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Abstract: The objective of the Disassembly Line Balancing Problem (DLBP) is to use the resources of the 
disassembly line as efficiently as possible while meeting the demand. This issue is hard to attempt due to 
the inherent uncertainties that occur during the process. Starting from real industrial examples, this article 
presents a simple-to-apply method to accomplish the balancing of complex disassembly lines in real time. 
The basic idea of this method is to use mixed integer quadratic programming and branch and cut algorithm 
on the disassembly precedence graph. Results of simulations for disassembling two industrial products are 
presented 

 

1. INTRODUCTION 

Disassembly processes decompose products into parts or 
subassemblies in view of their reuse. They may be viewed as 
complex processes because are subject to various and 
unexpected perturbations and uncertainties caused by the 
used end-of-life state of the product.  
 
The most difficult problem in a disassembly system is that a 
disassembly operation can fail any time because of the 
product or component degradation. In this case we have to 
choose between applying an alternative destructive 
disassembly operation (dismantling), and abandoning the 
disassembly procedure.  
 
Once a perturbation occurs, a fast computation has to be 
made so as to assure the optimal assignment of the tasks to 
workstations. The decision must be taken in real time since in 
a used product the components states are not known from the 
beginning of the process and they could influence the flow of 
the process and imbalance the line. That is why the problem 
of Disassembly Line Balancing in Real time (DLBP-R) is a 
very complex and challenging one.  
 
Balancing a disassembly line in real time means to  equalize 
the station loads during the disassembly process by taking 
into account the tasks that have not been accomplished yet 
and the appropriate disassembly strategy (destructive or not) 
associated to these tasks so as complete the disassembly 
processing during the rest of the working time.  
 
To accomplish the DLBP-R, the Mixed Integer Quadratic 
Programming (MIQP) method is proposed to be utilised and 
the results on two industrial applications are described. The 
remaining part of this paper is organised as it follows.  

First the mathematical model of the DLBP is proposed. Next 
the main concepts and XPRESS-MP software product are 
reviewed.  Two case studies taken from literature and the 
corresponding experimental results are presented in sections 
4 and 5, respectively.  
 

2. MATHEMATICAL MODEL FORMULATION  
 

2.1. Preliminaries 
 
What follows will be based on the following assumptions: 
 

• the Disassembly Line is single-product and all 
the operations to be performed and their 
precedence relations may be represented by a 
single precedence graph, where nodes represent 
generic operations.  

• two values of the operative time are associated to 
each operation: a disassembly time and a 
dismantling time. Operative times take the zero 
value in the case of a component missing in the 
used product. 

• the architecture of the line is flow-shop 
• a workstation can accomplish both destructive 

and non-destructive operations 
• the number of workstations is fixed 
• the flow on the line is continuous since the 

supply of  the product is considered infinite  
 

The following notations are used in this paper: 
 

n number of workstations 
m number of tasks 
I  index of a workstation 
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j or k index of a task 

cyt  cycle time 

jt  operational disassembly time of the 
task j 

'
jt  operational dismantling time of the task 

j 
f , F objective function 

iW  workstation i 

im  number of tasks accomplished on 
workstation i 

 

2.2. Objective function 
 

Considering the balancing function presented in (Duta et al, 
2005) which gives the difference between the operational 
times and the cycle time the next formula gives one objective 
function to be minimised: 

 
Minimizing the value of this function leads to a well-
balanced disassembly line (Rekiek and Delchambre, 2006). 
In a static approach of the disassembly process the cycle time 
is defined as the operational time of the slowest workstation 
on the line (Nof, 1997; Gungor and Gupta, 1999). 
 

( )
max

i
i

cy jW j tasks on W
t t

∈

= ∑  (2) 

A problem occurs in the case of the real time disassembly: 
the operation can be fulfilled or not or there are destructive 
operations to accomplish. The aim is to find the form of the 
objective function in real time. A form of this function was 
proposed in (Duta et al, 2007). In the mathematical model of 
the DBLP-R the form of the objective function is given by 
the equation (3). The aim is to obtain the minimal value of 
the cycle time: 
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Where:  

ijϕ  is the assignment coefficient that defines assignment of 
tasks to stations for different products. It may take the 
following values:  

1ijϕ = , when the operation Oj can be assigned to 
workstation Wi  

0ijϕ = , otherwise   

jψ  is the state coefficient that defines which operation has 
already been performed and which one is still to be done. It 
may take the following values: 

