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Abstract: This paper aims to create a fuzzy classifier (FC) to be used in a recently developed
bioaerosol detector. The main requirements for FC are high true positive (TP) rate, low false
positive (FP) rate, and interpretability, which is measured by transparency of fuzzy partition.
Due to the contradicting nature of the above requirements, FCs are identified by hybrid
genetic fuzzy system (GFS), which initializes the population using decision trees (DTs) and
simplification operations. Then, a multiobjective evolutionary algorithm (MOEA) is run in
order to find a Pareto-optimal set of FCs. During MOEA optimization, heuristic rule and
rule condition removal is applied to keep the rule base consistent. Real-world bioaerosol data,
collected from Ume̊a trial field, Sweden, and from laboratory of Finnish Defense Forces Technical
Research Center, were used to validate the proposed GFS. By means of it, a widely spread
set of interpretable and accurate FCs was obtained. Moreover, an FC based on this project
was installed into the bioaerosol detector and the preliminary tests proved its capability in
distinguishing between safe and harmful bioaerosols.

Keywords: Bioaerosol Detector; Fuzzy Classifiers (FCs); Multiobjective Evolutionary
Algorithms (MOEAs); Genetic Fuzzy System (GFS); Interpretability.

1. INTRODUCTION

The purpose of a bioaerosol detector is to distinguish
between safe and harmful bioaerosols according to several
measurement signals. The commonly applied signals are
UV-fluorescent and the size of the particles Sivaprakasam
et al. (2004), Janka et al. (2007) and the first bioaerosol
alarm system based on those signals was proposed in 1997
Hairston et al. (1997). There are, however, some aerosols
(e.g. soot from diesel engines) which may cause fluorescent
response. Hence, those aforementioned signals are not
sufficient for reliable detection. In this paper, therefore,
the UV-fluorescence detection optics are combined with
a special background-aerosol detector system proposed
by Janka et al. (2007). That increases the reliability by
reducing false alarms.

The goal of this work is to identify a model, which reasons
based on the real-time measurements whether there are
harmful or safe bioaerosols in the air. The further analysis
is done in laboratory after an alarm is issued. That can be
an expensive and time consuming operation Hairston et al.
(1997). Hence, it is important to minimize the number of
false alarms. Furthermore, the bioaerosol data collected
from the field and laboratory are highly imbalanced; there
are much more data points representing harmless particles
than harmful particles. Therefore, true positive (TP) rate

⋆ This project was funded by Finnish defence forces chemical,
biological, nuclear, status (CBNS) technology program.

and false positive (FP) rate are used as a accuracy metrics
instead of commonly used misclassification rate.

Understanding the reasoning of the model builds up the
confidence that the model actually works reasonably,
which in real-world problems, is one of the crucial require-
ments for the model Elder and Pregibon (1996). Therefore,
the model is required to be as interpretable as possible.

Fuzzy classifiers (FCs) can be highly interpretable due
to their linguistic rules. Furthermore they can be very
accurate. However, data-driven methods often lead into
more complex models than necessary and therefore in-
terpretability is lost Setnes et al. (1998). Recently, more
FCs are identified by using evolutionary algorithms (EAs),
because of their good learning capabilities for complex
problems. Those approaches are often called genetic fuzzy
systems (GFS) Cordón et al. (2004). They may have mul-
tiple objectives, for example number of rules, total number
of conditions and misclassification rate (c.f. Ishibuchi et al.
(2001)), which are to be minimized simultaneously. The
GFS can converge into a single solution when aggregated
fitness function is used or into a set of Pareto-optimal
solutions when multi-objective evolutionary algorithms
(MOEAs) are used.

Commonly the initial population for GFS is created ran-
domly or manually Ishibuchi et al. (2006), Setzkorn and
Paton (2005), Gómez-Skarmeta et al. (1998), while bet-
ter convergence due to reduction of the search space is
obtained by adequate initialization Haubelt et al. (2005),
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Poles et al. (2006). That can be done, for example, by
using DTs or clustering algorithms and transforming DTs
or clusters into FMs Roubos and Setnes (2001), Abonyi
et al. (2003), Pulkkinen and Koivisto (2007b).

