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Abstract: Complete nonlinear differential-algebraic equation (DAE) sub-system models are considered in 
the paper when designing controllers of components in power systems. First-principle models are 
nonlinear DAE sub-system models, but they use non-local measurable variables to describe the mutual 
relation (interconnection) between component and the AC grid, and thus they are not suitable for designing 
decentralized controllers. In the paper, component structural models are constructed, in which the local-
measurable interface variables are used to describe the mutual relation between component and the AC 
grid. Thus, the proposed models are equivalent to the first-principle models in essence, and have two 
characteristics: with local measurable interconnections and index 1. These two characteristics make it 
possible to transform the component structural models to nonlinear ordinary differential equation (ODE) 
sub-system models with measurable interconnections. Thus, traditional nonlinear control methods which 
are suitable for nonlinear ODE systems could be developed and expanded to be suitable for designing 
component controllers. 

 

1. INTRODUCTION 

In recent years, the application of nonlinear control methods 
to the components (such as synchronous generator sets, 
HVDC systems, FACTS apparatuses, etc.) in power systems 
has drawn much attention (Akhrif, et al, 1999, Dai, et al, 
2004). Apparently, the models used in nonlinear control 
methods should fully describe the complex nonlinearities of 
the controlled objectives. 

In the area of power systems, it is well-known that first-
principle models, such as Structure Preserving Model (SPM) 
and Component Connection Model (CCM) (Wasysczuk, et al, 
1981), can fully describe the complex nonlinearities of 
components. One typical expression of these models is 
(Kundur, 1994): 

( , , )
( 1 )

( , )
i Ui i Fi i

Fi Fi Fi i

i , ,N
=⎧

= ⋅⋅⋅⎨ =⎩

�x f x U u
I f U x

   (1) 

F F F=I Y U      (2) 

Equation (1) is the model of the i -th component ( 1i , ,N= ⋅⋅⋅ ). 
Equation (2) is the model of the AC grid. In (1) and (2), 

iX
i ∈x R , iU

i ∈u R are the state and input variables, 

respectively; 2 im
Fi ∈I R , 2 im

Fi ∈U R  are the current and 
voltage vectors, where im  is the number of the 
interconnection lines between the component and the AC grid 
when power systems are expressed by single-line mode; 

1[ , , ]T
F F FN= "I I I , 1[ , , ]T

F F FN= "U U U ; FY  is the 
admittance matrix. 

There are the following two features of the component model 
of (1): 

 It is a differential-algebraic equation (DAE) system. In 
(1), ( , , )i Ui i Fi i=�x f x U u  is the differential equation; 

( , )Fi Fi Fi i=I f U x is the algebraic equation, and in power 
systems it is called current injection equation. 

 It is a sub-system. In (1), ( , )Fi FiI U  are the variables 
used to describe the relation between the component and 
the AC grid.  

Compared with the nonlinear models used in present methods, 
the component model of (1) is very complex. As we know, to 
the present, although there have been some research results in 
the area of linear DAE system (Dai, 1989), there are still not 
many results in the area of nonlinear DAE system (Contou-
Carrere, et al, 2005). For the nonlinear DAE sub-system, 
there are almost no results. Thus, although in essence the 
components in power systems are nonlinear DAE sub-system 
models, there is still lack of systematic nonlinear control 
methods based on nonlinear DAE sub-system models. Most 
of the present researches are based on relatively simple 
nonlinear ordinary differential equation (ODE) models 
(Akhrif, et al, 1999, Dai, et al, 2004). The DAE models 
considered in (Hill, et al, 1990) are DAE isolated system 
models, not sub-system models. 

In the paper, the problem of designing component controllers 
based on nonlinear DAE sub-system models will be 
considered. However, it is difficult to directly design 
decentralized controllers based on the component model of 
(1): 
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 There is lack of ready control theory of nonlinear DAE 
sub-systems. 

 In (1), there are some non-local measurable variables 
( FiI  and FiU ). From the viewpoint of real power 
engineering, the component controller should be 
decentralized, or should only feedback local measurable 
variables. 

