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Abstract: Switching max-plus-linear (SMPL) systems are discrete event systems that can switch
between different modes of operation. In each mode the system is described by a max-plus-
linear state equation and a max-plus-linear output equation, with different system matrices for
each mode. The switching may depend on input and state, or it may be a stochastic process.
We derive a stabilizing model predictive controller for SMPL systems with both deterministic
and stochastic switching. In general, the optimization in the MPC algorithm boils down to a
nonlinear optimization problem, where the cost criterion is piecewise polynomial on polyhedral
sets and the inequality constraints are linear.

1. INTRODUCTION

The class of discrete event systems (DES) essentially
consists of man-made systems that contain a finite number
of resources (such as machines, communications channels,
or processors) that are shared by several users (such as
product types, information packets, or jobs) all of which
contribute to the achievement of some common goal (the
assembly of products, the end-to-end transmission of a
set of information packets, or a parallel computation)
(Baccelli et al., 1992).

In this paper we will consider switching max-plus-linear
(SMPL) systems, discrete event systems that can switch
between different modes of operation, in which the mode
switching depends on a stochastic sequence or depends
on the input and the previous state. In each mode the
system is described by a max-plus-linear state equation
and a max-plus-linear output equation, with different
system matrices for each mode. In van den Boom and De
Schutter (2006) we have discussed SMPL systems with
deterministic switching, and in van den Boom and De
Schutter (2007) we have discussed SMPL systems with
random switching. In this paper we will give a design
procedure for stabilizing controllers of SMPL systems
with both types of switching procedures. This means that
we will introduce an auxiliary integer-valued input v(k)
for deterministic switching and the optimization becomes
more complicated compared to van den Boom and De
Schutter (2007).

⋆ Research partially funded by the Dutch Technology Foundation
STW project “Multi-agent control of large-scale hybrid systems”
(DWV.6188), and by the European 6th Framework Network of Ex-
cellence “HYbrid CONtrol: Taming Heterogeneity and Complexity
of Networked Embedded Systems (HYCON)” (FP6-IST-511368).

The class of SMPL systems contains discrete event sys-
tems with synchronization but no concurrency, in which
the order of synchronization of the event steps may vary
randomly, or is determined by input signals or the previous
state. Typical examples of SMPL systems are flexible man-
ufacturing systems, telecommunication networks, logistic
networks, and signal controlled urban traffic networks.

Mode switching depending on input signals allows us to
model a change in the structure of the system, such as
breaking a synchronization or changing the order of events.
Mode switching depending on the state may be due to
concurrency between various events (see van den Boom
and De Schutter (2006)). Random mode switching be-
tween may be due to e.g. (randomly) changing production
recipes, varying customer demands or traffic demands, or
failures in production units, transmission lines or traffic
links.

The paper is organized as follows. In Section 2 we in-
troduce the max-plus algebra and the concept of SMPL
systems. Section 3 reviews some conditions for a stabilizing
controller, and in Section 4 we derive a stabilizing model
predictive controller for SMPL systems. In Section 5 we
present a worked example.

2. MAX-PLUS ALGEBRA AND SMPL SYSTEMS

Max-plus algebra

In this section we give the basic definition of the max-plus
algebra (Baccelli et al., 1992; Cuninghame-Green, 1979).

Define ε = −∞ and Rε = R∪{ε}. The max-plus-algebraic
addition (⊕) and multiplication (⊗) are defined as follows:

x ⊕ y = max(x, y) , x ⊗ y = x + y
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for numbers x, y ∈ Rε and

[A ⊕ B]ij = aij ⊕ bij = max(aij , bij)

[A ⊗ C]ij =

n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for matrices A, B ∈ R
m×n
ε and C ∈ R

n×p
ε . The matrix ε

is the max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.

A max-plus diagonal matrix S = diag⊕(s11, . . . , snn) has
elements sij = ε for i 6= j and diagonal elements sii for
i = 1, . . . , n. If all diagonal elements sii are finite we

find that the max-plus inverse of S is equal to S⊗
−1

=

diag⊕(−s11, . . . ,−snn). There holds S ⊗ S⊗
−1

= S⊗
−1

⊗
S = E, where E = diag⊕(0, . . . , 0) is the max-plus identity
matrix.

