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Abstract: This paper is devoted to simulation aspects of complex multi-body systems resulting
from the interconnection of rigid and flexible links. This work is the natural complement of
Macchelli et al. [2006, 2007a], in which only the mathematical modeling aspects of such kind of
devices have been discussed. This paper tries to show how the port Hamiltonian framework can
be instrumental also for the easy implementation of efficient simulations if proper packages able
to deal with the a-causality of port-based modeling techniques are used. In fact, once the main
components (i.e. rigid and flexible links and kinematic pairs) have been created, the complete
model just follows by port interconnection in a plug-and-play fashion. Then, it is the simulation
engine that solves the causality of the overall scheme and generate the simulation code. The
main steps are illustrated in detail with an example.
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1. INTRODUCTION

In recent years, the port Hamiltonian approach has shown
its potentialities for modeling and control purposes of
complex dynamical systems. Here, the word “complex”
means “made of interconnected subsystems with different
physical properties”. The resulting “network” is math-
ematically described by a Dirac structure (Dalsmo and
van der Schaft [1999]), a generalization of the Kirchhoff
laws of circuit theory. According to the port Hamiltonian
formalism, finite (Maschke and van der Schaft [1992]) and
infinite dimensional systems (van der Schaft and Maschke
[2002]) are characterized by a common interface, the power
port. This makes the interconnection easier and allows the
creation of dynamical models described by ODEs, PDEs
and algebraic constraints. It is clear that a manipulator
with flexible links belongs to this class.

Following Maschke [1996], Stramigioli [2001], Macchelli
et al. [2006], the mechanism is decomposed in its funda-
mental parts, i.e. rigid and flexible links and kinematic
pairs, and its structure described by means of a set of ori-
ented graphs. Based only on the analysis of these graphs,
the interconnection equations involving the port variables
of the links can be written. Then, the dynamics of the
mechanism follows automatically from the interconnection
equations and the model of each component. The Hamilto-
nian description of the rigid link presented in Stramigioli
[2001] is adopted, while the flexible link representation is
based on the 3D nonlinear flexible beam in port Hamilto-
nian form discussed in Macchelli et al. [2006, 2007a].

The modularity of the approach can be useful also for
simulation purposes. If a modular, object-oriented physical
system modeling software package is adopted, beside the
mathematical derivation of the model, also the numerical
simulation of complex mechanisms can be carried out

simply by port interconnection, thus freeing the user
from the solution of the causality of each sub-system.
In this paper, the simulation package 20-Sim c© is used
since it is able to deal with bond-graph models, but also
other software or modeling languages can be adopted. For
example, in Ferretti et al. [2005], the multi-body system
dynamics is implemented in the Modelica language.

2. SHORT BACKGROUND ON LIE GROUPS

In order to present the notation adopted in this paper,
some basic concepts on Lie groups and Lie algebras are
briefly discussed. More details in Stramigioli [2001], Selig
[2005]. Denote by Ei and Ej a couple of 3-dimensional
Euclidean spaces and define a pair of rigid bodies Bi

and Bj as subsets of Ei and Ej respectively. The relative

position of Ei with respect to Ej is h
j
i ∈ SE

j
i (3), with

SE
j
i (3) the set of positive isometries from Ei to Ej .

If I is an open interval of R, it is possible to consider
curves in SE

j
i (3) parametrized by τ ∈ I. The differentiable

function h
j
i : I → SE

j
i (3) is a relative motion and its

derivative with respect to τ is ḣ
j
i ∈ T

h
j

i

SE
j
i (3). It is

convenient to transport this vector to the tangent space
at the identity of the group, i.e. to a Lie algebra. It is
possible to map ḣ

j
i either to an element t

i,j
i ∈ sei(3) or to

an element t
j,j
i := t

j
i ∈ sej(3) by means of the invertible

maps πi

h
j

i

and π
j

h
j

i

. More precisely, we have that

t
i,j
i = hi

j ◦ ḣ
j
i =: πi

h
j

i

(

ḣ
j
i

)

(1a)

and

t
j
i = ḣ

j
i ◦hi

j =: π
j

h
j

i

(

ḣ
j
i

)

(1b)
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with t
i,j
i and t

j
i = Ad

h
j

i

t
i,j
i the twist of body Bi with

respect to Bj , respectively expressed in Ei and Ej .