1jψ = , if operation Oj has not still been performed  

0jψ = ,  otherwise.  

jθ  is the decision coefficient that defines the modality of 
performance for the operations. It may take the following 
values: 

1jθ =  when the operation Oj is to be performed without 
damaging the product 

0jθ =  when the operation Oj has to be performed in a 
destructive way on product 

 

2.3. Constraints 
 
Before the beginning of the disassembly process when no 

operation have been done yet, jψ =1 1..j m∀ ∈ .  
If the cycle time is considered a positive sum and its formula 
from equation (2) is taken into account, it means that this 
variable is an upper bound on the workload assigned to each 
workstation. Therefore, for every 1..i n= the following 
constraint is valid: 

 
Every task is performed on a single workstation. A task 
cannot be divided between workstations. Equation (5) 
represents the non divisibility constraint. 
 

1
1 1 . .

n

i j
i

j mϕ
=

= ∀ =∑  (5) 

 
If task k is to done before task j then it cannot be assigned to 
a station downstream from task j (Nof, 1997), the precedence 
constraint is obtained. 
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n n
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i i

i iϕ ϕ
= =
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All coefficients from the previous paragraph may take binary 
variables. A possible combination of the three binary 
coefficients is given in the Table 1. 
 
 Table 1. 

No 
ijϕ

 
jψ

 
jθ
 

Meaning 

1 1 0 0 Operation j made in a 
destructive way on the 
workstation i  

2 1 0 1 Operation j made in a non-
destructive way on the 
workstation i 

3 1 1 0 Operation j has to be made in a 
destructive way on the 
workstation i 

4 1 1 1 Operation j has to be made in a 
non-destructive way on the 
workstation i 

 
Next constraint expresses the fact that a task can be done in 
two ways: destructive or not. 
 

{0 ,1}jθ ∈  
(7)  

 
Equation (3) together with equations (4), (5), (6), and (7) 
form a linear mathematical model. In this model all variables 
(excepting the cycle time and the operational times) are 
binaries. 
 

3. MIXED INTEGER QUADRATIC PROGRAMMING 
 

3.1. The algorithm 
 
The optimisation problem consists in calculating the minimal 
cycle time from the function F (equation (3)) taking into 
account the four linear constraints above. The input size of 
the problem is the length of a binary representation of the 
problem data.  
 
In fact, we have to deal with a real time decision problem 
(Filip, 2005, 2007).  
 
The three binary coefficients defined in the previous section 
can be considered of two types: fixed and variable. The 
assignment coefficient is known and given at the beginning 
of the process. The state coefficient and the decision 
coefficient are both known only during the disassembly 
process. They take real time values.  
 

Therefore, the optimisation problem is reduced to a decision 
problem for which the validity of the solution can be checked 
in time that is polynomial in the size of the input. 
 
For computing, a branch-and-cut algorithm is run. The 
branch and cut algorithm combines the branch and bound and 
the cutting plane methods. Branch-and-bound algorithm 
builds a search tree and maintains a list of sub-problems of 
the linear problem relaxation that still need to be considered.  
The idea is to develop better upper bounds on the integer 
program until an optimal solution is determined. A cutting 
plane is a linear constraint that reduces the space of solution 
search during the optimisation procedure. (Brucker and 
Knust, 2006).  
 
Applying this method, in each node of the search tree, 
separation routines may be called to improve the quality of 
the linear relaxation in that node. The cutting planes serve to 
keep the size of the search tree small, while branching may 
prove useful when cuts are difficult to find or are not 
effective in improving the current solution (Gueret et al, 
2002). The steps of the branch-and-cut algorithm are the 
following:  
 
Step 1 
Initialize the list of the initial linear programming relaxation 
 
Step 2 
Take an instance from the previous list.  
If the list is empty, the best known feasible solution is 
optimal. In the event that no feasible solution has been found, 
the problem is infeasible 
 
Step 3 
Complete pre-processing 
 
Step 4 
Use heuristics to try to find an integral solution. If a feasible 
solution with value less than the upper bound is found, then 
update the value of the upper bound 
 
Step 5 
Solve the linear problem 
 
Step 6 
If the problem is infeasible than fathom the node and return 
to Step 2 
If the solution value is greater than or equal to the upper 
bound, fathom the node and return to Step 2 
If the solution is integral, update the upper bound (the value 
of the cycle time), fathom the node and return to Step 2 
 
Step 7 
Attempt a better solution in respect of the input criteria. If 
successful, return to Step 3 
 
Step 8 
Generate cutting planes. If successful, add cutting planes to 
the linear problem and return to Step 5 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

915



 
 

     

 

Step 9 
Branch. Append the resulting sub-problems to the list of the 
linear programming relaxation and return to Step 2. 
 

