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Abstract: In this work, an initial state iterative learning control (ILC) approach is proposed
for final state control of motion systems. ILC is applied to learn the desired initial states in the
presence of system uncertainties. Four cases are considered where the initial position or speed
are manipulated variables and final displacement or speed are controlled variables. Since the
control task is specified spatially in states, a state transformation is introduced such that the
final state control problems are formulated in the phase plane to facilitate spatial ILC design
and analysis. An illustrative example is provided to verify the validity of the proposed ILC
algorithms.

1. INTRODUCTION

Motion control tasks can be classified into set-point control
and tracking control. Set-point control problems arise
because of two reasons – only the final states are of concern
and specified, and/or the control system is constrained
such that only the final states can be controlled. For
instance, stopping a moving vehicle at a desired position
is a set-point control task. Another example is to shoot
a ball into basket, which can only be a set-point control
task because it is unnecessary and impossible to specify
and control the entire motion trajectory of the ball when
only the initial shooting angle and speed are adjustable.
Further from energy saving or ecological point of view, we
may not want to continuously apply control signals if the
desired states can be reached with appropriate initial state
values. For instance we can let a train slip into and stop
at a station with certain initial speed and initial distance.
Even if a braking is applied to shorten the slipping time,
we may not want to change the braking force so as to
keep a smooth motion of the train. In such circumstances,
it is imperative to start slipping from appropriate initial
position and speed. In this work we focus on final state
control of motion systems with initial state manipulation.

The final state control of motion systems can expressed
as (1) achieving a desired displacement at a prespecified
speed or (2) achieving a desired speed at a prespecified
position. It is worth to note the difference between the
above two cases. In the first case, we can image that an
observer sits in a train and checks the displacement when
the train speed drops to a prespecified value. In the second
case, we can image that an observer stands in a station and
checks the speed when the train enters. In the first case,
the information used for control should be the position
displacement, whereas in the second case the information
used for control should be the speed.

In practice, it is not an easy task to find the appropriate
initial states when the desired final states are given, due
to two reasons. First, we do not know the exact model of
a motion system due to the unknown friction coefficients,

unknown load, or other unknown environmental factors
such as slope. Thus it is impossible to compute the
required initial states as the control inputs. Second, a
motion system such as vehicle could be highly nonlinear
due to its internal driving characteristics Uwe et al. (2000)
and external interactions with environment in the air,
water or on ground nonlinear frictions Brian et al. (1994).
It is in general impossible to obtain an analytic solution
trajectory for such a highly nonlinear dynamics.

On the other hand, many motion control tasks are fre-
quently repeated under the same circumstances, for exam-
ple the repeated basketball shot exercise, a train entering
the same station regularly, an airplane landing on the
same runway, etc. The performance of a motion system
that executes the same tasks repeatedly can be improved
by learning from previous executions (trials, iterations,
passes). Iterative learning control is a suitable method
to deal with repeated control tasks Bien et al. (1998);
Xu et al. (2003). In this paper, we further demonstrate
that ILC is also a suitable method to learn appropriate
initial states as control inputs while only the final state
information is available.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a motion system





dx

dt
= v,

dv

dt
= −f(x, v),

(1)

where f is continuous on the domain R2
+

4= [0,∞)×[0,∞),
x is the displacement and v is the speed.

The control objective is to bring the system states (x, v)
to an ε-neighbourhood of the desired final state xd > 0 or
vd ≥ 0 by means of adjusting initial state x0 or v0. Clearly
the initial states are control inputs. The ε-neighbourhood
is defined as |xd − x| ≤ ε or |vd − v| ≤ ε, where ε is
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a positive constant. Consider two sets of initial states
x0 = 0, v0 = uv, or x0 = ux, v0 = A, where the control
inputs ux and uv are respectively the initial position and
speed, A is a fixed speed greater than vd.