In this work we adopt hybrid GFS, which initializes the
population using DT algorithm and simplification oper-
ations. Then, the initial population is further optimized
by MOEA. Hybrid GFS is a refinement of our previous
work Pulkkinen and Koivisto (2007b) and its objectives
are transparency of fuzzy partition and TP and FP rates.
When transparency of fuzzy partition is used as an ob-
jective, intuitive linguistic values for linguistic variables
are obtained. Moreover, inconsistencies in rule base are
avoided by heuristic rule and rule condition reduction.

The obtained results confirm the usefulness of the pro-
posed hybrid GFS. By means of it, a widely spread set of
interpretable and accurate FCs was obtained. In January
2007, an FC based on this project was installed into
the bioaerosol detector and the preliminary tests proved
its capability in distinguishing between safe and harmful
bioaerosols.

This paper is organized as follows. Section 2 introduces
the constructed bioaerosol detector and discusses the data
collection. Then, section 3 introduces the proposed hybrid
GFS. After that in section 4 the obtained results are
presented. Finally, conclusions are given in section 5.

2. BIOAEROSOL DETECTOR

Fig. 1 shows the schematic diagram of bioaerosol detec-
tor proposed by Janka et al. (2007). To reduce the false
alarms caused by non-bioaerosols it includes not only UV-
fluorescence and particle size signals but also a special
background-aerosol detector system, which makes it dif-
ferent from the conventional bioaerosol detectors.

In a nutshell, the bioaerosol detector works as follows.
First, the particles go through a size selective sampling
to a concentrator. In order to prevent the pollens to enter,
the cut-off size for this inlet is selected as < 7µm. The
concentrator then gains the larger particles (> 2µm) by
factor > 500 and they go to the optical measurement unit
(also called primary unit) where their UV-fluorescence and
elastic scatter are measured. The rest of the particles (e.g.
the smaller ones < 2µm) go to the secondary unit. Because
the particles from combustion processes (e.g. exhaust gases

Fig. 1. A schemata of bioaerosol detector.

from diesel engine) are of this size, the secondary unit is
in key role in preventing false alarms Janka et al. (2007).

When an alarm is raised, the sample collection is automat-
ically started by channeling the aerosol flow to a dry filter.
Then the filter is removed and brought to the laboratory
for further investigation Janka et al. (2007).

2.1 Collecting and Preprocessing of the Data

The real-world bioaerosol data were collected both from
the field and from the laboratory. The field measurement
campaign was performed at Ume̊a trial field in Sweden
during early autumn 2006. The laboratory measurements
were performed at Finnish Defense Forces Technical Re-
search Center at the end of October 2006.

One of the major challenges for preparing the data for
supervised learning algorithms is to assign each input
data point to adequate class label. In this work there
are only two classes, namely alarm and normal. Of course
during the measurement period, it is exactly known when
particles are spread. Furthermore, it is known whether
the distributable particles are harmful or safe. However,
there are many challenges in assigning the class label
for the data, especially when the field measurements are
considered. Some of them are listed next:

• It is difficult to estimate when particles have spread
from distribution point to the measurement point.
That depends on several factors like direction and
velocity of the wind.

• There can be some disturbances, for instance, dust
caused by walking people and smoke caused by cars
or cigarettes.

In this work, the output was labeled based on the field
log and expert knowledge. It was roughly known when
the particles should reach the measurement system. Then,
when a rise in a certain measurement value occurred, it was
marked as the point particles has reached the measurement
system. If those particles were harmful, the output was
marked as alarm; otherwise it was marked as normal. Then
when the value of that measurement descended, it was
marked as the point the spreading of the particles was
finished. Before and after the spreading period the output
was marked as normal.

