ = −Lx , (4)
where L is the graph Laplacian as defined above. Con-
sensus is reached when all the nodal values are the same,
x1 = x2 = · · · = xN . The goal is average consensus, where
the consensus value is the average of the initial conditions

x = 1
N

N∑
i=1

xi(0). Let x = 1T
Nx, with 1N the row ones

vector with dimension N , be the vector version of the
scalar quantity x. The consensus error is then defined as

e(t) = x(t)− x . (5)

The standard consensus algorithm and certain variants
of it have been widely studied over the years. Much
focus has been given to requirements on the topology of

the network, and hence the Laplacian, for consensus to
be achieved. Likewise the performance of the consensus
algorithm, i.e., the time to reach consensus, is governed
by the Laplacian. More specifically, following Olfati-Saber
et al. (2007), with a connected graph and L symmetric
(all links are bidirectional) all the eigenvalues lie on the
real axis in the right half plane. The error convergence is
then bounded by the second smallest eigenvalue λ2 of L
according to

‖e(t)‖2 ≤ e−λ2t‖e(0)‖2 , (6)
so the consensus error goes to 0 as t → ∞. Clearly larger
values of λ2 cause the upper bound of the error to converge
faster.

For use with the hierarchical scheme we introduce the term
starting value to differentiate from initial conditions. The
initial conditions x(0) are the values of the nodes at the
very beginning of the consensus algorithm, i.e., at the
lowest layer of the hierarchy. The starting values are the
node values at the start of a new layer. Denote the start
time of layer i as t+i−1 and the end time as t−i , and for
layer 1 we assume t+0 = 0. The starting values for layer i
are thus x(t+i−1). We then define the subgraph average as
the average of the starting values of the subgraph nodes,

S
i

j = average
(
{xk(t+i−1) | k ∈ V i

j }
)

, (7)
and the nodal subgraph error is

ẽk(t) =

{
xk(t)− S

i

j for k ∈ V i
j

0 if k 6∈ Vi
(8)

for t ∈ [t+i−1, t
−
i ]. The consensus error is still relative to the

average of the initial conditions as in Eqn. (5).

In the next section we develop a variant of the standard
consensus algorithm, applicable to graphs that can be
hierarchically decomposed, to speed up the convergence
time. It will take advantage of larger λ2 values for the
smaller subgraphs compared to the λ2 of the full graph.
For example, the full graph in Fig. 1 has λ2 = 0.586 while
the smallest λ2 of all the subgraphs of the hierarchical
decomposition is 1.

3. HIERARCHICAL CONSENSUS ALGORITHM
DESCRIPTION AND ANALYSIS

In this section we will introduce the hierarchical consensus
algorithm, then provide an analysis deriving a bound on
the consensus error under this scheme and end with a
discussion of the key features of the algorithm.

3.1 Hierarchical Consensus Algorithm

As opposed to the standard single-stage consensus al-
gorithm that utilizes the full communication topology,
the new consensus scheme aims to speed up the conver-
gence by exploiting the hierarchical decomposition of the
graph. The scheme consists of “disconnecting” the hierar-
chical graph into layers consisting of smaller disconnected
subgraphs. Consensus is run within the subgraphs while
moving up the hierarchy. The scheme does not introduce
additional links to the topology, but may not utilize all
available links depending on the decomposition.
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The scheme works by running a consensus dynamics like
Eqn. (3) within each subgraph, starting with the sub-
graphs in the lowest layer. The subgraphs will start con-
verging towards the average of their starting values at that
layer. The layer is complete when the nodes within that
layer have all converged to within a specified tolerance εs

of their respective subgraph average, that is ‖ẽ‖∞ ≤ εs.
As we show later this stopping condition can be assured
by enforcing a minimum layer time. After this stopping
criterion is met the algorithm moves to the next higher
layer of the hierarchy, repeating until the final layer is
reached. The flow diagram for this scheme is shown in
Fig. 2.

Fig. 2. Flow diagram for the hierarchical consensus scheme.

