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Abstract: In this paper, we propose a new approach “HVB senseless maneuver optimal washout filter” 
which is based on human vestibular system, senseless maneuver and motion platform limitation for 
designing washout filter such that a cost function constraining the pilot sensation error (between simulator 
and vehicle) is minimized. This approach can curtail over strong feelings of pilot reception and increase 
efficiency of platform workspace for task running. Finally, the experimental results confirm the 
effectiveness of our algorithm hereby proposed. Moreover, the results show that a better performance can 
be attained. 

 

1. INTRODUCTION 

The washout filter, whose name originates from the fact 
that one of its functions is to “wash out” the position of the 
simulator back to its neutral point, remain the dominant 
source of poor fidelity in the motion cues, and even a small 
refinement in this area can yield a significant improvement in 
motion realism [1]. 

Many different schemes of washout filter have been 
proposed in the last three decades [2]. Classical washout filter 
[1,6] was the first kind that has been developed, which is 
composed of linear low-pass filters and high-pass filters and 
is featured by its simplicity and ease of adjustment. But 
owing to the inflexibility of the classical washout filter, many 
washout algorithms with the parameter self-tuning 
mechanism have been proposed to solve this problem. The 
adaptive scheme tunes the filter gain in real time to minimize 
a cost function using steepest descent techniques [1]. 
Recently, an auto-tuning washout filter based on the adaptive 
algorithm and neuro-fuzzy network is proposed [3]. Besides, 
considering the situation where the motion platform may be 
subjected to limited bandwidth, low driven power, or poor 
position control, a robust control  algorithm which adopts the 
closed-loop form with feedback of the platform position, 
attitude, and even accelerometer measurement is proposed 
[4,8].  

The optimal control algorithm is characterized by a 
systematic combination of linear filters that are determined 
through an off-line design process which produces the 
optimal form, order, and characteristics of the filters given 
the underlying assumptions [7]. However, there has been no 
consideration of “tilt-rate limiting”, in the design of washout 
filters, and this has imposed adverse effects on fidelity of the 
pilot perception. To solve this problem, the senseless 
maneuver is proposed in our approach, and the mechanical 
limitation of the motion platform is also considered to 
increase the efficiency of the platform workspace usage for 
running various tasks.  

This paper is organized as follows. Tthe human senseless 
maneuver is proposed in section 2. Then, the human 
vestibular based (HVB) optimal washout filter is proposed in 
section 3. After that, experiment results are provided to 
confirm the effectiveness of the developed result in section 4. 
Finally, the conclusion is made in section 5. 

3. HUMAN SENSLESS MANEUVER DESIGN 

The main idea of this algorithm is to directly manage the 
trajectory of motion platform under the premise of not 
interfering the original perception of the operator. To make 
the movement “senseless” to the operator, the acceleration 
must be under the threshold value of human perception 
(Table 1). 

Table 1. Sensation Threshold Value of Otolith [5] 

 
If we move the platform only in translational directions, 

the induced acceleration on body-axis and inertial-axis will 
be exactly the same. Such motion will be slow and inefficient 
under the constraint of being “senseless”. 

We propose a new method which treats the operator as an 
inverted pendulum. The control goal of the inverted 
pendulum is to move the pendulum with attitude change as 
small as possible. 

For the inverted pendulum, the linkage between car and 
pendulum is ball joint. Actually, there isn’t any joint between 
operator and his seat. However, if the platform tilts the same 
angle as that of the pendulum, the stability problem will be 
the same as that shown in Fig. 1.  

 
Fig.1 Schematics of Senseless Maneuver 

 Surge Sway Heave 
2( / sec )md m 0.17 0.17 0.28 
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This algorithm itself is not a complete washout filter. It is a 
function which provides a method to move the platform 
directly and senselessly. In other words, by a simple 
superposition of the output signal of this method and that of 
washout filter, the performance can be improved by a better 
usage of the platform workspace. Fig. 2 is a schematic of the 
combination of senseless maneuver and human vestibular 
system based optimal washout filter. About how to design 
human vestibular system based optimal washout filter is 
shown next section. 

 
Fig.2 Schematics of HVB Optimal Washout Filter with 

Senseless Maneuver 
4. HUMAN VESTIBULAR BASED OPTIMAL WASHOUT 

FILTER DESIGN 

In developing a washout filter, the problem is to determine 
a transfer function matrix W(s) that relates the desired 
simulator’s motion input to the vehicle’s input such that a 
cost function constraining the pilot sensation error (between 
the simulator and the vehicle) is minimized. The structure of 
this problem is illustrated in Fig. 3. 

