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AbstractReceived signal strength (RSS) is used in wireless networks as a ranging measurement
for positioning and localization services. This contribution studies conceptually different
networks, where neither transmitted power or the path decay constant can be assumed to
be known. The application in mind is a rapidly deployed network consisting of a number of
sensor nodes with low-bandwidth communication, each node consisting of a number of sensor
types measuring RSS. Typical sensors measure acoustic, seismic, magnetic and IR power emitted
from a target. First, a model linear in the unknown nuisance parameters (transmitted power
and path loss constant) is presented and validated from real data. Then, the separable least
squares principle is applied to the non-linear least squares (NLS) cost function, after which a
cost function of only the unknown position is obtained. Results from field trials are presented
to validate the method.
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1. INTRODUCTION

This contribution considers a sensor network scenario,
where each sensor unit has a multitude of sensors measur-
ing received signal strength (RSS) from one target. The
considered problem focuses on target localization, but the
reverse problem of navigation of one sensor from several
beacons, or targets, with known position is also covered
by reversing the role of transmitters and receivers. An
underlying assumption is that communication constraints
between the sensor units make any algorithm based on the
signal waveform (like coherent detection) infeasible. Com-
munication only allows for sending RSS measurements to
other sensor units.

Explicit algorithms and performance bounds are derived
for energy-based measurements, including sensors of ra-
dio, acoustic, seismic, infra-red (IR) or microwave energy.
Localization from RSS is of course a fairly well studied
problem, see the surveys Patwari et al. [2003], Gezici
et al. [2005], Gustafsson and Gunnarsson [2005] and the
papers Li and Hu [2003], Huang et al. [2000], though
the major part of literature addresses the related prob-
lem of localizaton from time of arrival (TOA) and time-
difference of arrival (TDOA) measurements. While TOA
measures range and TDOA range differences computed
from propagation time, energy based localization utilizes
the exponential power decay of the involved signals. Mea-
suring the received power in decibels, the measurements
are proportional to the logarithm of distance, and this is
the main difference to time-based localization approaches.
Dedicated approaches to this problem assume that the
path loss exponent is known Li and Hu [2003], Huang et al.
[2000], or include the RSS measurements as a general non-
linear relation Gustafsson and Gunnarsson [2007]. Several
ad-hoc methods to eliminate nuisance parameters have
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been proposed in this context, including taking pairwise
differences or ratios of observations.

The theory of RSS based localization is here extended to
the case where both the path loss exponent and trans-
mitted power are unknown nuisance parameters. These
nuisance parameters are removed from a set of RSS mea-
surements using the separable least squares principle, after
which the resulting problem is non-linear in target state
parameters only, and a standard low-dimension non-linear
least squares (NLS) problem, where efficient numerical
algorithms exist. Algorithms of different complexity and
performance are outlined for this framework. Tracking al-
gorithms are also described, which are based on stating the
localization NLS problem formulation as the measurement
relation in an extended Kalman filter.

The fundamental performance bound implied by the
Cramér-Rao lower bound enables efficient analysis of sen-
sor network architecture, management and resource allo-
cation. This bound has been analyzed thoroughly in the
sensor network literature, primarily for TOA, TDOA and
angle-of-arrival (AOA), Patwari et al. [2003], Gezici et al.
[2005], Gustafsson and Gunnarsson [2005], but also for
RSS Koorapaty [2004], Qi and Kobayashi [2003] and with
specific attention to the impact from non-line-of-sight Qi
and Kobayashi [2002b,a]. Numerical explicit algorithms
and Cramér-Rao lower bounds (CRLB) for both station-
ary and moving target are derived for the NLS problem
formulation.

The proposed approach is applied to measurements from
field tests, and preliminary results of this is reported in
the last section.

2. RECEIVED SIGNAL STRENGTH
MEASUREMENTS

This section formulates the received signal strength (RSS)
from each sensor type as an exponential decay as a model,
and validates the assumptions on data from field trials.
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2.1 Model

Consider a sensor network, where each sensor unit is
located at position pk measuring a variety of RSS using
different sensors. The received power from each sensor type
i at unit k is assumed to in average follow an exponential
decay rate

P̄k,i = P̄0,i‖x − pk‖
np,i . (1)

The bar on P̄ indicates power in linear scale. In the sequel,
power will be given in logarithmic scale and the bar will
be dropped.

Both the transmitted energy P0,i and path loss constant
np,i are assumed unknown. Further, these are different
for each sensor type, but spatially constant in the local
environment where the sensor network operates.