Subgraphs of consecutive layers are connected by the
nodes that are present in both layers. These allow the
information to flow between the levels in the hierarchy.
As the algorithm moves to higher levels, these nodes
must disseminate information to their follower nodes. We
assume the leaders are able to relay their values down to
their followers, still utilizing the communication topology
but in a different mode than before. This allows all nodes
to instantaneously assume the value of their leader node,
i.e., for every layer i we get xk(t) = xLi

k
(t).

In designing the hierarchical scheme we want the consensus
value that every subgraph converges towards to be equal
to the average of the initial conditions of that subgraph’s
total node set. This means we want S

i

j as defined in
Eqn. (7) to be equal to average

(
{xk(0) | k ∈ Vi

j}
)
. To

assure this we simply rescale the starting values of the
nodes within the subgraph. Combining this rescaling with
the relay option that sets all follower node values to their
leader’s value, we have upon starting a new layer i

xk(t+i−1) = αi
Li

k
xLi

k
(t−i−1)

αi
Li

k
=
∣∣Vi

j

∣∣−1 ∣∣V i
j

∣∣ ∣∣∣N i−1
Li

k

∣∣∣ (9)

for Li
k ∈ V i

j and we let α1
k = 1 for all k. It is important

to note that in order for the nodes to compute αi
k they

only need to know the local topology of the hierarchical
graph, that is the number of nodes in their subgraph and
the total number of followers for each of those nodes. The
scaling factors are independent of the actual values of the
nodes. If all nodes in a subgraph have the same number
of total followers, the corresponding scale value is 1, i.e.,
if
∣∣∣N i−1
Li

k

∣∣∣ =
∣∣∣N i−1
Li

l

∣∣∣ for all k, l ∈ V i
j then it is easy to see∣∣Vi

j

∣∣ = |V i
j ||N

i−1
Li

k

| and αi
k = 1. Self-similar graphs, such as

that in Fig. 3, have this property.

3.2 Analysis

We want to bound the consensus error for the hierarchical
scheme and compare this with the bound of the standard
single-stage consensus algorithm utilizing the full graph
topology that was given in Eqn. (6). As mentioned above
a layer is considered completed as soon as ‖ẽ‖∞ ≤ εs.
We will first derive a bound for the consensus error of the
hierarchical scheme, which will depend on the value of εs

and then we will show how to guarantee this tolerance can
be met.

We will need to assume a bound on the initial conditions
‖x(0)‖∞ ≤ β, to aid in the analysis of the rescaling. Next,
define for each layer i the vectorsN i

= [N i

1,N
i

2, . . . ,N
i

N ]T

and Ñ i = [Ñ i
1, Ñ i

2, . . . , Ñ i
N ]T with

N i

k = average
(
{xm(0) | m ∈ N i

k}
)

(10)

Ñ i
k = average

(
{xm(t+i−1) | m ∈ V i

j }
)

(11)

for Li
k ∈ V i

j . Thus N i

k represents the average of the initial
conditions of all nodes connected to node k from layer
1 through layer i and Ñ i

k represents the average of the
starting values at layer i of all nodes in the subgraph
containing node k’s leader node.

To bound the consensus error we start by noting that for
each layer i we can write

‖e(t)‖2 = ‖x(t)− x‖2
=
∥∥∥x(t) +N i −N i

+ Ñ i − Ñ i − x
∥∥∥

2

≤
∥∥∥x(t)− Ñ i

∥∥∥
2

+
∥∥∥Ñ i −N i

∥∥∥
2

+
∥∥∥N i − x

∥∥∥
2

(12)
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for any t ∈ [t+i−1, t
−
i ]. The first term on the right hand

side of Eqn. (12) represents the error of the nodes with
respect to their subgraph averages. The second term is the
difference between the total neighbor subgraph averages
and the total neighbor initial condition averages. The final
term represents the difference between the average of the
initial conditions of the total neighbor sets for layer i and
the initial conditions of all the nodes. We will now provide
bounds for each of the terms on the right hand side of
Eqn. (12).
Lemma 2. Using the hierarchy scheme with stopping tol-
erance εs then for any layer i the difference between the
total neighbor subgraph averages and the total neighbor
initial condition averages can be bounded by∥∥∥Ñ i −N i

∥∥∥
2
≤ (i− 1)εs

√
N . (13)