3.2. Implementation 
 
The previous algorithm is used in a particular case, as the 
objective function is not a linear one. The proposed solving 
method is to apply integer programming on a quadratic 
function with linear constraints.  
 
Quadratic Programming is the name given to the problem of 
finding the minimum (or maximum) of a quadratic function 
of the decision variables subject to linear equality/inequality 
constraints.  
 
Mixed Integer Quadratic Programming is a quadratic 
programming method in which the decision variables take 
discrete values. In other words, is an integer programming 
method applied on a quadratic objective function (Pangborn, 
2002) 
 
To run simulations, the XPRESS-MP software was utilised. 
This is a linear and integer programming optimiser which has 
been programmed to handle a broad range of optimisation 
problems. His quadratic module allows the optimisation of a 
quadratic function. The main advantage of this software is 
that the user works in the Console Mode and he can modify 
the code of the program to suit the data of the problem. 
 
The XPRESS optimiser uses Branch and Bound technique to 
solve mixed integer programming problems. The relaxed 
problem is a linear programming problem and can be solved 
by exploring the tree of solutions using the cut-off value 
method. When a better value of the solution is found in a 
solution node, this can act as a cut-off for outstanding nodes 
(Dash, 2007). Simulations performed with XPRESS 
optimizer give the number of iterations and cuts made in the 
solution space. 
 

4. TWO CASE STUDIES 
 
The mathematical model obtained in the section 2 is used to 
simulate the disassembly line balancing for two types of 
products: a unit of voice recognition (Kizilkaya and Gupta, 
2006), and a cell phone (Gupta et al, 2004). The computing 
times and the results are compared.  
 
For the first product, operational disassembly times are given 
in the Table 2 and the precedence graph in the figure 1. The 
disassembly line has five workstations. 
 
The second product is a Samsung SCH-3500 cell phone 
which data is presented in (Gupta et al, 2004). Operational 
disassembly times are given in the Table 3 and the 
precedence graph in the figure 2. In this case the disassembly 
line is served by nine workstations. 
 

The complete assembly of the voice recognition unit consists 
of 18 components including the pouch and the belt 
subassembly (Kizilkaya and Gupta, 2006). 

 
Table 2 - Parts of the voice recognition unit 

 
Part 
No 

Part 
jt (s) '

jt (s) 

1 Pouch 15 13 
2 Belt 15 14 
3 Antenna 17 18 
4 Lower Audio Cable 20 18 
5 Battery 14 12 
6 Lower Body Casing 5 6 
7 Upper Body Casing 5 7 
8 Battery Holder 17 16 
9 Battery Release 21 19 

10 Flex Rubber 18 16 
11 Body Casing Screws 20 21 
12 Battery Screws 14 13 
13 Battery Springs 12 10 
14 Power Button 17 16 
15 Power Button Screws 14 15 
16 Power Button Plate 13 14 
17 PC Board Assembly 17 16 
18 Cisco RF Card 15 17 

 
Fig.1. Precedence graph of the voice recognition unit 
 
To perform simulation, operational dismantling times '

jt are 
also needed. The program decides in real time which 
operation is made on which workstation and in what manner 
so as to obtain the balance of the line.  
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The precedence graphs were obtained from text files which 
contain the precedence relations between tasks and drawn 
with the help of Mathematica Software. 

 
Fig.2. Precedence graph of the cell phone 
 
In the case of the cell phone there are 25 subassemblies. The 
disassembly is supposed to be complete. The operational 
times are experimentally determined. 