However, between the start and the end of the spreading
period the direction of the wind may change. Therefore,
between the start and the end of the spreading there may
be periods during which no particles are reached to the
measurement system. If those data points are marked as
alarm, that causes the data to become inconsistent and
therefore causes difficulties for the supervised learning
algorithms. Thus, a threshold for the aforementioned mea-
surement was defined based on expert knowledge. There-
fore, even harmful particles are spread, but if the threshold
is not exceeded those data points are still marked as
normal. From the data points not exceeding the threshold,
only a presentative subset was chosen in order to reduce
the computational costs.
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2.2 Anomalies in the Data

When large amounts of real-world data are collected,
the collected data contain anomalies. Furthermore, the
measurement system is currently in prototype phase and
many changes and improvements are expected in the near
future. Because of that, it is natural that the collected data
contain anomalies and extensive noise, which will not be
the case anymore when the system is more established.

The collected data have some anomalies in absolute values
of the measurements; there are changes in the values of
the measurements when there is nothing spread in the air.
Naturally those values, which are called in this work zero
values, should always be approximately the same, but in
this case quite significant variations exist. Moreover, one of
the measurements was very sensitive to temperature and
caused trends in the data.

That makes the development of accurate models a very
difficult task. However, it is important for the continua-
tion of the project to show that the developed bioaerosol
detector has potential for distinguishing between harmful
and harmless particles. Keeping those factors in mind, it
is not meaningful to clean the data from all anomalies.
Anyway, when the system is evaluated online the obtained
measurement data may currently have some anomalies and
the model should still work. Thus, only the data points
with most significant errors, for example a negative mea-
surement value for a measurement which should always be
positive or very strong trends, were removed. Also some
zero values were slightly modified.

3. PROPOSED HYBRID GFS

The proposed hybrid genetic fuzzy system (GFS) is pre-
sented in Fig. 2. First, a fuzzy classifier (FC) is created by a
crisp decision tree (DT) algorithm. That is clearly a better
starting point for further optimization than commonly
applied random initialization. However, due to crispness
of DT and the noise in real-world data, this FC is overly
complex and can be simplified Abonyi et al. (2003). There-
fore, the initial FC goes through merging of similar fuzzy
sets, which may lead to similar Setnes et al. (1998) or
inconsistent rules. Those rules are heuristically removed
in order to improve the convergence of MOEAs and to
reduce computational costs of fitness evaluations. After
that, the rest of the population is created by modifying the
simplified FC, such that, the initial population is widely
spread. That is beneficial to the convergence of MOEAs
Haubelt et al. (2005), Poles et al. (2006). Finally, a MOEA
is applied to find a set of widely spread Pareto-optimal
FCs. During MOEA optimization the offspring population
goes through rules and rule conditions reduction in order
to prevent the rule base having inconsistent rules.

As DT algorithm, C4.5 Quinlan (1993) is applied. Its
advances include selection of input variables and partition
of input space with non-fixed number of hyper-rectangles
Abonyi et al. (2003); Pulkkinen and Koivisto (2007a). It
is a well known and widely used algorithm and therefore
no details are given in this paper. A reader may refer to
Quinlan (1993); Abonyi et al. (2003) for further details.

As MOEA component, NSGA-II Deb et al. (2002), a pop-
ular and commonly applied MOEA is used. Its strengths

Fig. 2. Proposed hybrid genetic fuzzy system.

include an efficient method for constraint-handling , a
fast non-dominated sorting procedure and a parameterless
crowding distance measure for maintaining diversity of
population. Its details are not presented in this paper,
since it is well documented in Deb et al. (2002).

The rest of this section is organized as follows. First
FCs are briefly presented. Then, the proposed hybrid
GFS, which is a refinement of our earlier work Pulkkinen
and Koivisto (2007b), is described in detail using the
same notations as in our earlier work. Then, metrics for
accuracy and interpretability are discussed. Finally, the
fitness function applied in this paper is presented.