In the paper, firstly, the interface variables, which are local-
measurable, will be used to replace ( , )Fi FiI U to describe the 
mutual relation between the component and the AC grid. 
Then, a new nonlinear DAE sub-system model of component, 
or the component structural model, will be constructed. The 
proposed structural model is equivalent to the model as 
shown in (1), and has two special characteristics: with local 
measurable interconnections and index 1. Because of these 
two features, it is possible to transform the component 
structural models to nonlinear ODE sub-system models with 
measurable interconnections, and then it would be relatively 
simple to design controllers based on component structural 
models. Or, traditional nonlinear control methods which are 
suitable for nonlinear ODE systems would be developed and 
expanded to be suitable for designing controllers of nonlinear 
DAE sub-systems. 

2. COMPONENT STRUCTURAL MODEL 

2.1  Interface Variables 

As the component is a part (sub-system) of the large-scale 
power systems, when designing component controllers, the 
mutual relation between the i-th component and the rest of 
power systems (including the rest N-1 components and the 
AC grid, see Fig.1) should be considered seriously. In the 
paper, this mutual relation is named “interface” (see Fig.1). 

The i-th
component

Interface

Generators

The rest of power systems

AC grid

HVDCs

FACTS

Loads  

Fig. 1. The interface between the component and the rest of 
power systems 

In (1), ( , )Fi FiI U  are used to describe the interface relation 
between component and the rest of power systems. As 
mentioned above, ( , )Fi FiI U  are all not local measurements, 
and thus the model of (1) is not suitable for designing 
decentralized controller. Meanwhile, in real power 
engineering, there are many local-measurable variables, such 
as tiV  (the amplitude of voltage), tiP (the real power) and tiI  
(the amplitude of current), etc., but they are not included in 
(1). In this section, a set of new variables, or interface 

variables (expressed by iv ) will be defined to replace 
( , )Fi FiI U  to describe the relation between the component and 
the AC grid. There should be the following relations between 

iv  and ( , )Fi FiI U : 

( , )i Fi Fi=v I UΦ  and 1( , ) ( )T
Fi Fi i

−=I U vΦ   (3) 

In (3), 1( )- iΦ  is the inverse of ( )iΦ , or the interface 
variables are equivalent to ( , )Fi FiI U . Compared 
with ( , )Fi FiI U , the selection of iv  is very flexible, or some 
local-measurable variables could be chosen to describe the 
interface relation between the component and the rest of 
power systems. Choosing the generator set as an example, 
( , )Fi FiI U is ( , , , )xi yi xi yiI I U U , and ( , , , )ti ti ti UiP I Q θ  are 

reasonable interface variables. Meanwhile, the number of iv  
is the same as that of ( , )Fi FiI U , or 4 im . 

2.2  Component Structural Model 

Substituting 1( , ) ( )T
Fi Fi i

−=I U vΦ  (see (3)) into (1), one can 
get 

( , , )
( , )

i i i i i

i i i

=⎧
⎨ =⎩ 0
�x f x v u
g x v

     (4) 

Apart from ix , iv  and iu ,there may be other kind of 
variables in components. For example, in the model of 
generator, there are [ , ]di qiI I . In the paper, they are named 
“affiliate variables” ( iw ). Thus, the following model is more 
universal for the components in power systems: 

( , , , )

( , , )

w
i i i i i i

w
i i i i

⎧ =⎪
⎨

=⎪⎩ 0

�x f x w v u
g x w v

     (5) 

Choosing the generator set as an example, when the generator 
adopts 3rd-order one-axis model without ignoring the 
transient saliency, only considering the governor control, and 
choosing ( , , , )ti ti ti UiP I Q θ  as the interface variables, the 
structural model of generator set as shown in (5) is (For the 
explanation of the variables, please refer to (Kundur, 1994)): 

0

0 0 0 0

' '