SMPL systems

Switching Max-Plus-Linear (SMPL) systems are discrete
event systems that can switch between different modes of
operation (van den Boom and De Schutter, 2006). In each
mode ℓ = 1, . . . , L, the system is described by a max-
plus-linear state equation and a max-plus-linear output
equation:

x(k) = A(ℓ(k)) ⊗ x(k − 1) ⊕ B(ℓ(k)) ⊗ u(k) (1)

y(k) = C(ℓ(k)) ⊗ x(k) (2)

in which the matrices A(ℓ) ∈ R
nx×nx
ε , B(ℓ) ∈ R

nx×nu
ε ,

C(ℓ) ∈ R
ny×nx
ε are the system matrices for the ℓ-th mode 1 .

The index k is called the event counter. For discrete event
systems the state x(k) typically contains the time instants
at which the internal events occur for the kth time, the
input u(k) contains the time instants at which the input
events occur for the kth time, and the output y(k) contains
the time instants at which the output events occur for the
kth time 2 .

In van den Boom and De Schutter (2006) we have consid-
ered deterministic switching, which was a function of the
previous state or an input signal. In van den Boom and
De Schutter (2007) we introduced random switching, i.e.
the mode switching depended on a stochastic sequence.
In this paper we combine both switching types. For the
SMPL system (1)-(2), the mode switching variable ℓ(k)
depends on both stochastic variables as well as determin-
istic variables (state and input).

The switching times are determined by a switching mech-
anism. For the SMPL system (1)-(2), the mode switching
variable ℓ(k) is a stochastic process, which depends on
the previous mode ℓ(k − 1), the previous state x(k −
1), the input variable u(k), and an (additional) control
variable v(k). For a system with L possible modes, we
assume the probability of switching to mode ℓ(k) given

1 Note that if we consider a SMPL system with only one mode, we
have a special subclass, namely the class of max-plus-linear systems,
which describe discrete event systems in which there is synchroniza-
tion but no concurrency (Baccelli et al., 1992; Cuninghame-Green,
1979).
2 More specifically, for a manufacturing system, x(k) contains the
time instants at which the processing units start working for the kth
time, u(k) the time instants at which the kth batch of raw material
is fed to the system, and y(k) the time instants at which the kth
batch of finished product leaves the system.

ℓ(k − 1), x(k − 1), u(k), v(k) is denoted by P (ℓ(k)|ℓ(k −
1), x(k − 1), u(k), v(k)). We assume that for all ℓ(k), ℓ(k −
1) ∈ {1, . . . , L}, the probability P is piecewise affine on
polyhedral sets in the variables x(k − 1), u(k), v(k). P is
a probability, so obviously

0 ≤ P (ℓ(k)|ℓ(k − 1), x(k − 1), u(k), v(k)) ≤ 1

and

L
∑

l=1

P (l|ℓ(k − 1), x(k − 1), u(k), v(k)) = 1

Example 1 (deterministic switching):
Let v(k) be a control variable that decides the switching
from mode 1 to mode 2 (for v(k) < 0.5) or to mode 3 (for
v(k) ≥ 0.5).

mode 1
mode 2

mode 3

v(k) < 0.5

v(k) ≥ 0.5

We achieve this by defining the probability functions

P (2, 1, x, u, v) =

{

1 for v < 0.5 , ∀x, u
0 for v ≥ 0.5 , ∀x, u

P (3, 1, x, u, v) =

{

0 for v < 0.5 , ∀x, u
1 for v ≥ 0.5 , ∀x, u

So for deterministic switching, the probability functions
are piecewise constant with values either 0 or 1.

Example 2 (stochastic switching with fixed proba-
bility):
In this case of stochastic switching we assume the proba-
bility to switch from mode 1 to mode 2 is equal to β, and
the probability to switch from mode 1 to mode 3 is equal
to 1 − β, where β ∈ [0, 1] is constant.

mode 1
mode 2

mode 3

P (2, 1, x, u, v)

P (3, 1, x, u, v)

We can achieve this by defining the probability functions

P (2, 1, x, u, v) = β , ∀x, u

P (3, 1, x, u, v) = 1 − β , ∀x, u

So for stochastic switching with fixed probability, the
probability functions are piecewise constant with values
between 0 and 1.