 
Fig. 3 Underlying Problem Structure 

 
4.1 Longitudinal Mode 

The algorithm under development with angular velocity 
input for the longitudinal (pitch/surge) mode is described 
below. The input u  is formulated as 

 x

u
a
θ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

&

 (1) 
where θ&  is angular velocity and xa  is the translational 
acceleration, referring to Fig. 6. 

The sensed angular motion θ̂&  is related to θ&  by the 
semicircular canals model [5] as: 
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where the semicircular canals time constants are 1τ , 2τ , aτ  
and Lτ , and scG  is the angular velocity threshold that scales 
the response to threshold units. For realization purpose, Eq. 
(2) can be rewritten as 
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and can be defined in state space notation as 
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with the parameter setting chosen in observer canonical form 
as : 
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, [ ]1 0 0scC = and

[ ]4 0scD T= . 

The sensed specific force x̂f  is related to the stimulus 
specific force xf  by the otolith model [5] 

 0

0 1

( )ˆ
( )( )
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x x

G K s a
f f

s b s b
+

=
+ +

 (5) 

where 0a , 0b , 1b and otK are computed parameters of the 
otolith model, and otG  is the linear acceleration threshold 
that scales the response to threshold units. 

For the centre of rotation at the centroid of the motion 
platform, the specific force is 
 x x cpf a g rθ θ= + − &&  (6) 

 
Fig.4 Inertial and Body Coordinate of Motion Platform 

where cpr  is the radius from the centroid of the motion 
platform to the pilot’s head. Then, transform Eq. (6) into its 
Laplace form, and we obtain 

 1( ) ( ) ( ) ( )x x cpf s a s g r s s
s

θ= + − & , (7) 

which is substituted into (5) to result in 
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Rearranging and taking derivatives of Eq. (8) leads to the 
following differential equation 
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which can be rewritten as 
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 ˆ ˆ ˆ
x x x x xf af bf c d e dt fa gaθ θ θ+ + = + + + +∫
&& & & & (10) 

and can then be defined in state space notation as 

 ˆ
ot ot ot ot

x ot ot ot
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= +

= +

&

&  (11) 
where otX  is the otoliths state vector, and 
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, 

[ ]1 0 0 1 0otC = , 0ot ot ot cpD G K r⎡ ⎤= −⎣ ⎦ . 
The representations in Eqs. (4) and (11) can be integrated to 
form a single representation for the human vestibular model: 

 ˆ
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= +
= +

&

 (12) 
where vX&  and ŷ  are, respectively, the combined states and 
sensed responses, and vA , vB , vC  and vD  represent the 
vestibular models as one set of state equations: 
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It is assumed that the same sensation model can be applied 
to both the pilot in the vehicle and the pilot in the simulator 
as shown in Fig. 4. We then define the vestibular state error 

e s aX X X= −  (where sX  and AX  are the respective 
vestibular states for the simulator and the vehicle), and the 
pilot sensation error e , resulting in 

 
e v e v s v A

v e v s v A

X A X B u B u
e C X D u D u

= + −
= + −

&

 (13) 
where su  and Au  represent the simulator inputs and vehicle 
inputs, respectively, as given in (1). 

In order to constrain the simulator motion, it is necessary 
for the control algorithm to explicitly access states such as 
the linear velocity and displacement of the simulator that will 
appear in the cost function. For this purpose, additional terms 
are included in the state equations: 
 c c c c sX A X B u= +&  (14) 
where cX  represents the additional simulator states: 

3 2
T
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The vehicle input Au  consists of filtered white noise, and can 
be expressed as 
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A n
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 (15) 
where nX is the filtered white noise state vector, w  is the 
white noise, with nA  and nB  being given as 
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where 1γ and 2γ are the first-order filter break frequencies for 
respective degree-of-freedoms. The state equations described 
by Eqs. (13), (14), and (15) can be combined to form the 
desired system equation 
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where [ ]T
e c nX X X X= represents the integrated 

states, [ ]T
cy e X= is the desired output, and the combined 
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For control design purpose, we now define a cost function J  
as shown below : 
 1

0

{ ( ) }
t T T T

c c c s st
J E e Qe X R X u Ru dt= + +∫  (17) 

where {}E is the mathematical mean of statistical variable, 
Q  and cR  are positive semi-definite matrices, and R  is a 
positive definite matrix. Eq. (17) implies that three variables 
are to be constrained in the cost function, namely, the 
sensation error e  along with the additional terms cX  and su , 
which together define the linear and angular motion of the 
platform. The cost function constrains both the sensation 
error and the platform motion. 
Both the system equation and the cost function can be 
transformed to comply with the optimal control formulation 
as : 
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1 1 12 2 12