0

( / ){ ( ) /

[ ( ) ] }

( ) /

i i

i i Hi MLi mi i i

qi qi di di qi

Hi Hi Hi mi Hi ci H i

H P C P D

E x x I I

P P C P C U T

δ ω ω
ω ω ω ω ω

Σ

⎧ = −
⎪ = + − −⎪
⎨ − + −⎪
⎪ = − + +⎩

�

�

�

  (6) 
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[ ( ) ] ( )
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arctan[( ) /( )]

ti qi qi di di qi ai di qi

ti di qi

ti qi di qi qi di di

Ui i qi qi ai di qi di di ai qi

P E x x I I r I I

I I I

Q E I x I x I

x I r I E x I r Iθ δ

′ ′⎧ = + − − +
⎪

= +⎪
⎨

= − −⎪
⎪ ′ ′= − − − −⎩

 (7) 
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Furthermore, the interface variables iv  could be decomposed 
into two parts, or ˆ( , )T

i i i=v v v . Under this decomposition, 
equations (5) would be: 

( , , )
ˆ( , , , )

w
i i i i i

w
i i i i i

⎧ =⎪
⎨

=⎪⎩ 0

�x f x w u
g x w v v

     (8) 

And the following conditions should be satisfied (Zhang, et 
al, 2007): 

(1) iv  could “fully” describe the influence of the rest of 
power systems to the component, or iv  are the 
interconnection inputs (disturbances) of the component; 

(2) ˆiv  could “fully” describe the influence of the component 
to the rest of power systems. 

Defining ˆ( , )T
i i i=z w v , equation (8) would be  (see Fig.2): 

( , , )

( , , )

z
i i i i i

z
i i i i

⎧ =⎪
⎨

=⎪⎩ 0

�x f x z u
g x z v

    (9) 

Where, 2 i im W
i R +∈z  are the algebraic variables (Dai, 1989) of 

the DAE sub-system; 2 im
i R∈v  are the interconnection inputs. 

ivˆiv

iu ( , , )

( , , )

z
i i i i i
z
i i i i

⎧ =⎪
⎨

=⎪⎩ 0

�x f x z u
g x z v

The rest of power systems

 

Fig. 2. The component structural model 

In the paper, the component model of (9) is named 
“component structural model”. This model is suitable for 
various components in power systems. For example, the 
structural model of TCSC is: 

( ) /TCSC TCSCu Tα α= −�     (10) 

( ) ( )2
1 1 1 2 2 1

2 1
0

2 1

2 1

cos cos / sin

180

TCSC TCSC

I I

P I f
I I

P P

α θ θ θ θ

θ θ

⎧ = − −
⎪

=⎪
⎨

= −⎪
⎪ = −⎩

 (11) 

Where: TCSCα  is the firing angle; TCSCX  is the equivalent 
reactance; ( )TCSC TCSCf α  is the complex relation between 

TCSCα  and TCSCX . Please refer to (Jalali, et al, 1996) for the 
explanation of other variables. 

For the model of (9), when discussing the control problem, 
the output equations should also be defined. The general 
expression of the output equation is: 

( , , )z
i i i i i=y h x z v      (12) 

Finally, it should be noted that compared with the model of 
(1), one most important characteristic of the model of (9) is 
that the interconnections of (9), or iv , are measurable. This 
characteristic will be very helpful for designing decentralized 
controller of component. 

3. THE INDEX OF COMPONENT STRUCUTRAL 
MODEL 

“Index” is an important and basic concept in the theory of 
DAE system. For a DAE system, index is the minimum 
derivative times of the algebraic equations that need to get 
the differential equation of the algebraic variables (Dai, 1989). 
This concept is also suitable for the DAE sub-system as 
shown in (9). 

Derivate the algebraic equations in (9) to time t, one can get 

( / ) ( / ) ( / )z z z
i i i i i i i i∂ ∂ + ∂ ∂ + ∂ ∂ = 0� ��g v v g z z g x x   (13) 

If the condition of  

( ( , , ) / ) 2z
i i i i i i irank m W∂ ∂ = +g x z v z    (14) 

could be satisfied, one can get the differential equations of iz : 

1

1

( / ) ( / ) ( , , )

( / ) ( / )

z z z
i i i i i i i i i

z z
i i i i i

−

−

= − ∂ ∂ ∂ ∂

− ∂ ∂ ∂ ∂

�
�

z g z g x f x z u
g z g v v

  (15) 

Then, the index of (9) is 1, or (15) is the index 1 condition of 
(9). Index 1 is a very good characteristic for DAE systems. 
Compared with the DAE systems with higher index, it is 
simpler to analyze the control problem of the system with 
index 1. 