Proof. See the proof of Lemma 5.2 in Epstein (2007). �

Lemma 3. For any layer i < M the difference between the
average of the initial conditions of the total neighbor sets
and the initial conditions of all the nodes is bounded by∥∥∥N i − x

∥∥∥
2
≤ ‖e(0)‖2 . (14)

For the final layer we have by definition∥∥∥NM − x
∥∥∥

2
= 0 . (15)

Proof. See the proof of Lemma 5.3 in Epstein (2007). �

With these lemmas we have bound the last two terms on
the right hand side of Eqn. (12). Now we seek to bound the
first term. To do so we will use the following results which
will bound the consensus error at the end and beginning
of each layer.
Lemma 4. Given the stopping criterion ‖ẽ‖∞ ≤ εs, at the
end of every hierarchy level i < M the consensus error is
bounded according to

‖e(t−i )‖2 ≤ ‖e(0)‖2 + iεs

√
N . (16)

As the final layer M does not terminate, i.e., t−M → ∞,
we get the steady state consensus error for the hierarchy
scheme is bounded by

lim
t→∞

‖e(t)‖2 ≤ (M − 1)εs

√
N . (17)

Proof. See the proof of Lemma 5.4 in Epstein (2007). �

Lemma 5. The consensus error at the beginning of every
layer i can be bound by

‖e(t+i−1)‖2 ≤ ‖e(0)‖2 + εs

√
N
(
2
∥∥α̃i
∥∥
∞ + i− 1

)
+
∥∥α̃i − 1

∥∥
∞

√
Nβ , (18)

where α̃i =
[
αi

k

]
k∈Vi .

Proof. See the proof of Lemma 5.5 in Epstein (2007). �

Using the bound on the consensus error at the start of
each layer we now provide a bound on the subgraph error
at the start of each layer.
Lemma 6. At the start of any layer i the subgraph error ẽ
as defined in Eqn. (8) is bounded by∥∥ẽ(t+i−1)

∥∥
2
≤ ẽi

0

where

ẽi
0 = bi ‖e(0)‖2 +

∥∥α̃i − 1
∥∥
∞ β

√
N

+ 2εs

√
N
(∥∥α̃i

∥∥
∞ + i− 1

)
(19)

with bi = 2 if i < M and bM = 1.

Proof. See the proof of Lemma 5.6 in Epstein (2007). �

We are now ready to determine a bound for the first term
on the right hand side of Eqn. (12) as given below.
Lemma 7. Using the hierarchy scheme the subgraph error
is bounded by∥∥∥x(t)− Ñ i

∥∥∥
2
≤ ẽi

0

 Si∑
j=1

(
max
k∈V i

j

∣∣N i−1
k

∣∣) e−2λi,j
2 (t−t+

i−1)

 1
2

(20)
for t ∈ [t+i−1, t

−
i ] with ẽi

0 as given in Eqn. (19) and
λi,j

2 representing the second smallest eigenvalue of the
subgraph Gi

j .

Proof. See the proof of Lemma 5.7 in Epstein (2007). �

Now that we have provided bounds for all the terms on
the right hand side of Eqn. (12) we are in a position to
bound the consensus error.
Theorem 8. Using the hierarchical consensus scheme with
layer stopping tolerance

∥∥ẽ(t−i )
∥∥
∞ ≤ εs, the consensus

error during each layer i can be bounded according to

‖e(t)‖2 ≤ ẽi
0

 Si∑
j=1

(
max
k∈V i

j

∣∣N i−1
k

∣∣) e−2λi,j
2 (t−t+

i−1)

 1
2

+ (i− 1)εs

√
N + (bi − 1) ‖e(0)‖2 (21)

with ẽi
0 as in Eqn. (19), bi = 2 if i < M and bM = 1,

and λi,j
2 representing the second smallest eigenvalue of the

subgraph Gi
j

Proof. This is a direct consequence of Eqn. (12) with
Lemmas 2, 3 and 7. �

As mentioned in the description of the hierarchical algo-
rithm, each layer i < M terminates when ‖ẽ‖∞ ≤ εs. Up to
this point we simply assumed this stopping criterion was
met before moving to the next layer. With the analysis
above and assuming we know a bound on the initial error,
we can assure the criterion is met by keeping the time
within each layer to be larger than a certain value as show
below.
Lemma 9. To assure the stopping criterion