3.1 Fuzzy Classifiers

A fuzzy classification rule consists of fuzzy sets in the
antecedent and a class label in the consequent. Let us
denote the data set with D data points and n variables
as Z = [X y], where input matrix X and output vector y
are given as:

X =







x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xD,1 xD,2 . . . xD,n






, y =







y1
y2
...
yD






. (1)

According to Abonyi et al. (2003) fuzzy classification can
be performed as follows:

Rulei : If x1 is Ai,1, . . . , and xn is Ai,n then gi,

i = 1, . . . , R, (2)

where R is the number of rules, Ai,j , j = 1, . . . , n is a
membership function, gi ∈ {1, . . . , C} is the rule conse-
quent and C is the number of different classes in data set.
For each data point xk, the degree of fulfillment of a rule
is computed as:

βi(xk) =

n∏

j=1

Ai,j(xk,j). (3)

The rule with the highest degree of fulfillment β∗ is de-
clared as winner rule (i.e. Winner takes all strategy). The
output of the classifier is the rule consequent associated to
that rule.

3.2 Initialization of FCs

First a DT is created by C4.5 algorithm and converted into
an FC like presented in Abonyi et al. (2003). That can be

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12807



done without decomposition error, if trapezoidal member-
ship functions (MFs) are applied. However, application of
generalized bell (gbell) MFs have several benefits. Gbell
MFs may have better fit to the data Setnes and Roubos
(2000) and they have three parameters in contrast to four
parameters of trapezoidal MFs. Furthermore, since the
parameters of gbell MFs can be optimized independently,
standard mutation and crossover operators of MOEAs can
be used without any feasibility check of MFs parameters.
Because of the above reasons gbell MFs are applied in this
paper and they are defined as:

µ(x; a, b, c) =
1

1 +
∣
∣x−c

a

∣
∣
2b
, (4)

where x is the data point, and a, b and c are the parameters
of a gbell MF. The value of a defines the width of an
MF. In this paper it is required that a should be at
least 1% of variable range χ = ubound − lbound, where
ubound and lbound are respectively the upper and lower
bounds of a variable. In addition, no MFs should be wider
than χ and therefore 0.005χ < a < χ/2. The value of
b defines the fuzziness of an MF. If it is set to a high
value, an MF is almost a crisp function. Moreover, if b ≈ 0
an MF can cover large areas of universe of discourse,
therefore leading to covering of fuzzy sets, which will be
illustrated later in subsection 3.5. Therefore, 1 < b < 10.
Center of an MF should be inside the variable range. Thus,
lbound < c < ubound.

Simplification of Initial FC The initial FC is commonly
overly complex due to the axis parallel partition of crisp
DT Abonyi et al. (2003) and the noise in real-world data.
Highly similar fuzzy sets of the initial FC are merged
according to Setnes et al. (1998), Wang et al. (2005):

S(Ai, Aj) =
|Ai

⋂
Aj |

|Ai

⋃
Aj |

≈

∑p

k=1
[µi(xk) ∧ µj(xk)]

∑p

k=1
[µi(xk) ∨ µj(xk)]

, (5)

where
⋂

and
⋃

are the set theoretic intersection and
union, respectively. Minimum is marked by ∧ and max-
imum by ∨. The left hand side of the formula is commonly
approximated by calculating p membership values µ for
fuzzy sets i and j in discrete universe U = {xj |j =
1, 2, . . . , p} Wang et al. (2005). All pairs exceeding the user
specified threshold ∆ are merged.

The parameters of the fuzzy set A
′

, which replaces fuzzy
sets i and j are:

a′ =
max(ci + ai, cj + aj) − min(ci − ai, cj − aj)

2
, (6)

b′ =
bi + bj

2
and c′ =

ci + cj
2

. (7)

By result of merging, the rule base may have similar Setnes
et al. (1998) or inconsistent rules and rule conditions. It
is beneficial to remove them before creating the rest of
the chromosomes sharing the same structure (i.e. the same
number of possible rules, the same total number of possible
MFs and the same number of possible input variables)
with simplified initial FC. Heuristic rule removal is applied
for that purpose and will be discussed later in subsection
3.3. Merging of fuzzy sets is only applied to the initial FC
created by DT.