In real world most motion systems without control are
stable or dissipative in nature. Therefore it is reasonable to
assume that a motion system will stop when no exogenous
driving control applies. In this work it is assumed that the
position x(t) is monotonically increasing, or equivalently
Assumption 1. v ≥ 0.

In motion systems the desired final states may be defined
in a very generic manner with the position and speed
linked together, that is, defining the final states in the
spatial domain. For instance in final position control, the
desired final displacement shall be achieved at a prespeci-
fied speed, not necessarily at a zero speed. Analogously, in
final speed control the desired final speed shall be achieved
at a prespecified position.

Now, by eliminating the time t we convert the motion
system into the phase plane (v, x). Dividing the first
equation in (1) by the second equation yields

dx

dv
= −g(v, x), (2)

where g = v/f . According to (2), the state x is a function
of the argument v and control inputs. For simplicity, we
write x(v, ux) when the initial speed is fixed at A and
the control input is the initial position, and write x(v, uv)
when the initial position is fixed at zero and the control
input is the initial speed. As far as g is well defined near
f = 0, the existence and uniqueness of solution ensure that
two solution trajectories of (1) and (2) describe the same
physical motion for v ∈ [0,∞), one in the time domain
and the other in the phase plane. As such, we can derive
the same control property when the same control law is
applied.

Note that g(v, x) can be viewed as the inverse of general-
ized damping or friction coefficient. The characteristics of
the motion system (2) is solely determined by g(v, x).
Assumption 2. For v, x1, x2 ∈ R+, there exists a known
integrable Lipschitz function L(v) such that

|g(v, x1) − g(v, x2)| ≤ L(v)|x1 − x2|. (3)

Remark 1. Assumption 2 states that the inverse of gen-
eralized damping or friction coefficient should meet the
Lipschitz continuity condition. In the theory of differential
equation, Lipschitz continuity condition is necessary to
ensure the existence and uniqueness of the solution tra-
jectory. In motion systems, the solution trajectory should
be existing and unique under the same dynamics and same
initial condition.

In practice, many motion systems are discontinuous when
speed is zero, due to the presence of static friction. Con-
sider the Gaussian friction model Brian et al. (1994)




dx

dt
= v,

dv

dt
= − 1

m

((
fc + (fs − fc)e−( v

vs
)δ

)
sgn(v) + fvv

)(4)

where fc is the minimum level of kinetic friction, fs

is the level of static friction, fv is the level of viscous
friction, vs > 0 and δ > 0 are empirical parameters.
The signum function from static friction represents a
non-Lipschitzian term, and owing to this term a vehicle
running on ground can always stop in a finite time interval
instead of asymptotically stop. The choice of the dx/dv
relationship enables the inclusion of the static friction
because, according to definition in (2), g is continuous both
in x and v.

Next define the final position and final speed in spatial
domain. In position control, the final displacement, xe is
observed at a prespecified speed vf . If the initial speed is
lower than vf , vf cannot be reached. In such circumstance,
the final displacement is defined to be

xe(u)
4
=

{
x(v, u), when v = vf

0, vf cannot be reached (5)

where x(vf , u) is the position of the system (2) at the speed
vf with the control input u.

In speed control, the final speed, ve, is observed at a
prespecified position xf . However, if the initial speed is
low, the final position may not reach xf while the final
speed already drops to zero. In such circumstances, the
final speed is defined to be zero. Therefore the final speed
is defined in two cases

ve(u) 4=

{
v(x, u), when x = xf

0, xf cannot be reached
when motion stops.

(6)

In (5) and (6), the control input u is either initial position
or speed.

From Assumptions 1 and 2, we can derive an important
property summarized below.
Property 1. For any two initial quantities uj 6= u∗

j where
(uj , u

∗
j) are either initial positions or speeds, we have

(uj − u∗
j )[xe(uj) − xe(u∗

j )] > 0 in final position control
and (uj − u∗

j )[ve(uj) − ve(u∗
j )] > 0 in final speed control.

Proof.

Fig. 1. Initial state tuning for final state control.