∥∥ẽ(t−i )
∥∥
∞ ≤ εs

is met for each layer i < M of the hierarchical scheme we
simply make sure the layer time (time spent in the layer),
which is given by

Ti = t−i − t+i−1 , (22)
is large enough to satisfy the following inequality

ẽi
0

Si∑
j=1

e−λi,j
2 Ti ≤ εs , j = 1, . . . , Si (23)

for every layer i.

Proof. From Lemma 6 we know the subgraph error is
bounded by ẽi

0 at the start of layer i. Using the fact that
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within any layer the subgraph error from each subgraph
must be no greater than the total subgraph error from
all those in the layer we can bound the starting subgraph
error for each subgraph by ẽi

0 as well. Since each subgraph
is connected the error of subgraph Gi

j will converge at a
rate no slower than λi,j

2 . The norm of the total subgraph
error for any layer is bound by the sum of the norm of the
individual subgraph errors in that layer, hence we have

‖ẽ(t)‖2 ≤ ẽi
0

Si∑
j=1

e−λi,j
2 (t−t+

i−1) (24)

for t ∈ [t+i−1, t
−
i ]. From this we see that if Eqn. (23) is

satisfied then ‖ẽ‖2 ≤ εs ⇒
∥∥ẽ(t−i )

∥∥
∞ ≤ εs. �

With the definition of layer times in Eqn. (22) and since
t+0 = 0 we see that

ti =
i∑

j=1

Tj . (25)

With the bound for ‖e(t)‖2 determined we can compute
when this bound will be lower than that of the standard
single-stage consensus. In the hierarchical scheme only af-
ter the final layer begins will all the nodes be hierarchically
connected. Therefore we look at the consensus error of
the hierarchical scheme during the final layer and compare
with the standard algorithm.
Theorem 10. The bound on the norm of the consensus
error will be smaller for the hierarchical scheme than
the standard single-stage consensus algorithm for all time
t+M−1 + T with 0 ≤ T∗ < T < T ∗ < ∞ and satisfying the
following inequality

e−λ2T e−λ2t+
M−1 ‖e(0)‖2 − e−λM

2 T ẽM
0

(
max
k∈VM

∣∣NM−1
k

∣∣)
≥ (M − 1)εs

√
N (26)

with λM
2 the second smallest eigenvalue of the Laplacian

of GM
1 . That is to say the bound on the hierarchical

scheme will be smaller than the bound of the single-stage
consensus during the finite time interval t ∈ (t+M−1 +
T∗, t

+
M−1 + T ∗). Note T∗ < T < T ∗ < ∞ is equivalent

to Eqn. (26) being satisfied.

Proof. This is a straightforward comparison of the bound
on the consensus error in the hierarchical scheme using
Eqn. (21) with the final layer i = M and the bound on the
standard consensus algorithm from Eqn. (6). �

3.3 Discussion

We have derived a bound on the hierarchy consensus error
and compared it to the standard single-stage consensus
algorithm culminating with Theorem 10. The key factors
that determine when the condition is met are: the stopping
tolerance, εs; the layer times, Ti; the speed of convergence
of the full graph λ2 and subgraphs λi,j

2 ; the initial error,
‖e(0)‖2, and the tightness of the known bound on this.

Notice that the term on the right hand side of the in-
equality in Eqn. (26) is the bound on the steady state
consensus error of the hierarchy scheme which depends
on the number of nodes, number of layers and stopping

criterion tolerance εs. In fact εs will play more of a role to
follow. The first term on the left hand side of Eqn. (26)
is the consensus error bound for the standard scheme.
Notice that at the time of the start of the final layer of
the hierarchy, t = t+M−1 and T = 0, the second term will
be greater than ‖e(0)‖2, and since t+M−1 > 0 the condition
of Eqn. (26) can not be satisfied at T = 0. As T increases,
since we assume λM

2 > λ2, the second term goes to zero
faster than the first. Thus there will be a time T = T∗
such that the inequality is satisfied, and the larger the
difference between the eigenvalues the faster the inequality
is satisfied.