Example 3 (stochastic switching with a probability
depending on the state or the input):
In this example we are able to control the stochastic
properties of the switching. Consider a system with state
x(k) and let x1(k) be the first entry of the state. We
assume the system switches from mode 1 to a mode 2 for
x1(k) < 0, from mode 1 to a mode 3 for x1(k) > 1, and
for x1(k) ∈ [0, 1] we have a probability equal to x1(k) to
switch from mode 1 to mode 2, and a probability equal to
1 − x1(k) to switch from mode 1 to mode 3.
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mode 1
mode 2

mode 3

P (2, 1, x, u, v)

P (3, 1, x, u, v)

We can achieve this by defining the probability functions

P (2, 1, x, u, v) =

{

0 for x1 < 0 , ∀x, u
x1 for 0 ≤ x1 ≤ 1 , ∀x, u
1 for x1 > 1 , ∀x, u

P (3, 1, x, u, v) =

{

1 for x1 < 0 , ∀x, u
1 − x1 for 0 ≤ x1 ≤ 1 , ∀x, u
0 for x1 > 1 , ∀x, u

So for stochastic switching with a probability depending
on the state or the input the probability functions are
piecewise affine in state or input.

3. CONDITIONS FOR STABILITY

We adopt the notion of stability for DES from Passino and
Burgess (1998), in which a DES is called stable if all its
buffer levels remain bounded. In this paper we consider
the due date defined as

r(k) = ρ k + d(k), where |di(k)| ≤ dmax, ∀i (3)

where r and d are vectors and ρ is a scalar, satisfying ρ > 0.
For this due date signal, closed-loop stability is achieved
if there exist finite constants k0, Myr, Myx and Mxu such
that

| yi(k) − ri(k) | ≤ Myr, ∀i (4)

| yi(k) − xj(k) | ≤ Myx, ∀i, j (5)

|xj(k) − um(k) | ≤ Mxu, ∀j, m (6)

for all k > k0.

In this section we review some conditions for stability as
derived in van den Boom and De Schutter (2007). First we
define the concept of maximum growth rate:

Definition 1. Consider an SMPL system with matrices

A
(ℓ)
α where [A

(ℓ)
α ]ij = [A(ℓ)]ij − α. The maximum growth

rate λ of the SMPL system is the smallest α for which there
exists a max-plus diagonal matrix S = diag⊕(s1, . . . , sn)
with finite diagonal elements si, such that

[ S ⊗ A(ℓ)
α ⊗ S⊗

−1
]ij ≤ 0, ∀ i, j, ℓ (7)

Remark 2: The maximum growth rate λ is finite and
can be easily computed by solving a linear programming
problem.

Definition 2. Let LN = { [ ℓ1 · · · ℓN ]T | ℓm ∈
{1, . . . , L}, m = 1, . . . , N} be the set of all possible con-
secutive mode switchings vectors where N is a positive
integer. An SMPL system is controllable if there exists
a finite positive integer N such that for all ℓ̃ ∈ LN the
matrices

ΓN
ρ (ℓ̃)=

[

A(ℓN )
ρ ⊗· · ·⊗ A(ℓ2)

ρ ⊗ B(ℓ1) . . .

A(ℓN )
ρ ⊗A(ℓN−1)

ρ ⊗B(ℓN−2) A(ℓN )
ρ ⊗B(ℓN−1) B(ℓN )

]

are row-finite, i.e. in each row there is at least one entry
larger then ε.

Theorem 3. (van den Boom and De Schutter (2007)).Con-
sider an SMPL system with mixed random/deterministic

mode switching and due-date signal (3), and a maximum

growth rate λ. Define the matrices A
(ℓ)
ρ with [A

(ℓ)
ρ ]ij =

[A(ℓ)]ij − ρ. Further assume C(ℓ) to be row-finite. Now if

(1) ρ < λ, (8)

(2) the system is controllable,

then any input signal

u(k) = ρ k + µ(k), where µmin ≤ µi(k) ≤ µmax, ∀i, (9)

and µmin and µmax are finite, will stabilize the SMPL
system.