Pk,i = P0,i + np,i log
(
‖x − pk‖

)
︸ ︷︷ ︸

△

=ck(x)

. (2)

The fundamental log range (LR) term ck(x) is here intro-
duced.

Non-line of sight (NLOS) is a major issue in radio based
localization. Basically, NLOS invalidates the exponential
model (1). NLOS is less of an issue for seismic, magnetic
and acoustic waves, partly because of their different nature
and partly because of the rather limited range of operation.

2.2 Validation from Field Trials

Sensor measurements from field trials are used to illustrate
the validity of the log range linear model. The sensor unit,
equipped with an acoustic and a seismic sensor, is located
a few meters from a road, see Figure 1.

The positions of the vehicle and sensor are known in this
model validation case, that is, ck(x) is known, and (2)
becomes a standard least squares problem in P0,1 and np,1.

Figure 1 visualizes the received signal energy as a function
of the vehicle position x along the road, where the origin
is defined as the closest point to the sensor.

Figure 2 illustrates that the log range linear model is
very reasonable, and that the data fits the model in (3).
For example, the exponent estimates at the specific field
trial environment are n1,1 = −2.3 for the acoustic sensor,
and n1,2 = −2.6 for the seismic sensor. Note also from
Figure 2 that the noise level is fairly independent of range
in logarithmic scale, which confirms the assumption that
noise is additive to the logarithmic RSS measurements.

3. SENSOR FUSION MODEL

The previous section shows that the received signal
strength can be seen as a function of log range which
is linear in the environmental nuisance parameters. This
model will be referred to as the log range linear model
(LRLM).

The sensor error has zero mean (otherwise, the mean
can be incorporated in the nuisance parameter P0,i) and
variance Var(ek,i) = σ2

P,i independent of range. This model
implies that the energy-based measurements get worse
quality in a linear scalse with increasing distance Patwari
et al. [2003]. Both mean and variance are assumed constant
for each sensor unit, but different for different sensor
types. In this section, σ2

P,i is assumed known or accurately
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Figure 1. Sensor layout, and received sensor energy in
linear scale at the acoustic and seismic sensor, respec-
tively.
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Figure 2. Received sensor energy in log scale, together with
a fitted linear relation as modeled in (3).

estimated from measurements when no target is present.
Later on, more details on how this can be done is given.

That is, the model (2) is linear in the nuisance parameters
P0,i = log P̄0,i and np,i,

yk,i = P0,i + np,ick(x) + ek,i. (3)

Collecting all relations of the kind (3) for different sensor
types i = 1, 2, . . . , M and sensor units k = 1, 2, . . . , N
yields a non-linear equation system
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y = h(x) + e, (4a)

y =




y1,1
y2,1
y3,1
...

yN,M


 , e =




e1,1
e2,1
e3,1
...

eN,M


 , (4b)

h =




P0,1 + np,1c1(x)
P0,2 + np,1c2(x)
P0,2 + np,1c3(x)

...
P0,M + np,McN(x)




, (4c)

Cov(e) = R = diag
(
σ2

P,1(x)IN , . . . , σ2
P,M (x)IN

)
. (4d)

Solving this in the least squares sense is the subject of the
next section.

4. NLS ESTIMATION USING THE LRLM

Let θi = (np,i, P0,i)
T denote the unknown parameters in

the LRLM for sensor type i, and θ = (θ1, θ2, . . . , θM )T the
vector of unknowns for all sensor types. The non-linear
least squares approach aims at minimizing the sum of
squared errors between observations and the model with
respect to target location x and the nuisance parameters
in θ. This can be stated as

(̂x, θ) = arg min
x,θ

V (x, θ), (5a)

V (x, θ) =

M∑

i=1

N∑

k=1

(
yk,i − h(ck(x), θi)

)2

σ2
P,i

, (5b)

h(ck(x), θi) = θi,1 + θi,2ck(x), (5c)

ck(x) = log
(
‖x − pk‖

)
. (5d)

The goal in this section is to eliminate the nuisance
parameters θi, including the path loss constant np,i and
transmission power P0,i, and the unknown noise variances
σP,i for i = 1, 2, . . . , M .