Once t
i,j
i ∈ sei(3) is given, it is possible to compute the

relative motion h
j
i (τ) of space Ei with respect to Ej that

passes through h
j
i (0) for τ = 0 with a velocity equal to t

i,j
i .

The motion is given by

h
j
i (τ) = h

j
i (0) ◦ et

i,j

i
τ (2)

where e denotes the group exponential. The group expo-
nential maps an element of the algebra to an element of
the group. Consequently, the map Ad

e
t
i,j

i
τ

is well defined

as its differential in τ = 0. More precisely, the following
linear map within the algebra is well defined:

ad
t
i,j

i

=
d

dτ
Ad

e
t
i,j

i
τ

∣

∣

∣

τ=0
(3)

The same considerations hold for t
j
i ∈ sej(3).

Given h
j
i ∈ SE

j
i (3), it is also possible to consider the co-

vectors belonging to T ∗

h
j

i

SE
j
i (3) which, applied to elements

of T
h

j

i

SE
j
i (3), result in a scalar. Based on this duality

property, it is possible to define the generalized force
between two Euclidean spaces Ei and Ej in h

j
i as an

element of T ∗

h
j

i

SE
j
i (3). As in (1) for ḣ

j
i , this element can

be intrinsically mapped to w
i,j
i ∈ se∗i (3) or to w

j
i ∈ se∗j (3)

by means of the adjoint maps associated to

χi

h
j

i

=
(

πi

h
j

i

)−1

and χ
j

h
j

i

=
(

π
j

h
j

i

)−1

(4)

The resulting quantities represent the wrench between Bi

and Bj expressed in Ei and Ej respectively. Clearly,

w
i,j
i = Ad∗

h
j

i

w
j
i (5)

3. MAIN COMPONENTS

3.1 Rigid body

Consider a rigid body in the 3D space and denote by Ei a
reference system connected with it and by E0 an inertial
reference frame. Position and orientation of the rigid body
with respect to E0 are mathematically described by the
canonical transformation h0

i ∈ SE0
i (3). As reported in

Maschke [1996], Stramigioli [2001], the port Hamiltonian
description of the rigid body motion is

(

ḣ0
i

ṁi

)

=

(

0 χh0
i
◦Adh0

i

−Ad∗

h0
i
◦χ∗

h0
i

mi∧

)(

∂H
∂h0

i

∂H
∂mi

)

+

(

0

Ad∗

h0
i

)

w0
i

t0i =
(

0 Adh0
i

)

(

∂H
∂h0

i

∂H
∂mi

)

(6)

where mi ∈ se∗i (3) is the momentum corresponding
through the inertia tensor I to t0i ∈ sei(3). The iner-
tia tensor I defines a quadratic form 〈 | 〉I on sei(3) ×
sei(3), while Y = I−1 defines a quadratic form 〈 | 〉Y
on se∗i (3) × se∗i (3). In (6), the function H represents the
energy (Hamiltonian) of the rigid body and it is given by

H(h0
i ,m

i) =
1

2

〈

mi | mi
〉

Y
+ V (h0

i )

where V is the potential. Moreover, mi∧ is a mapping from
sei(3) to se∗i (3) defined as (mi∧)ti,0i = ad∗

t
i,0
i

mi, with ad
t
i,0
i

introduced in (3). The couple of signals w0
i ∈ se∗i (3) and

t0i ∈ sei(3) defines the power port of the rigid body. Here,
w0

i is the wrench acting on the body and expressed in E0,
while t0i is the twist of Ei with respect E0 and expressed
in E0. The dual product of these quantities provides the
power flow through the port.