TR R R R R−= − , 

1
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It is clear that the cost function of (18) is minimized when 
 ' 1

2
Tu R B PX−= −  (19) 

where P  is the solution of the algebraic Riccati equation 
 ' 1 ' '

1 2 0T TR PBR B P A P PA−− + + =  (20) 

Substitute (19) into (18) to solve for su , then we get 
 su KX= −  (21) 
where 1

2 12( )T TK R B P R−= + . Let K  be partitioned according 
to the partition of X  in (16), then we have : 
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Since n AX u= , we remove the state corresponding to nX  in 
Eq. (22) so that : 
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Substitution of (22) into (23) then leads to  
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After observing the state space forms respectively described 
by (24) and (13), the following equation can readily be 
derived in the Laplace domain: 
 ( ) ( ) ( )s Au s W s u s=  (25) 
with 
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being a matrix of the optimized transfer function which links 
the simulator inputs su  to the vehicle inputs Au . 
4.2. Lateral Mode 

For the lateral (roll/sway) mode, the algorithm under 
development is analogous to the longitudinal mode. In Eq. 
(1), the inputs θ&  and xa  are replaced by φ&  and ya , 

respectively. The sensed rotational motion θ̂&  in Eq. (2) is 
now replaced by φ̂& , whereas the specific force xf  and sensed 

specific force x̂f  now become yf  and ˆ
yf  , respectively, all 

together satisfying  
 y y cpf a g rφ φ= − + && .  (26) 
In turn, these changes lead to the different differential 
equation (cf. Eq. (9))  

0 1 0 1
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ˆ ˆ ˆ( )
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y y y

ot ot cp

cp y y

f b b f b b f

G K r b b a

g r b b ga dt a a a

φ

φ φ

+ + +

= + −

+ + + + +∫

&& &

&

&  
which, when being rewritten in a form similar to Eq. (10), 
will produce the state space representation for the otolith 
model similar to Eq. (11), with the same system matrices 
except that 0ot ot ot cpD G K r⎡ ⎤= ⎣ ⎦ . To proceed further similarly, 
the state space representation for the vestibular model of the 
form of (13) will eventually be formulated. For this model, 
the additional platform states given in Eq. (14) are 

now 3 2
T

c y y yX a dt a dt a dt φ⎡ ⎤= ⎣ ⎦∫∫∫ ∫∫ ∫ instead. 

The remaining derivation procedure is identical to that from 
Eqs. (15) to (25), resulting in a seventh-order transfer 
functions matrix ( )W s  for the lateral mode.  
4.3. Vertical Mode 

For the vertical mode, or heave mode, the single degree-of-
freedom input zu a= , with the specific force z zf a g= − . 
The otolith model given in (5) then becomes 

 0

0 1

( )ˆ
( )( )

ot ot
z z

G K s a
f f

s b s b
+

=
+ +

 (28) 

and can then be defined in state space notation as 

 ˆ
ot ot ot ot
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f C X D u

= +

= +

&

&  (29) 
where otX  is the otolith state vector for this mode, and 
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0
( )ot
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B
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, 

[ ]1 0otC = , 0otD =  
Since this mode consists of a single translational degree-of-
freedom, the formulation does not include the semicircular 
canals model, and therefore v otA A= , v otB B= , and v otC C= . 
This results in a sensation model of the same form as (13): 

 
e v e v s v A

v e

X A X B u B u
e C X

= + −

=
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 (30) 
Similar to the longitudinal mode, additional motion platform 
states are included in the state equations: 
 c c c c sX A X B u= +&  (31) 
where cX  represents the additional simulator states: 

3 2
T

c z z zX a dt a dt a dt⎡ ⎤= ⎣ ⎦∫∫∫ ∫∫ ∫ , 

and cA  and cB  now become 
0 1 0
0 0 1
0 0 0
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⎡ ⎤
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⎢ ⎥⎣ ⎦

,
0
0
1

cB
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

The vehicle input Au  now consists of a single channel of 
filtered white noise with break frequency γ , which can be 
expressed as 

 
n n

A n

X X w
u X

γ γ= − +

=

&

 (32) 
The state equations given in (30), (31), and (32) can then be 
combined to form the desired system equation of the same 
form as (16), where y  is the desired output, and 

[ ]T
e c nX X X X= represents the integrated states. The 

remaining development procedure is identical to that from 
Eqs. (16) to (25), resulting in a single fourth-order transfer 
function for the vertical mode.  