4.1 Elimination of Nuisance Parameters by Separable
Least Squares

Using the separable least squares (LS) principle, the envi-
ronmental parameter, np,i, and transmission power, P0,i,
can be eliminated explicitly from (5) for each sensor type
i. The algebraic minimimizing argument of (5b) is given
by

θ̂i(x) =







N

N∑

k=1

ck(x)

N∑

k=1

ck(x)

(
N∑

k=1

ck(x)

)2







−1

︸ ︷︷ ︸
R(x)

×




N∑

k=1

yk,i

N∑

k=1

ck(x)yk,i




︸ ︷︷ ︸
fi(x)

(6)

Note that the parameter estimate depends on the target
location x. The matrix R(x) and vector fi(x) are intro-
duced in (6) to get more compact notation in the following.

Note also that the matrix R(x) is just a function of sensor
geometry and target position. The matrix inversion can be
eliminated to get

R(x) =
1

N
∑N

k=1 c2
k(x) −

(∑N

k=1 ck(x)
)2

×




N∑

k=1

c2
k(x) −

N∑

k=1

ck(x)

−

N∑

k=1

ck(x) N




(7)

With this matrix defined, the covariance matrix is given
by

Cov(θ̂i(x)) = σ2
P,iR(x). (8)

The variance of the LRLM after plugging in the parameter
estimate is thus given by

Var
(
h(ck(x), θ̂(x))

)
= σ2

P,i(1, ck(x))R(x)(1, ck(x))T .

(9)

4.2 Sensor Noise Variance Estimation

Further, the minimum of the sum of least squares for sen-
sor type i can be taken as an estimate of the measurement
variance as

σ̂2
P,i(x) =

1

N − 2

N∑

k=1

(
yk,i − h(ck(x), θ̂i(x))

)2
(10)

=
1

N − 2

(
N∑

k=1

y2
k,i − fT

i (x)θ̂i(x)

)
, (11)

where the normalization with N − 2 accounts for the
number of freedom lost by the minimization, and is needed
to get an unbiased variance estimate. The last equality is
a consequence of the LS theory, and will be used in the
NLS formulation below.

4.3 LRLM NLS Formulation

The NLS formulation in (5) is now algebraically equivalent
to the following reduced NLS problem in target location x

x̂ = arg min
x,θ

V (x, θ, σP ) = arg min
x

V (x, θ̂(x), σP ), (12a)

V (x, θ̂(x), σP ) =

M∑

i=1

N∑

k=1

(
yk,i − h(ck(x), θ̂i(x))

)2

σ2
P,i

,

=
M∑

i=1

∑N

k=1 y2
k,i − fT

i (x)θ̂i(x)

σ2
P,i

, (12b)

The new weighting in the sum of least squares accounts for
both measurement noise and the estimation uncertainty in
the nuisance parameters. Typically, far away sensor nodes
k or uncertain sensor types i get larger uncertainty in the
parameters and thus automatically a smaller weight in the
criterion.

Note that the noise variance has to be known in the
NLS approach above. The simple idea of plugging in the
estimate does not work, since

V (x, θ̂(x), σ̂2
P ) = M(N − 2). (13)

The maximum likelihood (ML) approach can be used to
circumvent this problem, as described in Section 5.2.
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5. LOCALIZATION ALGORITHMS

In summary, in the previous section we have derived the
LR model

y = h(x, θ̂(x)) + e, (14a)

hk,i = h(ck(x), θ̂i(x)), (14b)

Cov(e) = R = diag
(
σ2

P,1(x)IN , . . . , σ2
P,M (x)IN

)
. (14c)

Here, θ̂i(x) is given in (6), ck(x) in (5d), h(ck(x), θ̂i) in (5c),
and R(x) in (7). The purpose here is to outline possible
implementation strategies.

5.1 Estimation Criteria

The derivation in Section 4 was motivated by NLS. How-
ever, the same elimination of nuisance parameters can
be applied to more general maximum likelihood (ML)
approaches, with a Gaussian assumption or with other
assumptions on sensor error distributions, as summarized
in Table 1. The Gaussian ML (GML) approach is useful
when the variances of the individual measurements include
important localization information in themselves.

Table 1. Optimization criteria V (x)

NLS V NLS(x) = (y − h(x))T R−1(x)(y − h(x))
GML V GML(x) = (y − h(x))T R−1(x)(y − h(x))

+ log det R(x)

ML V ML(x) = log pe

(
y − h(x)

)

5.2 Eliminating the noise variance

The GML approach is also needed in the case where the
noise variance is unknown. Minimizing the GML cost with
respect to σP,i gives a result similar to (12b),

min
σP

V GML(x, σP ) =

M∑

i=1

N log

(
N∑

k=1

y2
k,i − fT

i (x)θ̂i(x)

)
.