Structure of a Chromosome The simplified initial FC is
the first member (chromosome) of the initial population.
Its structure is coded, such that, it can be optimized
using standard MOEA, such as NSGA-II. The rest N − 1
chromosomes, where N is the population size, share the
same structure with the simplified initial FC.

The structure of an FC includes antecedents of the rules
A and parameters of fuzzy sets P. A is given as:

A = Ai,j , i = 1, . . . , R, j = 1, . . . , ns, (8)

where R denotes the number of rules in simplified initial
FC and ns stands for the number of variables selected
from n variables initialization phase. Naturally ns ≤ n,
but usually ns < n. Ai,j = {0, 1, . . . ,Mj} indicates which
MF is used for variable j in rule i and Mj is the number
of MFs assigned to variable j in simplified initial FC. If
variable j is not used in rule i, then Ai,j = 0. If rule i is not
used in an FC, then ∀j, Ai,j = 0. However, for simplified
initial FC there is no rule i, for which ∀j, Ai,j = 0.

Parameter vector P is presented as:

P = Pl,k, l = 1, . . . , γ, k = 1, . . . , β, (9)

where γ is the number of parameters used to define an MF
and β =

∑ns

j=1
Mj is the total number of MFs in simplified

initial FC. In this paper Gbell MFs are used, so γ = 3.

Consequent part of the fuzzy rule g = [g1, . . . , gR] is not
included into an individual. It is static and created in
initialization phase by DT and by simplification operators.
So, MOEA is used to select rules, rule antecedents and
parameters of MFs for the pre-specified class labels. The
total number of parameters θ to be optimized by MOEA
is therefore given as:

θ = R× ns + γ × β. (10)

Each parameter is restricted with lower and upper bounds
defined in current and previous subsections. Therefore the
number of constrains is 2 × θ.

Initialization of the Rest of The Population The rest
N − 1 individuals of the population, which is of size N ,
are created by randomly replacing some parameters of the
simplified initial FC. The replacement algorithm creates a
set of widely distributed chromosomes as follows:

Repeat for I = 1, . . . , N − 1, where I is the chromosome
iterator.
Step 1: Compute the number of replaceable parameters
m:

m = round

(
I

(N − 1)
× θ

)

, (11)

where round stands for the operator rounding the result
to the nearest integer.
Step 2: Choose randomly m parameters out of θ.
Step 3: Replace them by randomly generating m param-
eters between their corresponding limits.
End for

So a population of widely distributed chromosomes is
created. They all share the same structure with the sim-
plified initial FC. The rule base of the rest N − 1 chro-
mosomes may contain inconsistencies due to the random
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replacement algorithm, so they go through heuristic rule
reduction presented next.

3.3 Heuristic Rule and Rule Condition Reduction

It is beneficial to remove rules and rule conditions heuris-
tically in order to guide and speed up the evolutionary
search. The following heuristics are applied in this paper:

(1) If there are rules with exactly the same antecedent
part, all but one of them are removed Setnes et al.
(1998). The preserved rule is randomly selected.

(2) There can be rules of different length in which
all conditions of the shorter rule(s) are present in
the longer rule(s). Those rules are inconsistent. The
longer rule(s) will never obtain higher degree of fir-
ing than the shorter rule(s), because the T-norm in
this paper is product. Out of those inconsistent rules
only one rule is preserved. By uniform chance, the
preserved rule is either the longest rule (i.e. the most
specific rule) or it is randomly selected out of the
inconsistent rules.

(3) If there are conditions, which are present in all of the
rules, they are removed from all of them Pulkkinen
and Koivisto (2007a).