(1) Initial position tuning for final position control

Look into the phase plane in Fig.1 (a), two solution
trajectories ÂB and ĈD represent solution trajectories of
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the dynamics (2) with different initial positions u∗
x < ux.

By virtue of the uniqueness of the solution, two trajectories
do not intersect each other. As a result, x(v, u∗

x) < x(v, ux)
and so is xe(u∗

x) < xe(ux). Therefore we have (ux −
u∗

x)[xe(ux) − xe(u∗
x)] > 0.

(2) Initial speed tuning for final position control

In Fig.1 (b), the trajectory ÂB starts from the initial
speed u∗

v and the trajectory ĈD starts from the initial
speed uv, while the initial displacements are zero. From
Fig.1 (b) and the uniqueness of solution, uv > u∗

v leads
to the positions xe(uv) > xe(u∗

v) at the points D and B
corresponding to the prespecified speed vf . As a result we
have (uv − u∗

v)[xe(uv) − xe(u∗
v)] > 0.

(3) Initial position tuning for final speed control

When ux > u∗
x, from phase plane Fig. 1 (c) we can see

that the trajectory ĈD is above the trajectory ÂB because
of the uniqueness of solution. When both positions drop
to the same level at xf , the speed D is obviously farther
than the speed B. Therefore we have (ux − u∗

x)[ve(ux) −
ve(u∗

x)] > 0.

(4) Initial speed tuning for final speed control

From Fig.1 (d) and the uniqueness of solution, we can see
that trajectory ÂB with initial speed u∗

v is always on the
left of the trajectory ĈD with the initial speed uv, because
uv > u∗

v. Accordingly ve(uv) > ve(u∗
v), that is, the point

D is on the right of the point B. As a result we have
(uv − u∗

v)[ve(uv) − ve(u∗
v)] > 0.

3. INITIAL STATE ITERATIVE LEARNING

With initial or final position and speed, we have four cases

(i) initial position iterative learning for final position
control;

(ii) initial speed iterative learning for final position con-
trol;

(iii) initial position iterative learning for final speed con-
trol;

(iv) initial speed iterative learning for final speed control.

Denote xi,e and vi,e the final position and speed defined
in (5) and (6) respectively at the ith iteration, where i =
1, 2, · · · denotes the iteration number. The ILC algorithms
corresponding to the four cases are

(i) ux,i+1 = ux,i + γ(xd − xi,e)
(ii) uv,i+1 = uv,i + γ(xd − xi,e)
(iii) ux,i+1 = ux,i + γ(vd − vi,e)
(iv) uv,i+1 = uv,i + γ(vd − vi,e)

(7)

where γ > 0 is a learning gain, ux,i is the initial position
and uv,i is the initial speed at the ith iteration.

Let u denote either initial speed or position, and z either
final speed or position, from Property 1 we have

|ud − ui+1|= |(ud − ui) − γ(zd − zi)|
= ||ud − ui| − γ|zd − zi|| . (8)

To achieve learning convergence, a key issue is to deter-
mine the range of values for the learning gain γ, which is
summarized in the following Lemma.

Lemma 1. Suppose there exists a constant λ such that
|zd − zi| ≤ λ|ud − ui|, and there exists a M < ∞ such
that |ud − u1| = M . For any given ε > 0, by applying the
control law (7) and choosing the learning gain in the range

1 − ρ

λ
< γ <

1 + ρ

λ
, 0 < ρ < 1, (9)

the output zi will converge to the ε-neighbourhood of the
desired output zd with a finite number of iterations no
more than

N =
log

ε

Mλ

log
(
1 − (1 − ρ)

ε

Mλ

) + 1.

Proof. Since |zd − zi| ≤ λ|ud − ui|, there exists a quantity
0 < λi ≤ λ such that

|zd − zi| = λi|ud − ui|. (10)
Let γ = r/λ, from the constraint of γ we have 1 −
ρ < r < 1 + ρ. Substituting (10) into (8) yields

|ud − ui+1| = |1− γλi||ud − ui| = |1− r
λi

λ
||ud − ui|.