Fortunately, for power systems, the component structural 
model of (9) is just a DAE sub-system with index 1. The 
proof is in the following. 

Firstly, the interface equations in (9) could be decomposed 
into two parts: 

1

2

ˆ ˆ( , , , ) ( , , )
ˆ ˆ( , , ) ( , , )

z
i i i i i i i i i i

z
i i i i i i i i

⎧ = − =⎪
⎨

= =⎪⎩

0
0

g x w v v w h x v v
g x v v g x v v

  (16) 

For the first equation of (16), there is 
1 ˆ( ( , , , ) / )z

i i i i i i irank W∂ ∂ =g x w v v w . For the last equation of 
(13)， there is no iw . Thus, we should only prove the 
following proposition. 

Proposition: For arbitrary interface variables iv  satisfying (3), 
and the corresponding interface equations in (9), in a certain 
neighbourhood, there must be a decomposition ˆ( , )T

i i i=v v v  

(where: 2ˆ im
i R∈v , 2 im

i R∈v ) to ensure the existence of 
ˆ ˆ( ( , , ) / ) 2i i i i i irank m∂ ∂ =g x v v v . 

Prove: 

Use the reduction to absurdity. 
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Assuming there is no decomposition ˆ( , )T
i i i=v v v  to ensure 

the existence of ˆ ˆ( ( , , ) / ) 2i i i i i irank m∂ ∂ =g x v v v . 

Substituting 1( ) ( )T
Fi Fi i

−=I ,U vΦ  into ( , )Fi Fi Fi i=I f U x (see 
(1)), one can get the following interface equations: 

1( , ) ( , ( ))
ˆ( , ) ( , , )

Fi Fi i Fi Fi i i

i i i i i i i

−− =
= = = 0
I f x U F x v
g x v g x v v

Φ    (17) 

where: 4 2( ) : i i im X m
i R R×⋅ →g , 1 2( ) ( ( ), , ( ))

i

T
i i i mg g⋅ = ⋅ ⋅"g . 

For it is arbitrary when decomposing the interface variables, 
according above assumption, there is  

ˆ ˆ ˆ( ( , ) / ) ( ( , ) / ) 2i i i i i i i i i i irank rank m∂ ∂ = ∂ ∂ <g x v ,v v g x v ,v v (18). 
Then, one can define 

ˆ( ( , ) / ) 2i i i i i i irank k m∂ ∂ = <g x v ,v v    (19) 

In the definition of interface equations, there is no special 
requirement for the order of the equations and variables, and 
thus one can assume 1 1( ( , , ) / ( , , ) )

i i

T
i ik i ik irank g g v v k∂ ∂ =" " . 

Thus, for the first ik equations of ( , )i i i = 0g x v , according to 
the Implicit Function Theorem, in theory there are 

1 1 ( 1) 4

( 1) 4

ˆ ( , , , )

ˆ ( , , , )

i i

i i i i

i i i i k i m

ik ik i i k i m

v g v v

v g v v

+

+

=⎧
⎪
⎨
⎪ =⎩

"

"
"

x

x
   (20) 

Substituting (20) into the rest 2 i im k−  equations of 
( , )i i i = 0g x v , 1, ,

ii ikv v"  in ( , )i i i = 0g x v  could be removed, 
and then one can get: 

( 1) ( 1) 4

2 ( 1) 4

ˆ ( , , , ) 0

ˆ ( , , , ) 0

i i i

i i i

i k i i k i m

i m i i k i m

g v v

g v v

+ +

+

=⎧
⎪
⎨
⎪ =⎩

"

"
"

x

x
   (21) 

Considering (19), one can see that there would be no 
variables ( 1) 4, ,

i ii k i mv v+ "  in (21). Or, (21) are with the 
following expressions: 

( 1)