 
Table 3 - Parts of the cell phone 

 
Part 
No 

Part 
jt (s) '

jt (s) 

1 Antenna 3 2 
2 Battery 2 1 
3 Antenna Guide path 3 4 
4 Bolt A 10 11 
5 Bolt B 10 12 
6 Bolt 1 15 14 
7 Bolt 2 15 16 
8 Bolt 3 15 12 
9 Bolt 4 15 16 

10 Clip 2 3 
11 Rubber Seal 2 4 
12 Speaker 2 2 
13 White Cable 2 2 
14 Red/Blue Cable 2 1 
15 Orange Cable 2 3 
16 Metal Top 2 3 
17 Front Cover 2 1 
18 Back Cover 3 2 
19 Circuit Board 18 15 
20 Plastic Screen 5 7 
21 Keyboard 1 3 
22 LCD 5 2 
23 Sub-keyboard 15 14 
24 Internal IC Board 2 1 
25 Microphone 2 1 

5. EXPERIMENTAL RESULTS 
 
The program was run on an AMD Athlon 64 computer, at 2 
GHz and 512 RAM. 
 
Two cases are considered when performing the simulation: 
the static case which is before the beginning of the 
disassembly process and the dynamic case - during the 
development of the disassembly tasks. The program also 
gives the type of disassembly operation: destructive (d) or not 
(nd). 
 
For the first product with 18 subassemblies the results are 
presented as it follows. Assignment of the tasks before 
starting the disassembly process is:  
 
Workstation 1: 2d 3nd 4d (duration: 49) 
Workstation 2: 1d 5d 11nd 6nd (duration: 50) 
Workstation 3: 7nd 8d 15nd 14d (duration: 51) 
Workstation 4: 12d 13d 16nd 18nd (duration: 51) 
Workstation 5: 9d 10d 17d (duration: 51) 
Minimum cycle time: 51 
 
Assuming that the tasks 1, 2, 3, 4, 5, 11, 12 are already done, 
the rebalancing of the line at the moment that is made, looks 
like it follows: 
 
Workstation 1: (duration: 0) 
Workstation 2: 6nd 7nd 13d 15nd (duration: 34) 
Workstation 3: 14d 16nd (duration: 29) 
Workstation 4: 9d 18nd (duration: 34) 
Workstation 5: 10d 17d (duration: 32) 
Minimum cycle time: 34 
 
The computing time was 0.1s in both cases. The branch and 
cut algorithm generated 27 iterations with 1436 cuts in the 
plan of solutions. 
 
For the second product with 25 components the results are 
the following (static and dynamic case respectively): 
 
Workstation 1: 1d 2d 5nd (duration: 13) 
Workstation 2: 6d (duration: 14) 
Workstation 3: 3nd 8d (duration: 15) 
Workstation 4: 7nd (duration: 15) 
Workstation 5: 9nd 14d (duration: 16) 
Workstation 6: 13d 15nd 16nd 17d 18d 20nd 21nd 22d 
(duration: 16) 
Workstation 7: 19d (duration: 15) 
Workstation 8: 4nd 10nd 11nd 12d (duration: 16) 
Workstation 9: 23d 24d 25d (duration: 16) 
Minimum cycle time: 16 
 
Other results are obtained by a simulation made when the 
tasks 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are already 
accomplished: 
 
Workstation 1: (duration: 0) 
Workstation 2: (duration: 0) 
Workstation 3: (duration: 0) 
Workstation 4: (duration: 0) 
Workstation 5: (duration: 0) 
Workstation 6: 15nd 16nd 13d 14d 18d (duration: 8) 
Workstation 7: 19d (duration: 15) 
Workstation 8: 17d 20nd 21nd 22d 25d (duration: 10) 
Workstation 9: 23d 24d (duration: 15) 
Minimum cycle time: 15 
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For the second example the computing time was of 4.3s after 
54 iterations and 12684 cuts. 
 

6. CONCLUSIONS 
 
A new model to accomplish the real time balancing of a 
disassembly line is presented in this article. The method is 
based on the branch-and-cut algorithm and Mixed Integer 
Quadratic Programming. The results of simulations on two 
end-of-life manufactured products show that the 
computational time is very good for products with less then 
50 subassemblies. Moreover, the method takes into 
consideration the disassembly manner: destructive or not. 
 
The obtained values of the cycle time and the balancing of 
the line using Mixed Integer Quadratic Programming are 
better than in the case of applying the Greedy algorithm, the 
heuristic research or the evolutionary algorithms. (Kizilkaya 
and Gupta, 2006), (Gupta et al, 2004), (McGovern and 
Gupta, 2007). 
 
Further work will be concentrated on the revenues 
maximization of the end-of-life components in accordance 
with the components demand on a balanced disassembly line.   
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