The convergence of iteration learning is determined by the
magnitude of the factor |1 − r λi

λ
|. The upper bound for

|1 − r λi

λ | indicates the slowest convergence rate. Next we
derive this upper bound with two cases.

Case 1. min{ λ
λi

, 1 + ρ} = λ
λi

. When 1 − ρ < r ≤ λ
λi

,

|1 − r
λi

λ
| = 1 − r

λi

λ
< 1 − (1 − ρ)

λi

λ

4
= ρi ≤ 1.

When λ
λi

< r < 1 + ρ,

|1− r
λi

λ
|= r

λi

λ
− 1 < (1 + ρ)

λi

λ
− 1

< ρ = 1 − (1 − ρ) ≤ ρi.

From (1+ρ)λi

λ < 1+ρ we conclude (1+ρ)λi

λ −1 < ρ and,
thus,

(1 + ρ)
λi

λ
− 1 < ρ = 1 − (1 − ρ) ≤ ρi.

Case 2. min{ λ
λi

, 1 + ρ} = 1 + ρ. In this case, we have

|1 − r
λi

λ
| = 1 − r

λi

λ
< 1 − (1 − ρ)

λi

λ
= ρi.

Thus the upper bound of the convergence factor is

ρi = 1 − (1 − ρ)
λi

λ
. (11)

for all iterations. Note that when ui 6= ud, zi 6= zd by the
uniqueness of solution, consequently λi 6= 0 by (10) and
the upper bound ρi will be strictly less than 1 as far as ui

does not converge to ud.

Let ε denote the desired ε-precision bound of learning,
i.e. |zd − zi| < ε. Now we show that the sequence zi

can enter the prespecified ε-precision bound after a finite
number of iterations. Let M denote the initial input error
|ud − ux| = M < ∞.
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First, considering the fact ρi ≤ 1, using (11) repeatedly
yields

|zd − zi| = λi|ud − ui| = λi

i−1∏

j=1

ρj|ud − ux| ≤ λiM.

Before zi enters the ε-bound, ε < |zd − zi| ≤ λi|ud −
ux| ≤ λiM which gives the lower bound of the coefficient
λi, λi ≥ ε/M for all iterations before learning terminates.
Similarly by using the relationship (11) repeatedly, and
substituting the lower bound of λi, we can derive

|zd − zi| ≤ λ|ud − ui| ≤ λ

i−1∏

j=1

ρj |ud − ux|

= λ
i−1∏

j=1

(
1 − (1 − ρ)

λj

λ

)
M ≤ Mλ

(
1 − (1 − ρ)

ε

Mλ

)i

which gives the upper bound of |zd − zi|. Solving for
Mλ

(
1 − (1 − ρ) ε

Mλ

)i−1 ≤ ε with respect to i, the max-
imum number of iterations needed is

i ≤
log

ε

Mλ

log
(
1 − (1 − ρ)

ε

Mλ

) + 1.

Remark 2. The existence of a finite M can be easily
verified as ud is finite, and u1 is always chosen to be a
finite initial state in practical motion control problems.

In terms of Lemma 1, all we need to do is to find λ from
the motion system so that the range of the learning gain
γ can be determined. In Theorem 1, we derive the value
of λ for all four cases.
Theorem 1. The ILC convergence is guaranteed for cases
(i) – (iv) when the learning gain is chosen to meet the
condition (9), and the values of λ can be calculated
respectively for four cases below.

(i) In the initial position iterative learning for final position
control, choose λ = exp

(∫A
vf

L(v)dv
)

.

(ii) In the initial speed iterative learning for final position
control, choose λ = maxv∈[vf ,A] g1(v) exp

(∫A
vf

L(v)dv
)

,

where g1 is an upper bounding function satisfying g(v, x) ≤
g1(v).