2

ˆ ( ) 0

ˆ ( ) 0

i

i

i k i

i m i

g

g

+ =⎧
⎪
⎨
⎪ =⎩

"

x

x
     (22) 

Substituting ( , )i Fi Fi=v I UΦ  into the first ik equations and 
the last 2 i im k− equations of ( , )i i i = 0g x v , one can get 

1 1 4

1 4

( , ( , ), , ( , )) 0

( , ( , ), , ( , )) 0

i

i i

i i i Fi Fi i m Fi Fi

ik i i Fi Fi i m Fi Fi

g

g

Φ Φ =⎧
⎪
⎨
⎪ Φ Φ =⎩

"

"
"

x I U I U

x I U I U
  (23) 

( 1) 1 4

2 1 4

( , ( , ), , ( , )) 0

( , ( , ), , ( , )) 0

i i

i i

i k i i Fi Fi i m Fi Fi

i m i i Fi Fi i m Fi Fi

g

g

+ Φ Φ =⎧
⎪
⎨
⎪ Φ Φ =⎩

"

"
"

x I U I U

x I U I U
 (24) 

According to the definition, one can see that equations (23) 
and (24) are just the current injection equations. 

From above derivation of from (19) to (22), one can see that 
1( , ), , ( , )

ii Fi Fi ik Fi FiΦ Φ"I U I U (or 1, ,
ii ikv v" ) can also be 

solved based on (23). Substituting the result into (24), 
1 4( , ), , ( , )

ii Fi Fi i m Fi FiΦ Φ"I U I U (or 1 4, ,
ii i mv v" ) in (24) can 

also be omitted. Or ,Fi FiI U  in (24) can be omitted. Then, 
equation (24) could be converted to (22). 

Yet we know, 1 2, ,
iFi Fi mI I"  must exist in every equation of 

current injection equations, and thus it is impossible to omit 
,Fi FiI U  in (24) based on (23). 

Then, the assumption does not hold, or the original 
proposition holds. 

□ 

Based on (14) and (16), according to the Implicit Function 
Theorem, there is: 

ˆ( , , )
ˆ ˆ ( , )

i i i i i

i i i i

=⎧
⎨ =⎩

w h x v v
v g x v

    (25) 

Furthermore, substituting the second equation of (25) into the 
first equation of (25), and considering the definition of 

ˆ( , )T
i i i=z w v , there is 

( , )i i i i=z p x v      (26)  

4. TRANSFORMATION OF DAE SUB-SYSTEM TO ODE 
SUB-SYSTEM 

For the control problem of DAE system, one general 
approach is transforming the DAE system to traditional ODE 
system. As discussed above, the index of the component 
structural model, or (9), is 1, and for DAE system, the 
characteristic of index 1 is very helpful to transform the DAE 
system to ODE system. In this section, the problem of 
transforming the nonlinear DAE sub-system as shown in (9) 
to nonlinear ODE sub-system will be discussed. 

Substituting (26) into (9) and (12), there is 

( , ( , ), ) ( , , )

( , ( , ), ) ( , )

p v
i i i i i i i i i i i

p v
i i i i i i i i i i

⎧ = =⎪
⎨

= =⎪⎩

�x f x p x v u f x v u
y h x p x v v h x v

  (27) 

Apparently, equation (27) is a standard nonlinear ODE sub-
system model. 

In (27), the state variables ix  are independent with each 
other, and thus the ODE sub-system as shown in (27) is the 
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“minimum” state space realization of the original DAE sub-
system. 

It should be noted that, only when the analytic expressions of 
( , )i i ip x v  in (26) exist, can one get the analytic expression of 

(27). Fortunately, for most kinds of components in power 
systems, we can all get the analytical expressions of (26). 