3.2 Flexible link

Consider a slender flexible beam of length L and with
an unstressed configuration which is not required to be
a straight line. Following Golo et al. [2003], Simo [1985],
Macchelli et al. [2007a], if s ∈ [0, L] denotes the position
along the link in the unstressed configuration, assume that
the configuration in the space of the cross section with
respect to an inertial reference E0 is given by h0

b(s) ∈
SE0

b (3), where the subscript b denotes the body reference
Eb(s) attached to the cross section. The unstressed config-

uration is described by ĥ0
b(s) ∈ SE0

b (3).

The distributed port Hamiltonian formulation of the flex-
ible link dynamics is (Macchelli et al. [2007a]):

{

∂tq = dδpH + ad(q+n̂)δpH

∂tp = dδqH− ad∗

(q+n̂)δqH + p ∧ δpH
(7a)

with boundary terms given by

fB(0) = δpH |s=0

fB(L) = δpH |s=L

eB(0) = δqH |s=0

eB(L) = δqH |s=L

(7b)

In (7), H is the total Hamiltonian, given by the sum of two
contributions: the kinetic energy and the potential elastic
one due to deformation, i.e.

H(p, q) =
1

2

∫

Z

∗
(

〈∗p | ∗p〉Y + 〈∗q | ∗q〉C−1

)

(8)

Note that the state (energy) variables associated with
the flexible link are the infinitesimal deformation q and
momentum p, expressed in body reference. More in details,
the state space is defined as X = Ω1

se(3)(Z) × Ω1
se∗(3)(Z),

with q and p se(3)-valued and se∗(3)-valued one-forms
respectively. From a physical point of view, it is neces-
sary that these quantities are 1-forms because they are
densities. If I denotes inertia tensor of the cross section
and p ∈ se∗(3) the momentum of the cross section which

corresponds to t
0,b
b ∈ seb(3) via the tensor I, the first

contribution in (8) denotes the kinetic energy density,
where Y = I−1. Note that ∗p is a function of s ∈ Z with
values in se∗b(3). In the same way, C is the compliance
tensor, with inverse C−1, which defines a quadratic form
on se(3) taking into account the potential elastic energy
due to deformation (Selig and Ding [2001]). Finally, in

(7), n̂ =
(

ĥ0
b

)−1
dĥ0

b is the “twist” in body reference that
provides the direction of the unstressed configuration while
δ and d denote the variational and exterior derivative
(van der Schaft and Maschke [2002]) respectively. More-
over, the following energy balance relation is satisfied:

dH

dt
=
〈

eB(L), fB(L)
〉

−
〈

eB(0), fB(0)
〉

(9)

This relation states an obvious property of this physical
system, i.e. the fact that the variation of internal energy
equals the total power flow at its boundary. Since no
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(a) Example of manipulator.
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(d) Kinematic pairs graph GK .
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(e) Flexible links graph GF .
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(f) Interaction graph GI .

Fig. 1. Mechanism topology, Macchelli et al. [2006]. A manipulator with flexible links and the corresponding Lagrangian
tree, kinematic pairs, flexible links and interaction graphs.

dissipative effect is considered, if the boundary energy flow
is set to zero (i.e. in the case of a flexible beam clamped
at both its extremities) energy is conserved.

3.3 Kinematic pair

Consider two rigid bodies Ei and Ej . A kinematic pair

between Ei and Ej is a set of vector fields k
j
i = {v1, . . . , vp}

on the manifold SE
j
i (3). Given a relative configuration

h
j
i ∈ SE

j
i (3), the number of linear independent vectors

v1(h
j
i ), . . . , vp(h

j
i ) in T

h
j

i

SE
j
i (3) is called degree of freedom

of the pair in h
j
i . The kinematic pair k

j
i allows a relative

motion in the direction v ∈ T
h

j

i

SE
j
i (3) if there exist real

numbers αk such that v =
∑

k αkvk, with vk ∈ k
j
i .

A kinematic pair is called bilateral in the configuration
h

j
i if allowing a motion in the v direction implies allowing

in the −v one. In the remaining part of the paper, only
holonomic kinematic pairs that do not depend on h

j
i are

considered. These kinematic pairs are called lower pairs.
For any lower pair, it is possible to define a configuration
sub-manifold Qj

i which describes the allowed configura-
tions of Ei with respect to Ej . Moreover, given a lower pair
and a direction v ∈ T

h
j

i

SE(3), it is possible to associate to

v two elements tij and t
j
i belonging respectively to sei(3)

and sej(3). More details in Stramigioli [2001].

