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Abstract: In this paper, the stability analysis and synthesis problems for networked control
systems (NCSs) are investigated. By introducing the lifting technique into NCSs, a novel
discrete-time switch model is proposed with the consideration of time delay and packet dropout
during the transmission of packets. It describes NCSs as a switch system, and therefore enables us
to apply the theory from switch systems to study NCSs in discrete-time domain. In terms of the
given model, we give sufficient conditions for the existence of state feedback controller such that
the closed-loop NCSs are asymptotically stable. Based on the obtained stability conditions, a
homotopy-based iterative LMI algorithm is developed to get the state feedback gain. Simulation
results are given to demonstrate the effectiveness of the proposed approaches.

1. INTRODUCTION

Networked control systems (NCSs) of which communi-
cation networks are used for the connections between
spatially distributed system components have recently at-
tracted much attention from research communities. Cer-
tain issues such as network-induced delay (Nilsson et al.
[1998], Hu et al. [2003], Tipsuwan et al. [2004], Liu et al.
[2006], Zhang et al. [2001]), packet dropout (Zhang et al.
[2001], Xiong et al. [2007]), network constraints (Mon-
testruque et al. [2003], Peter et al. [2003]), signal quan-
tization (Li et al. [2004], Montestruque et al. [2007]), and
scheduling (Walsh et al. [2001]), were investigated and
some useful results were reported. In addition, due to
the advantages of low cost, simple installation and high
reliability (Xiong et al. [2007], Yue et al. [2004]), NCSs
have been finding applications in DC motors (Liu et al.
[2006]), vehicles (Seiler et al. [2005]) and robots (Tipsuwan
et al. [2003]), etc.

In practice, controller design for NCSs with both network-
induced delay and packet dropout is a very interesting and
practical problem since the packets in NCSs usually suffer
network-induced delay and packet dropout simultaneously
during the network transmissions. Recently, some impor-
tant results are developed in this field. Based on the LMI
approach, state feedback control method was investigated
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by Yue et al. [2004] and Yu et al. [2004] respectively. In the
case of H∞ control, Yue et al. [2005] studied the controller
design for NCS with external disturbance and parameter
uncertainties. Note that those results investigated NCSs in
continuous-time domain. In discrete-time domain, Yu et al.
[2004] and Lin et al. [2005] studied the stabilization prob-
lem for NCSs. However, in those results, the controller and
actuator are combined together. That means network ex-
ists only between the sensor and the controller. Xiong et al.
[2007] studied the state feedback control for NCSs under a
general framework. However, it assumes network-induced
delay is constant, and therefore can not deal with the
case when network-induced delay is random. Therefore,
despite the progress made in controller design for NCSs
with both network-induced delay and packet dropout, it
has become evident that the state feedback control for
NCSs in discrete-time domain, especially for NCSs under
a general framework and with random network-induced
delay, are still required.

In this paper, we focus on solving the state feedback
controller design problem of NCSs in discrete-time domain
and under a general framework, where random network-
induced delay and arbitrary packet dropout are taken into
account simultaneously. By using the lifting technique (see
Li et al. [2002], Park et al. [2004]), a mathematic model
is proposed for the considered NCSs. It describes NCSs
as a switch system, and therefore enables us to apply the
theory from switch systems to study NCSs in discrete-time
domain. In terms of the given model, we give sufficient
conditions for the existence of state feedback controller
such that the closed-loop NCSs are asymptotically stable.
Based on the obtained stability conditions, we further
investigated the corresponding state feedback controller
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design problem. The numerical examples are provided to
demonstrate the effectiveness of the proposed approaches.

Notation. Throughout this paper, Rn and Rn×m denote
the n dimensional Euclidean space and the set of all n ×
m real matrices respectively. ‖·‖ refers to the Euclidean
norm for vectors and induced 2-norm for matrices. The
superscript “T ” denotes matrix transposition; and for
symmetric matrices X and Y , the notation X > Y means
that X − Y is positive definite. I is the identity matrices
with appropriate dimensions, and the notation Z+ stands
for the set of nonnegative integers. Finally, in symmetric
block matrices, we use “∗” as an ellipsis for the terms
introduced by symmetry.