However, in some special circumstances, the interface 
equations ( , , )z

i i i i = 0g x z v  may be very complex, and thus 
there may be very difficult or impossible to acquire the 
analytic expressions of ( , )i i ip x v . For example, when the 
generator adopts the 3rd-order one-axis model without 
ignoring the transient saliency, it is very difficult to acquire 
the analytic expression of ( , )i i ip x v . In this case, based on 
the characteristic of index 1, one can also get the differential 
equation of the algebraic variables iz , and then the nonlinear 
DAE sub-system as shown in (9) and (12) could be 
transformed to 

1

1

( , , )

( / ) ( / ) ( , , )

( / ) ( / )

( , , )

( , , )

z
i i i i i

z z z
i i i i i i i i i

z z
i i i i i

z
i i i i

z
i i i i i

−

−

⎧ =
⎪

= − ∂ ∂ ∂ ∂⎪
⎪ − ∂ ∂ ∂ ∂⎨
⎪ =⎪
⎪ =⎩

0

�
�

�

x f x z u
z g z g x f x z u

g z g v v
g x z v
y h x z v

   (28) 

In (28), the state variables have been expanded to ( , )T
i ix z , 

and ix  and iz  are constrained with each other by the 
algebraic equation ( , , )z

i i i i = 0g x z v . Thus, the sub-system as 
shown in (28) is a constrained nonlinear ODE sub-system, or 
it is not the minimum state space realization of the original 
nonlinear DAE sub-system. Then, how to get the minimum 
state space realization of (28) is a question. The detailed 
discussion about this issue will be given in our next paper, 
and in the paper, the generator set will be chosen as an 
example to demonstrate it in Section 6. 

5. DESIGN OF DECENTRALIZED NONLINEAR 
CONTROLLER OF COMPONENTS 

For the nonlinear ODE sub-system models with measurable 
interconnections as shown in (27) or (28), traditional 
nonlinear control methods (e.g. differential geometric theory, 
direct feedback linearization (DFL) method, inversion control 
method, etc.) which are suitable for nonlinear ODE systems 
could be developed and expanded to be suitable for designing 
controllers. Detailed discussion about this issue will be given 
in our next paper. The general diagram is shown in Fig.3. 

In Fig.3, there are three kinds of feedback, or state feedback, 
output feedback and interface feedback, in which interface 
feedback is not a traditional feedback kind. Here, one 
important reason that makes the interface feedback possible 
is that the interconnections (interface variables) of the 
component structural model are local measurable. By feed-
backing interface variables, the component controller can 

“apperceive” the interconnections between the component 
and the rest of systems. 

ix

iyiu

iy

ivˆivivˆiv

Interface feedback

Reference Decentralized
nonlinear controllers

 of component

Controlled
 objective

The rest of systems

State feedback
Output feedback

 

Fig. 3. Diagram of component nonlinear decentralized 
controller 

6. EXAMPLES 

In this section, synchronous generator set will be chosen as 
an example to illustrate the method of transforming DAE 
sub-system to ODE sub-system discussed above. 

Example 1. In this example, the 3rd-order one-axis generator 
model without ignoring the transient saliency is considered to 
illustrate how to get the constrained nonlinear ODE sub-
system with measurable interconnections. 

The structural model of generator set is as shown in (6) and 
(7). The output equation could be defined as: 

i iy ω＝       (29) 

It could be proved that in the normal operating area of power 
systems, there is det( / ) 0z∂ ∂ ≠g z , or the index of the 
structural model of (6) and (7) is 1. 

From the algebraic equations in (7), or ( , , )z
i i i i = 0g x z v , it is 

difficult to acquire the analytical expressions of 
( , , , )T

i ti Ui di qiP I Iθ=z  as shown in (26). Then, equations (6), 
(7) and (29) can be converted to the following constrained 
ODE sub-system: 

0

0 0 0 0
' '
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( / ) ( / )
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Hi Hi Hi mi Hi ci
H i

z z z
i i i i i i i i i

z z
i i i i i

z
i i i i

i i

H P C P D

E x x I I

P P C P C U
T

y

δ ω ω
ω ω ω ω ω

ω

Σ
−

−

⎧ = −
⎪ = + − −⎪
⎪ − + −⎪
⎪

= − + +⎪
⎨
⎪ = − ∂ ∂ ∂ ∂⎪
⎪ − ∂ ∂ ∂ ∂

=

⎩

0

�

�

�

�
�

z g z g x f x z u
g z g v v

g x z v
=

⎪
⎪
⎪

 (30) 