(iii) In the initial position iterative learning for final speed
control, choose λ = 1

c exp
(∫ A

vd
L(v)dv

)
, where c is a lower

bound satisfying 0 < c ≤ g(v, x).

(iv) In the initial speed iterative learning for final speed
control, choose λ = 1

c maxv∈[vd,A] g1(v) exp
(∫ A

vd
L(v)dv

)
.

Proof: For simplicity, in subsequent graphics we demon-
strate ux,i > ux,d or uv,i > uv,d only. By following the
same derivation procedure, we can easily prove learning
convergence for opposite cases ux,i < ux,d or uv,i < uv,d.
Denote ÂB the trajectories of (2) associated with the
desired control inputs, and ĈDthe trajectories associated
with the actual control inputs at the ith iteration.

Fig. 2. Phase portraying of system (2) in v-x plane with
initial state learning for final state control.

(i) Initial position iterative learning for final position
control

The initial speed is fixed at A. Denote ux,d the desired
initial position that achieves the desired final position xd

at the prespecified speed vf , that is, applying ux,d to the
dynamics (2) yields xe = xd.

Integrating (2) yields

xd − xi,e

= ux,d − ux,i −
vf∫

A

[g (v, x(v, ux,d)) − g (v, x(v, ux,i))]dv.

Applying the Lipschitz continuity condition (3) yields

|xd − xi,e|

≤ |ux,d − ux,i| +
A∫

vf

L(v)|x(v, ux,d) − x(v, ux,i)|dv.(12)

Define λ = exp
(∫ A

vf
L(v)dv

)
. Applying the generalized

Grownwall inequality to (12) we obtain |xd − xi,e| ≤
λ|ux,d − ux,i|. As shown in Fig. 2 (a), BD = |xd −
xi,e| ≤ λ|ux,d − ux,i| = λAC. Therefore, choose a ρ < 1
and the learning gain according to λ and (9), the learning
convergence is obtained.

(ii) Initial speed iterative learning for final position control

As shown in Fig.2 (b), draw a line AE starting from A
such that it parallels the x-axis, where E is the point
intersected with ĈD. In order to find the relationship
between the initial speed and final position, we first derive
the relationship between BD and AE, then derive the
relationship between AE and AC.

Using the result of case (i), we can obtain the relation-
ship between the initial position difference AE and final
position difference BD

Next investigate the relationship between the position
difference AE and initial speed difference AC. Denote x∗

the position at E. Integrating (2), the position difference
AE at the ith iteration can be estimated using the mean
value theorem
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AE = x∗ − 0 = −
uv,d∫

uv,i

g (v, x(v, uv,i)) dv

= g (v, x(v, uv,i)) (uv,i − uv,d) ∃v ∈ [uv,d, uv,i]

≤ max
v∈[uv,d,uv,i]

g (v, x(v, uv,i)) · |uv,i − uv,d|. (13)

Using this bounding condition g(v, x) ≤ g1(v) and (13),
we obtain

max
v∈[uv,d,uv,i]

g (v, x(v, uv,i))

≤ max
v∈[uv,d,uv,i]

g1(v) ≤ max
v∈[vf ,A]

g1(v).

Define λ2 = maxv∈[vf ,A] g1(v), we have AE ≤ λ2AC, BD ≤
λ1AE ≤ λAC where λ = λ1λ2. Therefore, choose ρ < 1
and the learning gain according to λ and (9), the learning
convergence is guaranteed.

(iii) Initial position iterative learning for final speed control

As shown in Fig.2 (c), draw a line through point D such
that it parallels the x-axis and intersects the trajectory
ÂB at the point E. Denote x∗ the position at E. In order
to find the relationship between the initial position and
final speed, we first derive the relationship between AC
and ED, then derive the relationship between ED and
BD.