The Lie algebras se(3) and se∗(3) are vector spaces that do

not depend on the relative configuration h
j
i . So, it makes

sense to define the lower pair as a constant subspace of
sei(3) or of sej(3). These subspaces describe the allowed
twists for the pair in space Ei and Ej respectively and
characterize the relative motion. They are indicated with
T A

i,j and T A
j,i. Their complements, which are not unique due

to the fact that there is no intrinsic metric in se(3), are
called forbidden twists subspaces and denoted by T F

i,j and

T F
j,i respectively. Consequently, we have that

sei(3) = T A
i,j ⊕ T F

i,j sej(3) = T A
j,i ⊕ T F

j,i (10a)

If the dual algebras se∗i (3) and se∗j (3) are considered,
it is possible to intrinsically define the subspace of the
constraint wrenches WC

i,j ⊂ se∗i (3) dual to T A
i,j :

WC
i,j =

{

wi
j ∈ se∗i (3) |

〈

wi
j , t

i
j

〉

= 0 ∀tij ∈ T A
i,j

}

where 〈 , 〉 denotes the duality product. In the same way,
it is possible to define WC

j,i. The actuation subspaces WA
i,j

and WA
j,i are some complement of WC

i,j and WC
j,i such that

se∗i (3) = WA
i,j ⊕WC

i,j se∗j (3) = WA
j,i ⊕WC

j,i (10b)

The input control field is a base of the actuation wrenches.

4. MECHANISM TOPOLOGY AND
INTERCONNECTION EQUATIONS

An oriented graph G is a pair (V,E), with V the set
of vertexes and E ⊂ V × V the set of edges. Given
e = (vl, vr) ∈ E, the edge e interconnects vl and vr, with
orientation going from vl to vr. Moreover, it is useful to
introduce the functions l, r : E → V defined as l(e) = vl

and r(e) = vr.

The dynamical equations of a generic manipulator made
of nr rigid and nf flexible links interconnected by nk

kinematic (i.e. lower) pairs can be systematically written
once the mechanism is described by a set of oriented
graphs. An example of mechanism is given in Fig. 1(a).
Each graph takes into account a particular aspect of
the structure, e.g. the relative position of the links or
the coupling introduced by a kinematic pair, Stramigioli
[2001]. The vertexes represent reference frames associated
with each rigid link and with the extremities of each
flexible link. Since the rigid body constraint is not valid
for flexible links, a pair of reference frames is required
for describing its configuration in space. The neutral (or
inertial) reference E0 is denoted by 0.

Denote with VB,r and VB,f the set of vertexes associ-
ated to rigid and flexible links. More precisely, if the
robot is made of nr rigid links and nf flexible links,
we assume that VB,r = {1, . . . , nr} and that VB,f =
{1L, 1R, . . . , nf L

, nf R
}, where iL and iR denote the ex-

tremities of the i-th flexible link corresponding to s = 0
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(a) Finite element dynamics. (b) Implementation of the finite element approximation of the link (N = 20
elements).

(c) Complete 20-Sim c© scheme for the mechanism of Fig.1.

Fig. 2. Modeling the flexible link in 20-Sim c©.

and s = Li respectively. Finally, define the set of all the
vertexes as VB = VB,r ∪ VB,f , as reported in Fig. 1(b).
Then, the following oriented graphs can be defined:

• Lagrangian tree graph. GB = (VB ∪ {0}, EB)
Each edge in EB is oriented from v ∈ VB to 0 and
represents the configuration of the reference system
associated to v with respect to the inertial frame (see
Fig. 1(c)).

• Kinematic pairs graph. GK = (VB ∪ {0}, EK)
Each edge e = (i, j) ∈ EK represents the kinematic

pair k
j
i which allows a relative motion between the

references Ei and Ej .
• Flexible links graph. GF = (VB,f , EF )

Each edge e = (nL, nR) ∈ EF interconnects a pair
of vertexes representing the extremities of the n-th
flexible link (see Fig. 1(e)).