These heuristics are applied to the whole initial popu-
lation. Furthermore, during MOEA optimization whole
offspring population goes through heuristic rule and rule
condition reduction. Therefore, there is no inconsistencies
in the rule base in any of the chromosomes.

When the initial FC generated by DT is simplified by
merging of fuzzy sets and by removing rules and rule condi-
tions, the number of optimized parameters θ is decreased.
But since the whole population shares the same structure,
θ is not affected when the other FCs (i.e. the N−1 FCs of
initial population and the whole offspring population) go
through heuristic rule and rule condition reduction. Then
simply the removed conditions are set to 0.

3.4 Metric for Classifier’s Performance

It is well known that accuracy (i.e. the proportion of
correctly classified data points to the total number of data
points) is not an optimal metric for classifier’s performance
when misclassification costs and/or class distributions are
not known Provost et al. (1998); Fawcett (2001); Setzkorn
and Paton (2005); Ben-David (2007). In this work, neither
misclassification costs nor class distributions are even. The
preprocessed data consist of 80.72% of data points with
class label normal, and only 19.28% of data points with
class label alarm 1 . Thus, true positive (TP) and false
positive (FP) rates Fawcett (2001) are used as accuracy
metrics:

TP rate =
positives correctly classified

total positives
, (12)

FP rate =
negatives incorrectly classified

total negatives
, (13)

where positives and negatives are respectively the data-
points labeled as alarms and normal states.

1 Therefore the accuracy of majority class classifier would 80.72%.

3.5 Interpretability of FCs

Often interpretability of FCs is measured by calculating
the number of rules and total number of conditions in rules
(total rule length) Ishibuchi et al. (2001); Setzkorn and
Paton (2005); Ishibuchi and Nojima (2007). Those met-
rics, however, does not indicate whether fuzzy partition
is transparent or not. Instead of those metrics, slightly
modified versions of interpretability metrics proposed in
Kim et al. (2006), namely the length of overlap and the
length of discontinuity between fuzzy sets, are used. In
a nutshell, it is desired that the intersection value of
two fuzzy sets would lie between user specified constants
αL and αH . If the intersection value is higher than αH ,
overlap penalty POL is added, whereas if it is less than
αL, discontinuity penalty PDC is added.

Those penalties, however, issue a very small penalty in
cases when a wide fuzzy set covers a narrow fuzzy set (e.g.
complete or restricted covering Wang et al. (2005)), albeit
the partition is far from transparent. Moreover, in cases of
relaxed covering Wang et al. (2005), it is possible that no
penalty at all is issued (see Figure 3(c). Also the commonly
used similarity measure for fuzzy sets in formula (5) is not
informative in cases of covering Wang et al. (2005). Thus,
the middle value penalty PMV is introduced to tackle that
problem.

Overlap Penalty To calculate POL, left and right inter-
section points for the user specified level αH = 0.6 (the
same value as in Kim et al. (2006)) are computed first for
all fuzzy sets. Since gbell mfs are applied the intersection
points can be computed as:

IL(α) = c− a

(
1 − α

α

) 1

2b

, IR(α) = c+ a

(
1 − α

α

) 1

2b

.(14)

POL is computed according to Kim et al. (2006):

POL =
1

ns

ns∑

i=1

1

N i
ov

Ni

ov∑

j=1

λi,j

χi

, (15)

where λi,j is the length of jth overlap between two MFs
in input variable i. It is computed using the left and right
intersection points, like illustrated in Fig. 3(a). N i

ov is the
number MF pairs in input variable i, which may overlap:

N i
ov =

(
Mi

2

)

=
Mi!

2(Mi − 2)!
, (16)

where Mi > 2 is the number of active fuzzy sets in input
variable i. If there are only 2 MFs, N i

ov = 1. POL is not
calculated for a certain variable, if the number of active
MFs assigned to it is less than 2.