Using the result of case (i), we can obtain the relation-
ship between the initial position difference AC and final
position difference ED

ED ≤ λ1AC, λ1 = exp




A∫

vd

L(v)dv


 . (14)

Next investigate the relationship between the initial po-
sition difference ED and the final speed difference BD.
Integrating (2), the speed difference ED at the ith itera-
tion can be estimated using the mean value theorem

ED = xf − x∗ =

vi,e∫

vd

g (v, x(v, x∗)) dv

= g (v, x(v, x∗)) (vi,e − vd) ∃v ∈ [vd, vi,e]

≥ min
v∈[vd,vi,e]

g (v, x(v, x∗)) (vi,e − vd). (15)

Substitute the relationship minv∈[vd,vi,e] g (v, x(v, x∗)) ≥ c

into (15) and note BD = vi,e − vd, we have BD ≤
λ2ED, λ2 = 1/c. Finally using (14) it can be derived that
BD ≤ λ2ED ≤ λAC where λ = λ1λ2. Therefore, choose
ρ < 1 and the learning gain according to λ and (9), the
learning convergence is guaranteed.

(iv) Initial speed iterative learning for final speed control

As shown in Fig.2 (d), the learning convergence in this case
can be derived directly by using the results of cases (i),
(ii) and (iii). Draw two straight lines ED and AF . There
exist three relations. The first relationship is between the

initial speed difference AC and the final position difference
AF , which has been discussed in the second part of case
(ii). The second relationship is between the initial position
difference AF and the final position difference ED, which
has been explored in case (i). The third relationship is
between the initial position difference ED and the final
speed difference BD, which was given in the second part
of case (iii). Therefore the value of λ given in the theorem
consists of three factors

max
v∈[vf ,A]

g1(v), exp




A∫

vf

L(v)dv


 ,

1
c
.

The prior knowledge required for four cases differs. The
first case from position to position requires minimum prior
knowledge from the motion system, the lower and upper
bounds of g(v, x) are not required. In the second case from
speed to position, only the upper bounding function is
required. In the third case from position to speed, only
the lower bounding function is required. In the fourth case
from speed to speed, however, both the lower and upper
bounding functions are required.

Since g is the inverse of generalized damping or friction
coefficient, the lower bound for g is to rule out the scenario
where the generalized damping or friction coefficient would
be infinity. Physically an overlarge damping or overlarge
friction coefficient implies that an immediate stop-motion
may occur, and we are unable to achieve the final speed
control at a prespecified position xf . Therefore the lower
bound is required in cases (iii) and (iv) for final speed
control.

The upper bound for g is required for initial speed learning
to rule out the scenario where the generalized damping
or friction coefficient would be too small. Look into the
proof of case (ii), if the generalized damping or friction
is too small, trajectories ÂB and ĈD will be very steep.
As a result, a small change in the initial speed CA yields
a significant position difference AE. In other words, the
system gain is extremely large and an extremely lower
learning gain should be used. g1 confines the system gain
so that the lower bound of the learning gain can be
determined.

4. A DUAL INITIAL STATE LEARNING

In (1), consider such a scenario where f may drop to
zero due to environmental changes, such as extremely
low surface friction at certain places, meanwhile f could
remain continuous with v > 0, vf > 0 and ve > 0. In such
circumstances, it is appropriate to consider dv/dx in the
phase plane

dv

dx
=−f

v
= −g(x, v), (16)

where the generalized damping or friction coefficient is
g(x, v) = f/v. Comparing with (2), in the dual problem
(16) the positions of x and v are swopped, x is the
argument and v is a function of x and the control inputs.
The control tasks remain the same as the final position
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or speed control by means of the initial position or speed
tuning. Thus the analysis in Theorem 1 can be directly
extended to this dual scenario because Assumption 1 does
not change and Assumption 2 holds with x and v swopped.
Since the two control problems associated with (2) and
(16) are the same except for the swopping between x and
v, by employing the same ILC algorithms (7), the learning
convergence properties for the four cases can be derived
in a dual manner by swopping xi with vi, xd with vd, xf

with vf , as summarized in Theorem 2.
Theorem 2. The ILC convergence is guaranteed for cases
(i) – (iv) when the learning gain is chosen to meet the
condition (9), where the value of λ can be calculated
respectively for four cases.