• Interaction graph. GI = (VB ∪ {0}, EI)
Each of the ni edges e = (i, j) ∈ EI indicates the
place where an external system is able to interact with
the mechanism. In particular, it denotes the fact the
environment applies a wrench between Ei and Ej .

The kinematic graph GKIN = (VB ∪ {0}, EF ∪ EK)
is necessary to compute the direct kinematics of the

mechanism, while interconnection equations follow from
the total graph GT = (VB ∪{0}, EK ∪EF ∪EI). Note that
GB is a spanning tree of GT .

Once the main components have been presented in Sect. 3,
the next step is to describe the mechanical structure. Given
the total graph GT , for any cycle C we have (Stramigioli
[2001])

∑

i∈C

Adhk
r(i)

t
r(i)
l(i) = 0 (11)

where k is a fixed vertex belonging to the cycle. Dually, the
next relation relates wrenches and it is simply the action
and reaction principle. For every vertex k, if C̄k denotes
the set of edges adjacent to k, i.e. the co-cycle, then

∑

i∈C̄k

Ad∗

h
r(i)

k

w
r(i)
l(i) = 0 (12)

where either r(i) = k or l(i) = k. Relations (11) and (12)
have to be written for every cycle and co-cycle in GT . In
Macchelli et al. [2006], it is how the complete dynamical
model follows from these interconnection equations. For
simulation purposes, if a graphical editor is available, these
relations are automatically computed by the numerical
solver. The next section is devoted to illustrate the proce-
dure on the example of Fig. 1(a).
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(a) First part of the transitory. (b) Final configuration.

Fig. 3. Illustrative example.

5. SIMULATION OF COMPLEX MULTI-BODY
SYSTEMS

5.1 Port-based simulation

Following the same rationale behind the derivation of the
mathematical model of a multi-body system, the simula-
tion of whatever complex mechanism can be carried out
simply by port interconnection of its main components,
i.e. rigid and flexible links with kinematic pairs. Differently
form signal-based approaches, which require to explicitly
solve the constraints and the causality of each sub-system,
the port-based approach leaves these steps to the simula-
tion package that elaborates the topology of the system.
These concepts have been implemented, for example, in
the package 20-Sim c©, which has been adopted in this
paper in order to validate the proposed modeling and
simulation methodology.

5.2 Main components

Rigid link The simulation of the rigid link dynamics
basically requires the implementation of (6) via a bond
graph scheme. Within this formalism, the rigid link can be
described by an inertia element I characterized by 6 dof.
Main difficulty is that the dynamics is written in terms
of quantities expressed in a moving reference frame (the
body frame) in order to keep the inertia tensor constant.
Consequently, the port variables, i.e. the twist of the rigid
body and the applied wrench, which are expressed with
respect to a fixed reference frame (usually the base frame),
have to be transformed via the group adjoint map.

Flexible link The flexible link is modeled as an infinite
dimensional system in the form (7a) where the bound-
ary conditions are given by (7b), thus defining a pair
of power ports at the extremities of the link. Conse-
quently, a finite dimensional approximation is necessary
for carrying out simulations with, possibly, varying bound-
ary conditions originated, for example, by state-feedback
controllers. Classical discretization procedures generally
assume that boundary conditions are given but, in this
case, a boundary interaction (e.g. the torques/forces ap-
plied at the extremities by actuators) has to be taken
into account. In Golo et al. [2004], a novel spatial dis-
cretization procedure based on a particular type of mixed