4.4. Yaw Mode 
For the yaw mode, the single degree-of-freedom input 

is u ψ= & . The corresponding state space representation is the 

same as that in Eq. (4) with output ψ̂&  being replaced by θ̂& , 
namely,  

 ˆ
sc sc sc sc

sc sc sc

X A X B u

C X D uψ

= +

= +

&

&  (33) 
Since this mode consists of a single rotational input, the 
formulation does not include the otolith model, and therefore 
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we have v scA A= , v scB B= , v scC C= , and v scD D= . This 
results in a sensational model of the same form as (13): 

 
e v e v s v A

v e v s v A

X A X B u B u
e C X D u D u

= + −
= + −

&

 (34) 
Similar to the longitudinal mode, additional motion platform 
states are included in the state equations as : 
 c c c c sX A X B u= +&  (35) 
where cX  represents the additional motion platform states, 

cX dtψ ψ⎡ ⎤= ⎣ ⎦∫ , and cA and cB  now become 

0 1
0 0cA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
0
1

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

The vehicle input Au  now consists of a single channel of 
filtered white noise with break frequency γ , and can be 
expressed as 

 
n n

A n

X X w
u X

γ γ= − +
=

&

 (36) 
The state equations given in (34), (35), and (36) can then be 
combined to form the desired system equation of the same 
form as (16), where y  is the desired output, and 

[ ]T
e c nX X X X= represents the integrated states. The 

remaining development procedure is identical to that from 
Eqs. (16) to (25), resulting in a single fourth-order transfer 
function for the yaw mode. 

5. EXPERIMENTAL RESULTS 

In this section, we directly measure signals of the 
accelerations and rotational angles on body coordinate frame 
by a 3-axes accelerometer and a 2-axes tilt sensor 
respectively which attached on the Stewart platform to 
substitute for human vestibular system signals since the 
human vestibular system signals are not easy obtained. 
However, if measured signals (the accelerations and 
rotational angles) and command trajectories (the specific 
forces and angular velocity) is the same which mean that the 
Stewart platform motion achieve the same stimulation for 
human sensation. One experiment is done to compare HVB 
optimal washout filter algorithm with classical washout filter 
algorithm in performance and efficiency of platform’s 
workspace in subsection 5.1. 
 
5.1 Experimental of Surge Ramp Step and Roll Sinuous 
Testing 

We used two degrees of freedom, the surge linear motion 
and roll angular motion, to test coordinated performances of 
our HVB washout filter and classical washout filter. The 
surge ramp step and roll sinuous motion for the experiment is 
as follows: 10s of a constant speed surge ( 20 /m s ), after that 
5s of a 30.2 /m s rate of increase in acceleration at 10s, then 
hold a constant acceleration at 1 2/m s  are adopted. In other 
hand, 30s of no turning of roll angular motion (0deg/s), after 
that we provide the sinuous roll motion with 10 deg/s 
magnitude and 1 2/rad s  frequency are adopted. 

The relative accelerometer measurements under surge 
(along x axis) and sway (along y axis) cases are plotted in Fig. 

5 (a) and (b), respectively for comparison. After that the 
relative tilt sensor measurements under pitch and roll cases 
are plotted in Fig. 5 (c) and (d), respectively for comparison. 
Finally, the platform responsive trajectories of the every 
hydraulic leg by passing classical and HVB optimal washout 
filter are shown in Figs. 5 (e)-(j). Note all the black lines are 
the command inputs on the body coordinate frame. The red 
and blue lines are platform responsive trajectories by passing 
classical and HVB optimal washout filter, respectively. In 
this case, since some lengths of legs of the stewart platform 
are varied out of their mechanical limits, the classical 
washout filter algorithm could not repeat the testing 
trajectories. However, our scheme could still achieve testing 
trajectories. Hence, the HVB optimal washout filter approach 
was able to improve the efficiency of the platform workspace 
for running tasks. 

(a) 

(b) 

(c) 

(d) 

(e) 
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(f) 

(g) 

(h) 

(i) 

(j) 
Fig. 5 The Stewart platform for tracking a surge ramp step 

and roll sinuous trajectory along x/y axis in the platform task 
space 

6. CONCLUSIONS 

In this paper, we have presented a new approach to 
developing washout filters for simulators. It is based on the 
human vestibular model, the senseless maneuver, and a 
motion platform limitation for designing a washout filter such 
that a cost function constraining the pilot’s sensation error 
(between the simulator and vehicle) is minimized. The strong 
sensations experienced by the pilot can be curtailed, and the 
platform workspace for running tasks is more efficient. 
Finally, the simulation and experimental results confirm the 
effectiveness of our algorithm designed, and hence the 
advantages of the present approach can be manifested. 
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