(i) In initial position iterative learning for final position
control, choose λ = 1

c
maxx∈[0,xd] g1(x) exp

(∫ xd

0
L(x)dx

)
.

(ii) In initial speed iterative learning for final position
control, choose λ = 1

c
exp

(∫ xd

0
L(x)dx

)
.

(iii) In initial position iterative learning for final speed
control, choose λ = maxx∈[0,xf ] g1(x) exp

(∫ xf

0 L(x)dx
)
.

(iv) In initial speed iterative learning for final speed
control, choose λ = exp

(∫ xf

0
L(x)dx

)
.

5. ILLUSTRATIVE EXAMPLE

Consider system (4) with parameters m = 1, fc =
3.5, fs = 3.65, fv = 1.06, vs = 0.1, δ = 0.05. The
target is to bring the motion system to a final state
(xd, vf ) = (20, 0), i.e., let the motion system reach a
displacement 20 m and stop. Since g is independent of
x, Lipschitz function L(v) is chosen to be zero.

Note that

g(v, x) =
mv

(fc + (fs − fc)e−( v
vs

)δ

+ fvv
<

m

fv
,

holds for any values of v, we can choose the upper
bounding function g1(v) = m

fv
= 0.9434. In terms of

Theorem 1, when applying initial position learning which
is case (i), λ = 1; and when applying initial speed learning
which is case (ii), λ = 0.9434. The ILC law is given by (i)
or (ii) in (7). In this example, choose the factor ρ = 0.4.
According to Theorem 1, 0.6 < γ < 1.4 for (i) initial
position learning and 0.64 < γ < 1.48 for (ii) initial speed
learning. The ε-neighbourhood is chosen with ε = 0.001 m.
Now, set a uniform learning gain γ = 0.95 and the learning
results are shown in Fig.3 and Fig.4. In both cases, a
quick learning convergence is achieved after repeating the
learning process a few iterations.

6. CONCLUSION

In this work we addressed a class of final state control
problems for motion systems where the manipulated vari-
ables are initial states. Through iterative learning with
the final state information, the desired initial states can
be generated despite the existence of unknown nonlinear
uncertainties in the motion systems. Both theoretical anal-
ysis and numerical simulations verify the effectiveness of
the proposed learning control schemes.

Fig. 3. Initial position learning for final position control:
ux,1 = 0.0 m, A = 20.0 m/s. (a) The observed final
position; (b) The learning results of initial position.

Fig. 4. Initial speed learning for final position control:
uv,1 = 20.0 m/s. (a) The observed final position;
(b) The learning results of initial speed.

Our next phase is to extend the iterative learning approach
to more generic scenarios where multiple initial states can
be adjusted simultaneously. Learning with optimality will
be explored to address the control redundancy arising from
multiple initial states.

REFERENCES

Uwe Kiencke, and Lars Nielsen. Automotive control sys-
tems. Berlin : New York : Springer-Verlag ; Warrendale,
PA : SAE International.

Brian Armstrong-H elouvry, Pierre Dupont and Carlos
Canudas De Wit. A survey of models, analysis tools
and compensation methods for the control of machines
with friction. Automatica, 30(7): 1083–1138, 1994.

Z. Bien, and J.-X. Xu. Iterative Learning Control -
Analysis, Design, Integration and Applications. Boston:
Kluwer Academic Press, USA.

J.-X. Xu, and Y. Tan. Linear and Nonlinear Iterative
Learning Control. Berlin: Springer-Verlag.

J.-X. Xu, Y. Chen, T. H. Lee, and S. Yamamoto. Ter-
minal iterative learning control with an application to
RTPCVD thickness control. Automatica, 35(9): 1535–
1542, 1999.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

116