(15)

The logarithm intuitively decreases the difference in
weighting between the different sensor types compared to
the case of known noise variances in (12b).

5.3 Estimation Algorithms

As in any estimation algorithm, the classical choice is
between a gradient and Gauss-Newton algorithm, see
Dennis Jr. and Schnabel [1983]. The basic forms are given
in Table 2. Here, H(x) = ∇xh(x) for NLS and GML and
H(x) = ∇x log pe(y − h(x)) for ML. These local search
algorithms generally require good initialization, otherwise
the risk is to reach a local minimum in the loss function
V (x). Today, simulation based optimization techniques
may provide an alternative.

Table 2. Estimation algorithms for Table 1.

Grid-based x̂ = arg min
x=x(k)

∑M

i=1
σ̂2

P,i(x)

Steepest descent x̂k = x̂k−1 + µk

·HT (x̂k−1)R
−1(y − H(x̂k−1)x̂k−1)

Newton-Raphson x̂k = x̂k−1+

µk

(
HT (x̂k−1)R−1H(x̂k−1)

)
−1

·HT (x̂k−1)R−1(y − H(x̂k−1)x̂k−1)

5.4 Gradient Derivation

In these numerical algorithms, the gradient H(x) =
∇xh(x) of the model with respect to the position is instru-
mental, and it is the purpose here to derive the necessary
equations.

First, it is easier to apply the chain rule to the expression

ck(x) = log
(
‖x − pk‖

)
=

1

2
log
(
‖x − pk‖

2
)
, (16)

though the result is the same in the end. The gradient is
then immediate as

dck(x)

dx
=

x − pk

‖x − pk‖2
. (17)

The gradient of the NLS loss function V̄ (x, θ̂(x)) becomes

a function of the gradients of θ̂i(x) and R(x). These are all
tedious but straightforward applications of the chain rule,
not reproduced here. However, the point is that everything
that is needed in the optimization algorithms surveyed in
the next section are symbolic functions in target location
x and sensor locations pk only.

5.5 Model Validation and Target Detection

Assume that the noise in the LRLM is Gaussian dis-
tributed. The NLS loss function at the true target location
xo is then χ2(M(N −2)) distributed. This can be used for
model validation, and also for testing the hypotheses that
there is a target.

5.6 Fundamental Performance Bounds

The Fisher Information Matrix (FIM) provides a funda-
mental estimation limit for unbiased estimators referred
to as the Cramér-Rao Lower Bound (CRLB) Kay [1993].
This bound has been analyzed thoroughly in the literature,
primarily for AOA, TOA and TDOA, Patwari et al. [2003],
Gezici et al. [2005], Gustafsson and Gunnarsson [2005], but
also for RSS Koorapaty [2004], Qi and Kobayashi [2003]
and with specific attention to the impact from non-line-of-
sight Qi and Kobayashi [2002b,a].

For the log range model 3, the 2 × 2 Fisher Information
Matrix J(x) is defined as

J(x) = E
(
∇

T
x log pe(y − h(x))∇x log pe(y − h(x))

)

(18a)

∇x log pe(y − h(x)) =

(
∂ log pe(y − h(x))

∂x1

∂ log pe(y − h(x))

∂x2

)

(18b)

where p is the two-dimensional position vector and pe(y−
h(x)) the likelihood given the error distribution.

In case of Gaussian measurement errors pe(e) = N(0,R(x)),
the FIM equals

J(x) = HT (x)R(x)−1H(x), (19a)

H(x) = ∇xh(x). (19b)

This form is directly applicable to the log range linear
model (3).

In comparison, if the nuisance parameters were known, the
FIM can be obtained in the Gaussian measurement error
case as the following sum over sensors
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J(x) =

M∑

i=1

N∑

k=1

∇xh(ck(x), θi)

=

M∑

i=1

N∑

k=1

θ2
i,1

σ2
P,i‖x − pk‖2

(x − pk)(x − pk)T (20)

Plausible approximative scalar information measures are
the trace of the FIM and the smallest eigenvalue of FIM

Jtr(x)
△

= tr J(x), Jmin(x)
△

= min eig J(x). (21)

The former information measure is additive as FIM itself,
while the latter is an under-estimation of the information
useful when reasoning about whether the available infor-
mation is sufficient or not. Note that in the Gaussian case
with a diagonal measurement error covariance matrix, the
trace of FIM is the squared gradient magnitude.