finite element and able to provide a finite dimensional
input/output approximated system has been introduced.
From the analysis of the geometric structure of the dis-
tributed port Hamiltonian system, a finite dimensional a-
causal port Hamiltonian approximation that satisfies the
same energy balance relation of its infinite dimensional
counterpart can be obtained without any particular hy-
potheses on the boundary conditions. This technique has
been generalized to a wider range of distributed systems
with 1D spatial domain in Bassi et al. [2006] and it has
been applied to the flexible link model (7) in Macchelli
et al. [2007b]. Once the spatial domain of the flexible link
has been divided into N parts, the infinite dimensional
dynamics is approximated on each portion of the domain
by means of a finite dimensional system whose bond graph
and 20-Sim c© implementation is reported in Fig. 2(a). This
nonlinear system can be written in port Hamiltonian form
and it is characterized by a couple of power ports, i.e.
a pair twist/wrench, which represent finite dimensional
counterpart of the boundary conditions (7b). These power
ports are used to interconnect all of these components so
that the whole finite dimensional approximation of the link
dynamics can be obtained. The result is the bond graph
reported in Fig. 2(b).

Kinematic pair The kinematic pair can be simulated
once the decomposition (10) is implemented. Following
Karnopp et al. [2006], this can be practically realized
by using a rigid spring and a damper on the “compo-
nents” of the relative velocity which are constrained by
the kinematic pair. On the other hand, 20-Sim c© offers the
possibility of explicitly introduce flow (i.e. velocity) con-
straints, thus freeing the user from the particular internal
implementation. Consider, for example, a rotational joint
in a planar motion and denote by (vx, vy, ω) the relative
twist and by (fx, fy, τ) the wrench. Then, the kinematic
pair can implemented with the following code:

fcon=[vx,vy];
econ=constraint(fcon);
[fx,fy]=econ;

The instruction econ=constraint(fcon) computes the
effort econ such that the dual flow fcon is set equal to
0. This command directly interacts with the numerical
integration method, thus providing, in principle, better
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performances, flexibility and robustness. Clearly, the port
behavior at (ω, τ) is specified, for example, by the electric
motor interconnected to the joint.

5.3 An illustrative example

The proposed modeling and simulation methodology for
complex multi-body systems is illustrated through an
example in which a serial mechanical structure and a
closed kinematic chain made of rigid and flexible links
interconnected by means of rotational joints coexist. More
precisely, the simulation of the mechanism of Fig. 1(a)
is illustrated. Once the mathematical model of rigid and
flexible links, together with the kinematic pairs, have been
implemented within the simulation software, the complete
description of the mechanism can be obtained simply by
port interconnection and the resulting scheme is reported
in Fig. 2(c).

In Fig. 3(b), the 3D description of the mechanism is re-
ported, while a simple animation is presented in Fig. 3(a).
The actuators have been interconnected to the joints
denoted by q1, q2, q3 and q4, which correspond to the
kinematic pairs (1L, 0), (1, 1R), (3L, 1) and (3, 2) (see
Fig. 1(d)). Under the effect of a decentralized PD con-
troller, the mechanism is stabilized around a desired con-
figuration. The effect of such a controller, in fact, can
be interpreted as the result of a spring and a damper
and can asymptotically stabilize the mechanical system,
De Luca and Siciliano [1996]. Vibration have been induced
by the flexible links and transient can be made faster
if the dissipative effect of the damper is increased. The
parameters of the elastic links have been chosen in such
a way that large deformation appear in order to show
the performances of the flexible link model. Once the
vibrations have been fully damped, the mechanism reaches
the steady state configuration of Fig. 3(b).

6. CONCLUSIONS AND FINAL REMARKS

In this paper, a systematic procedure for the simulation
of manipulators with flexible links has been presented.
Starting from a limited set of components, i.e. rigid and
flexible links and kinematic pairs, and based on a finite
elements and port based approximation of the flexible
link, it has been shown how it is possible to construct
simulations of complex mechanism simply by port inter-
connection using appropriate software packages, such as
20-Sim c© . In this paper, an illustrative example has been
provided, together with useful indications and suggestion
on how all the main components (rigid bodies, flexible
links and kinematic pairs) can be implemented. Future
work will deal with the implementation of the proposed
methodology for example within the package 20-Sim c©,
which is is now able to handle models of rigid mechanisms
by using a systematic procedure similar to what has been
discussed in the present paper. An open issue is the de-
velopment of control schemes that take advantage of the
infinite dimensional and nonlinear description of the link
dynamics.
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