Remark 3: For a max-plus-linear system (so L = 1),
condition (8) is equivalent to the condition that the
production rate ρ should be larger than the max-plus-
linear eigenvalue λ of the matrix A(1).

4. A STABILIZING MODEL PREDICTIVE
CONTROLLER

Model predictive control (MPC) (Maciejowski, 2002) is
a model-based predictive control approach that has its
origins in the process industry and that has mainly been
developed for linear or nonlinear time-driven systems. Its
main ingredients are: a prediction model, a performance
criterion to be optimized over a given horizon, constraints
on inputs and outputs, and a receding horizon approach.
In van den Boom and De Schutter (2006, 2007) we have
extended this approach to MPL systems and deterministic
or purely stochastic switching MPL systems and shown
that the resulting optimization problem can be solved
efficiently. In this section we study the MPC optimization
problem for systems with both random and deterministic
switching.

In MPC we use predictions of future signals based on the
SMPL model. Define the prediction vectors

ỹ(k)=









ŷ(k|k)
...

ŷ(k+Np−2|k)
ŷ(k+Np−1|k)









, ũ(k)=









u(k)
...

u(k+Np−2)
u(k+Np−1)









,

ℓ̃(k)=









ℓ(k)
...

ℓ(k+Np−2)
ℓ(k+Np−1)









, r̃(k)=









r(k)
...

r(k+Np−2)
r(k+Np−1)









,

where ŷ(k+j|k) denotes the prediction of y(k+j) based
on knowledge at event step k, u(k+j) denotes the future
input, ℓ(k+j) denotes the future mode, r(k+j) denote the
future due date, and Np is the prediction horizon (so it
determines how many cycles we look ahead in our control
law design).

Define

Ãm(ℓ̃(k)) = A(ℓ(k+m−1)) ⊗ . . . ⊗ A(ℓ(k)),

B̃mn(ℓ̃(k)) =



























A(ℓ(k+m−1)) ⊗ . . .

⊗A(ℓ(k+n)) ⊗ B(ℓ(k+n−1)) if m>n

B(ℓ(k+m−1)) if m=n

ε if m<n

,
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and

C̃m(ℓ̃(k)) = C(ℓ(k+m−1)) ⊗ Ãm(ℓ̃(k)),

D̃mn(ℓ̃(k)) = C(ℓ(k+m−1)) ⊗ B̃mn(ℓ̃(k)).

For any mode sequence ℓ̃(k) the prediction model for (1)–
(2) is now given by:

ỹ(k) = C̃(ℓ̃(k)) ⊗ x(k − 1) ⊕ D̃(ℓ̃(k)) ⊗ ũ(k) (10)

in which C̃(ℓ̃(k)) and D̃(ℓ̃(k)) are given by

C̃(ℓ̃(k)) =







C̃1(ℓ̃(k))
...

C̃Np
(ℓ̃(k))







D̃(ℓ̃(k)) =







D̃11(ℓ̃(k)) · · · D̃1Np
(ℓ̃(k))

...
. . .

...

D̃Np1(ℓ̃(k))· · ·D̃NpNp
(ℓ̃(k))







Further we can write

x(k+j) = Ãj(ℓ̃(k)) ⊗ x(k−1) ⊕ B̄j(ℓ̃(k)) ⊗ ũ(k), (11)

where

B̄j(ℓ̃(k)) =
[

B̃j1(ℓ̃(k)) · · · B̃jNp
(ℓ̃(k))

]

.