The Cramér-Rao Lower Bound is given by

Cov(x̂) = E(xo − x̂)(xo − x̂)T ≥ J−1(xo), (22)

where xo denotes the true position. The CRLB holds for
any unbiased estimate of x̂. It is in general hard to tell
if an estimate is unbiased or not, and the unbiasedness
of the estimation problem in this paper is still an open
question. A bias mostly increase the obtained mean square
error, but not always. For instance, the data independent
estimate x̂ = 0 is biased with zero variance and a small
MSE when the true position is close the the origin.
Nevertheless, we will use the CRLB as an indicator of how
an attainable MSE varies over space for a given network
deployment. Further, even if the estimate is unbiased, the
lower bound may not be an attainable bound. It is known
that asymptotically in the number of sensor nodes, the
ML estimate is x̂ ∼ N(xo, J−1(xo)) Lehmann [1991] and
thus reaches this bound, but this may not hold for finite
amount of data.

The right hand side of (22) gives an idea of how suitable a
given sensor configuration is for positioning. It can also be
used for sensor network design. However, it should always
be kept in mind though that this lower bound is quite
conservative and relies on many assumptions.

In practice, the root mean square error (RMSE) is per-
haps of more importance. This can be interpreted as the
achieved position error in meters. The CRLB implies the
following bound:

RMSE =
√

E
(
(xo

1 − x̂1)2 + (xo
2 − x̂2)2

)

=
√

trCov(x̂) ≥
√

tr J−1(xo) (23)

If RMSE requirements are specified, it is possible to
include more and more measurements in the design until
(23) indicates that the amount of information is enough.

Ane example of CRLB is illustrated in Figure 3. Such plots
can be used as guidelines for the sensor node layout, before
the network is deployed.

6. RESULTS FROM FIELD TRIALS

Extensive experiments have been performed to evaluate
the potential of the proposed algorithm. Different targets
(military and civilian vehicles, pedestrains etc), trajecto-
ries and sensor types and node configurations have been
tested. We here in detail present the result for a motorcycle
passing a network cluster. The trajectory and sensor node
layout are illustrated in Figure 4, where these are overlayed
a satelite image. The sensor observations are downsampled
to 2 Hz before estimation, all sensor types and nodes are
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Figure 3. Spatial variations of CRLB indicating how posi-
tioning accuracy will vary with the position.

carefully calibrated, and the vehicle is equipped with GPS
satelite navigation for validation of the performance.
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Figure 4. Sensor node locations and sample trajectory for
motor cycle.

The thick cross indicates a point of particular interest. The
NLS cost function in Figure (12) as a function of horizontal
position is shown in Figure 5 for this particular target
location. Though the target is in the center of the network,
there are still many minima. This is not a problem for
a grid based global minimization algorithm, but might
imply problems for local gradient based methods. In such
case, a filtering approach should be taken, where the
prediction from previous time is used as a starting point.
We will not discuss the natural extension to filtering in
this contribution, see Gustafsson and Gunnarsson [2007]
for details on this.

Figure 6 shows the estimation performance of minimizing
(12) as illustrated in 5 at each time instant. The absolute
error appears to increase linearly in distance. Though the
result is consistent with theory, the estimation accuracy is
not acceptable for tracking. The obvious next steps is to
fuse measurements from more sensor types, and apply a
Kalman filter based on a motion model.
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Figure 5. NLS cost function for microphone sensors as
a function of position for a certain target location
indicated with dashed lines in the contour plot and
the thick cross in Figure 4.

7. CONCLUSIONS

Conventional received signal strength (RSS) based algo-
rithms as found in the literature of wireless or acoustic net-
works assume either that the transmitted power is known,
or that the path loss constant is known from calibration.
We have considered a network that is rapidly deployed
in an unknown environment where the path loss constant
is unknown, or may vary with time. Also, the transmit-
ted power is inherently unknown is the localization and
tracking applications under consideration. For localization,
both transmission power and path loss constant are nui-
sance parameters unique for each target and sensor type,
but constant over the sensor nodes.

The nonlinear least squares (NLS) algorithm offers a suit-
able framework for positioning in this kind of sensor net-
works, where the RSS measurements suffer from unknown
transmitted power and where also the environmental path
loss constant is unknown. Marginalization of the nuisance
parameters using the separable least squares principle
leads to a NLS cost function of only two unknowns (hori-
zontal position), where global grid based methods can be
used for minimization. Results from field trials confirm the
usability of the proposed method.
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tion algorithm.
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