Discontinuity Penalty Similarly to POL, computing PDC

is started with computing the left and right intersection
points for the user specified level αL = 0.1 (the same value
as in Kim et al. (2006))). Then, PDC is computed slightly
differently than in Kim et al. (2006) as proportion of total
length of discontinuity to range χ:

PDC =
1

ns

ns∑

i=1

Gi∑

j=1

ψi,j

χi

, (17)
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Fig. 3. Four fuzzy partitions: (a) too much overlap, (b) dis-
continuous partition, (c) relaxed covering, (d) trans-
parent partition.

where Gi is the number of discontinuities and ψi,j is the
length of the jth discontinuity in variable i, respectively
(see also Fig. 3(b)). PDC is not calculated for a certain
variable, if there are no active MFs assigned to it.

Middle Value Penalty PMV is added to prevent relaxed
covering of MFs. In Fig. 3(c) an example of relaxed
covering is shown and based on POL and PDC no penalty is
given, even the partition is not transparent. This problem
is tackled in this paper by adding PMV if the value of
another fuzzy set is higher than αL in the center of another
fuzzy set (see Fig. 3(c)):

PMV =
1

ns

ns∑

i=1

δi, (18)

where

δi =

{ δ∗i − αL

1 − αL

if δ∗i > αL

0 if δ∗i 6 αL

, (19)

where δ∗i is the maximum middle value in variable i:

δ∗i = max(µi,j(ck; aj , bj, cj))
︸ ︷︷ ︸

j 6=k

, (20)

where j = 1, . . . ,Mi, k = 1, . . . ,Mi.

3.6 Overall Fitness Function

The objectives to be minimized need to be selected care-
fully in order to avoid deterioration of search efficiency
due to increase in the number of objectives Purshouse and
Fleming (2003); Hughes (2005). Since TP rate and FP
rate are the crucial requirements for the detector to meet
they need to be selected as objectives. Transparency of
fuzzy partition is another important objective. Therefore
transparency penalty T :

T = POL + PDC + PMV , T ∈ [0, 3) (21)

needs to be minimized. It will be shown later in section 4
that by minimizing T , usually the number of rules and rule

Table 1. Parameters used in this paper were
exactly the same as in our former study Pulkki-
nen and Koivisto (2007b). The same crossover
and mutation probabilities and distribution in-

dexes were used in Deb et al. (2002).

Distribution index for mutation 20
Distribution index for cross-over 20

Cross-over probability 0.9
Mutation probability 1/θ

Pruning confidence (C4.5 algorithm) 5

conditions is also reduced. Thus, they are not selected as
objectives like in many other studies (e.g. Ishibuchi et al.
(2001); Setzkorn and Paton (2005); Ishibuchi and Nojima
(2007)). Hence, the three objectives to be minimized are:

o1 = 1 − TP rate; o2 = FP rate; o3 = T (22)

To avoid impractical solutions, FP and TP rates are
constrained inside a square, which its side is d. In this
paper it is required that TP rate is at least 0.5 and FP rate
the most 0.5. Thus, d = 0.5. The normalized constraints
are:

constraint1 =
d− o1
1 − d

≥ 0; constraint2 =
d− o2
1 − d

≥ 0 (23)

4. RESULTS

The collected and pre-processed data contained 10268 data
points. Each data point consisted of 4 input variables,
labeled for confidentiality reasons as variable A, B, C, and
D, and a class label (alarm or normal). Data were divided
into train and test sets. The fuzzy classifiers (FCs) were
identified using only the train data, which contained 80%
of data, and tested with the rest 20% of data.

Initial FC generated by C4.5 was overly complex, contain-
ing 47 rules and 172 rule conditions. Its fuzzy partition
was very complex and the transparency penalty T was
1.062. Thus, fuzzy sets merging threshold ∆ was set to
0.25 in order to reduce the complexity. After merging the
similar fuzzy sets and performing heuristic rule and rule
condition removal, the number of rules and rule conditions
were 21 and 71, respectively. The fuzzy partition was more
transparent and T was reduced into 0.755.