The inequality can also be satisfied faster the sooner the
final layer starts, i.e., smaller values of t+M−1. Of course
for the final layer to start all previous layers must have
satisfied the stopping criterion. Thus we see the layer
times Ti should be chosen as small as possible to satisfy
Eqn. (23). Key in this is how conservative of a bound
we can assume on ‖e(0)‖2. Since most likely the starting
norm error is not known we instead use a bound for the
value in Eqn. (23) as well as in evaluating the inequality
in Eqn. (26). If the bound is conservative then the layer
times will be longer than necessary and the inequality will
turn out to be conservative.

The stopping tolerance εs also determines the layer times,
so at first one might decide not to make this value too
small. Since the steady state error of the hierarchy scheme
is proportional to εs, and we want to have a small steady
state error, there is a trade-off. Note that as T continues
to increase the inequality in Eqn. (26) will once again fail
to be satisfied after a certain point T = T ∗ > T∗. This
occurs when the standard consensus error bound crosses
the (nearly) steady state value of the hierarchical scheme
consensus error bound. Finally it should be noted that
using the analysis above one could chose a desired level
of consensus error to be reached and could chose the
appropriate parameters so that the hierarchical scheme
reach this bound first.

4. EXAMPLE

To help illustrate the analysis above we present a simu-
lation example below. Consider the 27 node hierarchical
graph of Fig. 3. The overall graph has second smallest
eigenvalue given by λ2 = 0.1625, while all the subgraphs of
the hierarchical decomposition are fully connected graphs
with three nodes and thus have λi,j

2 = 3. This means the
smaller subgraphs converge nearly 18.5 times faster than
the full graph. We picked the initial conditions uniformly
distributed in the interval xk(0) ∈ [0, β] with β = 1000.
This means 0 ≤ x ≤ 1000 so the initial error can be bound
by ‖e(0)‖2 ≤ 1000

√
27.

Simulation results are shown in Fig. 4 with stopping
tolerance εs = 10−5. The actual initial error for this
simulation was ‖e(0)‖2 ≈ 281

√
27, yet the bounds and

the layer times were computed using ‖e(0)‖2 ≤ 1000
√

27
as this is the assumed knowledge at design time. Notice
the hierarchy bound is first lower than the full graph
bound at roughly 16 seconds and stays below until 109
seconds where the error bound is around 10−4. The actual
error in the hierarchy scheme goes below the full graph
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Fig. 3. Graph with hierarchical decomposition.

scheme at roughly 15.3 seconds and stays below until
after 150 seconds, thus showing the actual performance
is even better than the bounds indicate. In Fig. 5 we plot
the upper-bound of ‖e(t)‖2 for the hierarchy scheme for
different values of εs. Notice how the time at which the
hierarchy bound is first below the standard scheme bound
increases and the steady state value of the hierarchical
scheme decreases as εs decreases.
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Fig. 4. Error results for εs = 10−5 and ‖e(0)‖2 ≈ 281
√

27.

5. CONCLUSIONS AND FUTURE WORK

In this work we introduced the hierarchical consensus
scheme. We showed that by allowing subgraphs of a larger
connected graph to converge separately and then joining
the leaders of the subgraph to the larger graph the overall
time to consensus can be reduced. We showed the key
parameters that determine the performance of the scheme
and used examples to show the effectiveness.

There are many avenues to pursue in the future. We
only analyzed the broadcast feature for disseminating the
information from leader nodes to followers. Naturally one
could analyze the case where the follower nodes still run
consensus treating the leaders’ information as inputs to
their layer. The algorithm could be adapted to the case
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Fig. 5. Error bounds for different values of εs.

with non-static input values at the nodes will be very
interesting. In this paper we ignored the issue of non-
unique hierarchical decompositions for a given graph. De-
termining a way to optimally choose how to hierarchically
decompose a graph into layers and subgraphs would be
very valuable to make the algorithm more applicable. We
could also include various network effects such as delayed
and dropped information in the analysis or consider dis-
crete time consensus.
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