With (11) the probability of switching to mode ℓ(k+ j)
given x(k+ j−1), ℓ(k+ j−1), u(k+ j), v(k+ j)) can be
written as

P (ℓ(k+j)|x(k+j−1), ℓ(k+j−1), u(k+j), v(k+j))

= P (ℓ(k+j)|Ãj(ℓ̃(k)) ⊗ x(k−1) ⊕ B̄j(ℓ̃(k)) ⊗ ũ(k),

ℓ(k+j−1), u(k+j), v(k+j))

where P denotes the switching probability (see Section

2). Note that from (11) we find that for a fixed ℓ̃(k) the
state x(k+j) is piecewise affine on polyhedral sets in the
variables x(k−1) and ũ(k). From that we can conclude

that for a fixed ℓ̃(k), x(k − 1) and ℓ(k − 1) the probability
P is piecewise affine on polyhedral sets in the variables
ũ(k) and ṽ(k). The probability for the switching sequence

ℓ̃(k) ∈ LNp
, given ℓ(k−1), x(k−1), ũ(k), ṽ(k) is computed

as

P̃ (ℓ̃(k)|x(k−1), ℓ(k−1), ũ(k), ṽ(k)) =

= P (ℓ(k)|x(k−1), ℓ(k−1), u(k), v(k))·

P (ℓ(k+1)|x(k), ℓ(k), u(k+1), v(k+1)) · . . . ·

P (ℓ(k+Np−1)|x(k+Np−2), ℓ(k+Np−2),

u(k+Np−1), v(k+Np−1))

The probability function P̃ is a multiplication of piecewise
affine functions P , and will therefore be a piecewise poly-
nomial function on polyhedral sets in the variables ũ(k),

ṽ(k)) (for a given ℓ̃(k), x(k − 1) and ℓ(k − 1)).

In MPC we aim at computing the optimal ũ(k), ṽ(k) that
minimize the expectation of a cost criterion J(k), subject
to linear constraints on the inputs. The cost criterion
reflects the input and output cost functions (Jin and Jout,
respectively) in the event period [k, k + Np − 1]:

J(k) = Jout(k) + βJin(k) , (12)

where β ≥ 0 is a tuning parameter, chosen by the user.
The output cost function is defined by

Jout(k) = IE







Np−1
∑

j=0

ny
∑

i=1

max(yi(k + j) − ri(k + j), 0)







= IE







nyNp
∑

i=1

max(ỹi(k) − r̃i(k), 0)







= IE







nyNp
∑

i=1

[(ỹ(k) − r̃(k)) ⊕ 0̄]i







= IE







nyNp
∑

i=1

[(

(C̃(ℓ̃(k)) ⊗ x(k − 1)

⊕ D̃(ℓ̃(k)) ⊗ ũ(k)) − r̃(k)
)

⊕ 0̄
]

i







=
∑

ℓ̃∈LN







nyNp
∑

i=1

[(

C̃(ℓ̃) ⊗ x(k−1) ⊕ D̃(ℓ̃) ⊗ ũ(k))−r̃(k)
)

⊕0̄
]

i
· P̃ (ℓ̃(k)|x(k−1), ℓ(k−1), ũ(k), ṽ(k))







(13)

where IE stands for the expectation over all possible
switching sequences, and 0̄ is a zero column vector. The
output cost function Jout measures the tracking error or
tardiness of the system, which is equal to the delay between
the output dates ỹi(k) and due dates r̃i(k) if ỹi(k) −
r̃i(k) > 0, and zero otherwise;

The input cost function is chosen as

Jin,u(k) = −

Np−1
∑

j=0

nu
∑

i=1

ui(k + j) +

Np−1
∑

j=0

nv
∑

i=1

αijvi(k + j)

= −

nuNp
∑

i=1

[ũ(k)]i +

nvNp
∑

i=1

α̃i[ṽ(k)]i . (14)

where α̃ =
[

α11 α21 . . . αnv(Np−1)

]T
≥ 0 is a weighting

vector. The first term in the input cost function Jin max-
imizes the input dates ũi(k), the second term can be used
to (possibly) penalize specific actions of the variable ṽi(k).

The MPC problem for SMPL systems with due date signal
(3) can be defined at event step k as

min
ũ(k),ṽ(k)

J(k) (15)

subject to

u(k + j) − u(k + j − 1) ≥ 0, j=0, . . . , Np−1 (16)

µmin ≤ ui(k) − ρ k ≤ µmax, i = 1, . . . , nu, (17)

0 ≤ ṽ(k) ≤ ṽmax (18)

where (16) guarantees a non-decreasing input sequence,
(17) guarantees stability (cf. Theorem 3), and (18) defines
the set for the auxiliary input variable ṽ(k).