2. PROBLEM FORMULATION

The setup of NCSs considered in this paper is depicted in
Fig.1, where networks exist between sensor and controller,
and between controller and actuator. The controlled plant
is given by

x(k + 1) = Fx(k) + Gu(k) (1)
where k ∈ Z+ is the time index, x(k) ∈ Rn and u(k) ∈ Rm

are the plant state and control input respectively. x0 :=
x(0) ∈ Rn is the initial plant state. F and G are known
matrices with appropriate dimensions.

Discrete-time Equivalent Plant

Controller

Actuator Continuous Plant Sensor

Network

Buffer B

Network

Buffer A

Fig. 1. The structure of the concerned networked control
systems

The sensor is clock-driven, i.e., at time instant kh, it sends
the most recent plant state to the controller, where h is
the step length of the plant. The controller, as a receiver,
has a receiving buffer denoted as buffer A. The buffer size
is 1, and the packet with the latest time stamp is used to
update the buffer content. The networked controller is a
memoryless state feedback controller of following form:

u = Kbuffer(A) (2)
where K is the feedback gain to be designed, buffer(A)
is the updated content of buffer A. The controller is
event-driven, i.e., whenever there is new data in buffer
A, the controller starts calculating new control signal and
transmits it to the actuator.

The actuator also has a buffer size of 1. When the new
control packet arrives at the controller, it will be compared
with the time stamp on the control signal in buffer B. The
one based on the latest plant state will be put into buffer
B. The actuator is clock-driven. At time instant kh, it
updates the actuator output based on the value read from
buffer B. Thus, the last control signal is used to control
the plant when the new control signal is not available.

Remark: Note that since the actuator is clock-driven, (1)
can be considered as discretized from a continuous-time
system given by

ẋp(t) = Axp(t) + Bu(t) (3)
with sampling period h and

F = eAh, G =
∫ h

0

eAτdτB. (4)

In the presence of networks, network-induced delay, packet
dropout and packet out-of-order occur inevitably. As a
result, not all packets from the sensor are used to control
the plant. For example, the packet or the control signal
based on this packet may be lost in the network, or may
be discarded by the buffer because of packet out-of-order.
Noting that, we adopt the following definition to capture
the packet dropout in NCSs, where packet out-of-order is
also considered as packet dropout.

Definition 1. A packet from the sensor is called effective
packet under the controller (2), if the control signal based
this packet is finally used to control the plant. Introduce
S := {i1, i2, · · ·} ⊆ Z+ (im+1 > im, m ∈ {1, 2, · · ·}) to
denote the sequence of time index of the effective packets
and let Ndrop := maxim∈S{im+1 − im}, then the packet
dropout process is defined as

{η(im) := im+1 − im, im ∈ S} (5)
which means that, from im to im+1, the number of packet
dropout is η(im) − 1. Noting im ∈ S and the defini-
tion of Ndrop, η(im) takes values in a finite set Ω :=
{1, 2, · · · ,Ndrop}.
Let τim

express the RTT (Round Trip Time) delay encoun-
tered by mth effective packet, i.e., the time interval from
the time instant imh when the sensor samples the plant
state to the time instant imh+τim

when the control signal
based on this plant state reaches the actuator. Apparently,
τim

is a combination of the sensor-to-controller delay, the
controller processing delay and the controller-to-actuator
delay. In this paper, without loss of generality, we assume
τim

∈ U := [τmin, τmax], where τmin and τmax are the lower
and upper bounds of τim

respectively. In this paper, τmax

can be larger then h. From previous discussions, the time
delay and packet dropout information can be embodied as

{{η(im), τim} : im ∈ S, τim ∈ U, η(im) ∈ Ω} (6)

Definition 2. (6) is said to model random time delay
and arbitrary packet dropout, if τim

takes values in U
randomly, and im takes values in Z+ arbitrarily. Corre-
spondingly, η(im) takes values in Ω arbitrarily.