Then, the proposed genetic fuzzy system (GFS) was run
with population size and number of generations both set
to 1000 (1000 × 1000 = 106 fitness evaluations). The rest
of the parameters are specified in Table 1.

As a result of the run, a widely spread set of FCs was
obtained, which is shown in Fig. 4. There were FCs with
TP rate as high as 1, FCs with FP rate as low as 0.009
and also highly transparent FCs with transparency penalty
0 (completely transparent partition). However, due to the
contradicting nature of the objectives, all of those extreme
values were not present in a single FC. During the MOEA
optimization the average number of rules was reduced from
15.641 to 5.599 and the average number of rule conditions
from 54.286 to 10.495. That happened even though those
were not used as fitness objectives, which means that
they are somewhat correlated with the average value of T
which was reduced from 1.095 to 0.099 during the MOEA
optimization.
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Fig. 4. Obtained FCs for test set. Only the FCs having
TP rate at least 0.8 and FP rate the most 0.2 are
presented. Colors blue, green, black and red indicate
the FCs with transparency penalty of < 0.2, < 0.4, <
0.6, and > 0.6, respectively.
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Fig. 5. Fuzzy partition with transparency penalty of 0.014.
Partition is highly transparent.

From the obtained solutions a solution based on the
preferences can be selected and the rest of the solutions
may be stored for possible usage. A user who demands
highly transparent fuzzy partition may, for example, select
an FC with TPtest = 0.944, FPtest = 0.046, and T =
0.014, whereas a user demanding higher TP rate may
select an FC with TPtest = 0.964, FPtest = 0.044, and
T = 0.254. Fuzzy partitions of those FCs are shown in
Figs. 5 and 6, respectively. It is worth mentioning that
both FCs have 6 rules and 12 rule conditions, however,
their interpretability is not the same due to different fuzzy
partitions.

In January 2007, an FC based on this project was installed
into the bioaerosol detector and the preliminary tests
proved its potential as an automatic reasoning mechanism.
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Fig. 6. Fuzzy partition with transparency penalty of 0.254.
Relaxed covering occurs in variable A and there is a
gap in variable D.

5. CONCLUSIONS

The goal of this work was to develop a model to be used as
a reasoning mechanism in bioaerosol detector developed by
Janka et al. (2007). It was desired that the model should
have high true positive (TP) rate and low false positive
(FP) rate. Furthermore, it was important for the sake of
confidence in the model and of further development of
the bioaerosol detector, that the developed model is as
interpretable as possible. Therefore, the problem at hand
was a multiobjective problem with conflicting objectives.

A hybrid genetic fuzzy system (GFS) was applied as an
identification framework. It initialized the population with
the help of crisp decision tree (DT) algorithm, which was
clearly a better starting point for further optimization
than commonly used random initialization. However, the
initial fuzzy classifier (FC) was overly complex due to
crispness of DT and due to the noise in the real-world
data. Thus, merging of similar fuzzy sets took place and
it led into some similar and inconsistent rules, which were
heuristically removed. Then, the rest of the population was
created, such that, the population was highly distributed
in order to reduce the computational costs of multiobjec-
tive evolutionary algorithm (MOEA) optimization.

During MOEA optimization, the fitness of FCs was eval-
uated based on their FP and TP rates and transparency
of their fuzzy partition. Even though the number of rules
and rule conditions were not used as fitness objectives, the
final population contained significantly less rules and rule
conditions than the initial population. Furthermore, a vast
amount of FCs with good tradeoff between the objectives
were found. Because transparency of fuzzy partition was
used as an objective, the obtained fuzzy partitions and
rules were highly interpretable. In January 2007, an FC
based on this project was installed into the bioaerosol
detector and the preliminary tests proved its capability
in distinguishing between safe and harmful bioaerosols.
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