MPC uses a receding horizon strategy. So after compu-
tation of the optimal control sequences ũ∗(k), only the
first control sample u(k) = ũ∗(k) will be implemented,
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subsequently the horizon is shifted and the model and the
initial state estimate are updated if new measurements are
available, then the new MPC problem is solved, etc.

So the optimization in the MPC algorithm boils down to
a nonlinear optimization problem, where the cost criterion
is piecewise polynomial and the inequality constraints are
linear. This problem can be solved in several ways. Let
P = {P1, . . . ,PK} be the set of polyhedral regions formed
by the intersection of linear constraints (16)–(18) and
the regions on which the piecewise polynomial functions
expressing J are defined. If the number K of polyhedral
regions in P is small, one could apply for each region
Pi a multi-start optimization method for smooth, lin-
early constrained functions such as steepest descent with
gradient projection or sequential quadratic programming
(Pardalos and Resende, 2002), and afterwards take the
minimum over all regions Pi. If K is larger global opti-
mization methods like tabu search (Glover and Laguna,
1997), genetic algorithms (Davis, 1991), simulated anneal-
ing (Eglese, 1990), or (multi-start) pattern search (Audet
and Dennis Jr., 2007) could be applied.

Note that in the special case where each probability P is
a piecewise constant function, J will be a piecewise affine
function, and then it can be shown (using an approach
similar to the one used in (Bemporad and Morari, 1999))
that the optimization problem reduces to a mixed-integer
linear programming problem, for which reliable algorithms
are available (Fletcher and Leyffer, 1998; Atamtürk and
Savelsbergh, 2005).

Finally we consider the timing issue. Note that k is the
event counter and is therefore not directly related to a
specific time. We use the assumption that at event step
k the state x(k) is available. That means that for an
optimization at time t the present event k is defined as

k = argmax
{

l : xi(l) ≤ t ∀i ∈ {1, 2, . . . , n}
}

Hence, the state x(k) is completely known at time t
and thus u(k−1) is also available. Note that at time t
some components of the forthcoming states and of the
forthcoming inputs might be known (so xi(k + l) ≤ t
and uj(k+ l−1) ≤ t for some l > 0). Due to causality,
these states are completely determined by the known
forthcoming inputs. During the optimization at time t the
known values of the input have to be fixed by equality
constraints. Due to the information at time t it might
be possible to conclude that certain forthcoming modes
(ℓ(k + l) for l > 0) are not feasible any more. In that
case we can set the switching probabilities for this mode
to zero, and normalize the switching probabilities of the
other modes. With these new probabilities we can do the
optimization at time t.

If some of the control variables are integer-valued, we get
a mixed-integer nonlinear programming problem, which
could be solved using branch-and-bound methods (Leyffer,
2001).

5. EXAMPLE: A PRODUCTION SYSTEM

Consider the production system of Figure 1. This sys-
tem consists of three machines M1, M2, and M3. Two

products (A,B) can be made with this system, both with
its own recipe, meaning that the order in the production
sequence is different for every product. For product A the
production order is M1-M2-M3, which means that the raw
material is fed to machine M1 where it is processed. The
intermediate product is sent to machine M2 for further
processing, and finally the product is finished in machine
M3. For product B two processing orders are allowed,
namely M2-M1-M3 (denoted as B1) or M1-M3-M2 (de-
noted as B2).

M1

M2

M3

d1 = 1

d2 = 3

d3 = 6
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u(k) y(k)

A,B2

B1

A
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B1,B2

B2

A

B2

A,B1

Figure 1. A production system.

We assume that the type of the kth product (A or B) only
becomes available at the start of the production, so that
we do not know ℓ(k) when computing u(k).

Each machine starts working as soon as possible on each
batch, i.e., as soon as the raw material or the required
intermediate products are available, and as soon as the
machine is idle (i.e., the previous batch has been finished
and has left the machine). We define u(k) as the time
instant at which the system is fed for the kth time, xi(k)
as the time instant at which machine i starts for the kth
time, and y(k) as time instant at which the kth product
leaves the system. We assume that all the internal buffers
are large enough, and no overflow will occur.