In order to acquire the minimum state space realization, the 
following coordinate transform could be chosen. 
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1 1

2 2
0

3 3
0 0

' '
0 0

( )

( )

( ) ( / ){

( / )( ) [ ( ) ] }

( )

i i i

i i i

i i i Hi MLi mi

i i qi qi di di qi

z
i i

T

T

T H P C P

D E x x I I

ξ δ
ξ ω ω
ξ ω

ω ω ω

⎧ = ⋅ =
⎪

= ⋅ = −⎪
⎪ = ⋅ = + −⎨
⎪ − − + −⎪
⎪ = ⋅⎩ gχ

  (31) 

One can get 

1 2

2 3

3
3 0

3 3 3

2
0

( / )[( ) / ]

( / ) ( / ) ( / )

i i

i i

i i Hi Hi Hi mi Hi ci H i

i i i i di di i qi qi

i i

T P P C P C U T

T T I I T I I

y

ξ ξ
ξ ξ
ξ

ω ω

ξ ω

Σ

⎧ =
⎪

=⎪
⎪ = ∂ ∂ − + +⎨
⎪ + ∂ ∂ + ∂ ∂ + ∂ ∂⎪
⎪ = +⎩

�
�
�

� ��
  (32) 

Then, substituting the expressions of , ,i di qiI Iω � ��  (the 

expressions of ,di qiI I� �  can be obtained in (30)), and 
substituting the new coordinate ( , )i iξ χ  (where 

1 2 3( , , )i i i iξ ξ ξ=ξ ) for the original coordinate ( , )i ix z , one can 
get the minimum realization of the generator set as following 

1 2

2 3

3
3

2
0

( , , , )

i i

i i

i i i ci i i

i i

F U

y

ξ ξ
ξ ξ
ξ

ξ ω

⎧ =
⎪

=⎪
⎨

=⎪
⎪ = +⎩

�
�
� �v vξ

    (33) 

Example 2. In this example, the classical 3rd-order generator 
model is considered to illustrate how to get the nonlinear 
ODE sub-system with measurable interconnections. 

Compared with the model of (6), (7) and (29), for the 
structural model of generator set adopting the classical 3rd-
order generator model, there is only one difference, or 

'
qi dix x= . Thus, one can directly get the nonlinear ODE sub-

system with measurable interconnections as shown in (27). 

0

0 0 0 0

' ' ' 2 '

2 ' 2 ' 2 0.5

0

( / ){ ( / )( )

[ ( )( ) / ]

[ (( ) / ) ] }

( ) /

i i

i i Hi MLi mi i i

qi qi di ti di ti qi

ti ti di ti qi

Hi Hi Hi mi Hi ci H i

i i

H P C P D

E x x Q x I E

I Q x I E

P P C P C U T
y

δ ω ω
ω ω ω ω ω

ω
Σ

⎧ = −
⎪ = + − −⎪
⎪ − + − +⎪
⎨

⋅ − +⎪
⎪ = − + +⎪
⎪ =⎩

�

�

�

 (34) 

7. CONCLUSIONS 

This paper discussed the decentralized nonlinear control 
problem of components in power systems based on nonlinear 
DAE sub-system models. For traditional nonlinear DAE sub-
system models (first principle models) of components are not 
suitable for designing decentralized nonlinear controllers, a 
new kind of nonlinear DAE sub-system model, or component 
structural model, is constructed, in which the interconnection 

is local measurable. Furthermore, based on its characteristic 
of index 1, this nonlinear DAE sub-system model is 
transformed to nonlinear ODE sub-system models with 
measurable interconnections, which is very helpful for 
designing decentralized nonlinear controllers of components. 

Future works would be concerned with: 

 For the constrained nonlinear ODE sub-system as 
shown in (28), it is need to research the general method 
to get its minimum state space realization. 

 For the nonlinear ODE sub-system models with 
measurable interconnections as shown in (27) or (28), it 
is need to develop and expand traditional nonlinear 
control methods to design decentralized nonlinear 
controllers of components. 
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