We assume the transportation times between the machines
to be negligible, and the processing time of the machines
M1, M2 and M3 are given by d1 = 1, d2 = 2 and d3 = 3,
respectively. The system equations for x1, x2 and x3 for
recipe A are given by

x1(k) = max(x1(k − 1) + d1, u(k)) ,

x2(k) = max(x1(k) + d1, x2(k − 1) + d2)

= max(x1(k − 1) + 2d1, x2(k − 1) + d2, u(k) + d1) ,

x3(k) = max(x2(k) + d2, x3(k − 1) + d3)

= max(x1(k − 1) + 2d1 + d2, x2(k − 1) + 2d2,

x3(k − 1) + d3, u(k) + d1 + d2) ,

y(k) = x3(k) + d3 ,

leading to the systems matrices for recipe A:

A(1) =

[

d1 ε ε
2d1 d2 ε

2d1 + d2 2d2 d3

]

, B(1) =

[

0
d1

d1 + d2

]

C(1) = [ ε ε d3 ] .

Similarly we derive for recipe B1:

A(2) =

[

d1 2d2 ε
ε d2 ε

2d1 d1 + 2d2 d3

]

, B(2) =

[

d2

0
d1 + d2

]

C(2) = [ ε ε d3 ] ,

and for recipe B2:

A(3) =

[

d1 ε ε
2d1 + d3 d2 2d3

2d1 ε d3

]

, B(3) =

[

0
d1 + d3

d1

]
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C(3) = [ ε d2 ε ] .

Note that the matrices Γ1
ρ(ℓ̃) = B(ℓ), ℓ ∈ {1, 2, 3} are all

row-finite, and so the SMPL system is controllable.

The demand mechanism for the recipe type is such that if
we have a specific recipe in cycle k, then the probability
of having the same recipe for cycle k + 1 is 65%, and the
probability of a switching to any other recipe is 35%.

At this point we introduce an auxiliary binary control
variable v(k) ∈ {0, 1} that can be used to choose between
processing order B1 and B2. The switching probability
from one recipe to the next one is now given by:

P (1|1, v) = 0.65 , P (1|3, v) = 0.35 ,
P (2|1, v) = 0.35 v(k) , P (2|3, v) = 0.65 v(k) ,
P (3|1, v) = 0.35 (1−v(k)), P (3|3, v) = 0.65 (1−v(k)),

P (1|2, v) = 0.35 , P (2|2, v) = 0.65 v(k) ,
P (3|2, v) = 0.65 (1−v(k)).

The maximum growth rate of the system is equal to
λ = 11. We therefore choose a due date signal given by
r(k) = ρ ·k , where ρ = 12.1 > λ. The initial state is equal

to x(0) = [ 4 4 4 ]
T
, and J is given by (12) for Np = 3, and

β = 10−5. In the experiment, the true switching sequence
is simulated for a random sequence with the above given
switching probability. The optimization turns out to be
a mixed-integer linear programming problem. Figure 2-a

0 5 10 15
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k −→
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k −→
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r
−
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ℓ
−
→

v
−
→

Figure 2. (a) Due date error y(k)−r(k), (b) control variable
v(k), (c) switching sequence ℓ(k)

gives the due date error between the due date signal r(k)
and the output signal y(k), with the corresponding control
variable v(k) (see Figure 2-b) for a switching sequence
given in Figure 2-c, when the system is in closed-loop with
the receding horizon model predictive controller. It can be
observed that y(k)−r(k) is initially larger than zero, which
is due to the initial state. The error decreases very rapidly
and for k ≥ 6 the error is always equal to zero, which
means that the the product is always delivered in time. It
can clearly be seen that recipe B1 is chosen when v(k) = 0
and recipe B2 for v(k) = 1.

6. DISCUSSION

In this paper we have considered the control of switching
max-plus-linear systems, a subclass of discrete event sys-
tems, in which we can switch between different modes of
operation. In each mode the system is described by max-
plus-linear equations with different system matrices for
each mode. The switching between the modes can be both
deterministic and stochastic.
We have derived a stabilizing model predictive controller
for switching max-plus-linear systems. The resulting opti-
mization problem is nonlinear with a piecewise polynomial
cost criterion and linear inequality constraints.
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