Let us consider τim ∈ [(r − 1)h rh) first. Since the actu-
ator is clock-driven, one can infer that, during the time
interval between two effective packets, i.e., [imh im+1h),
the control input to the plant is piecewise constant and
there are at most (r + 1) control signals, i.e., Kx(im−j),
j ∈ {0, 1, · · · , r}. Correspondingly, there are (r +1) differ-
ent cases. As illustrated in Fig.2, one control signal, e.g.,
Kx(im−1), acts on the plant when no new control signal
reaches the actuator during [imh im+1h). Two control
signals, e.g., Kx(im−1) and Kx(im−2), act on the plant
when one new control signal reaches the actuator during
[imh im+1h). By analogy, (r + 1) control signals, i.e.,
Kx(im−j), j ∈ {0, 1, · · · , r}, act on the plant when r con-
trol signals reaches the actuator during [imh im+1h). Not-
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ing the random time delay and arbitrary packet dropout
occurred in network and considering τim ∈ [(r − 1)h rh),
one can infer that the control signal Kx(im) can be used
to control the plant only at time instant imh+rh, and the
rest r control signals, i.e., Kx(im−j), j ∈ {1, · · · , r}, can
be used to control the plant at the random time instants
imh + cr

nh, where cr
n ∈ {0, · · · , r − 1}, n ∈ {1, · · · , r}. For

any i, j ∈ {1, · · · , r}, we have{
cr
i > cr

j i > j, cr
j 6= r − 1

cr
i = cr

j i > j, cr
j = r − 1 (7)

mi

( )mKx i

Lifted sampling period

Case 1

Case 2

Case +1r

1m
i

Sampling periods

( )
m l

Kx i

1mi

The control input

1( )
m

Kx i

1( )
m

Kx i
2( )

m
Kx i

1( )
m

Kx i

Fig. 2. A timing diagram of the concerned networked
control systems.

Refer to [imh im+1h] as a “lifted sampling period”, then
the concerned NCS can be lifted as

x(im+1) = F η(im)x(im) +
η(im)−r−1∑

j=0

F jGKx(im)

+
cr
1∑

j=0

F η(im)−r+jGKx(im−1)

+
cr
2∑

j=cr
1+1

F η(im)−r+jGKx(im−2)

+ · · ·+
cr

r∑

j=cr
r−1+1

F η(im)−r+jGKx(im−l)

(8)

where the notation
b∑

j=a

(F j) satisfies





b∑

j=a

(F j) = 0 b < a

F a = 0 a < 0

(9)

Noting the generality of r in τim ∈ [(r − 1)h rh), the
closed-loop NCS can be model as (8) with r replaced
by dτim

/he, where d·e denotes the nearest larger number.
Let Ndelay := dτmax/he. Then one can infer that, no
more than (Ndelay + 1) control signals, i.e., Kx(im−j),
j ∈ {0, 1, · · · ,Ndelay}, can be used to control the plant
during [imh im+1h). To facilitate the stability analysis of

NCS, introduce z(im) =
[
xT

im
xT

im−1
· · · xT

im−Ndelay

]T

into the closed-loop NCSs model, i.e., (8) with r replaced
by dτim/he. Then, the closed-loop NCSs can be expressed
by the following switched system

z(im+1) = M dτim /hez(im) (10)

where M dτim /he is function of the switch dτim
/he which

take values in a finite set S := {1, · · · ,Ndelay}. For each
possible value of dτim

/he = r, M r is of following form

Mr =




F η(im) + Ar
1 Ar

2 · · · Ar
Ndelay

Ar
Ndelay+1

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




(11)

In (11), Ar
1, Ar

2 and Ar
i (i ∈ {3, · · · , r + 1}) are given by

Ar
1 =

η(im)−r−1∑

j=0

F jGK, Ar
2 =

cr
1∑

j=0

F η(im)−r+jGK,

Ar
i =

cr
i−1∑

j=cr
i−2+1

F η(im)−r+jGK. (12)

If r < Ndelay, for (11), we also have

Ar
i = 0 (i ∈ {r + 2, · · · ,Ndelay + 1}) (13)

The objective of this paper is to investigate the stability
and controller design problem for NCSs (10) such that the
considered NCS is asymptotically stable.

3. STABILITY ANALYSIS OF CLOSED-LOOP NCSS.

In this section, we will give sufficient conditions for the
existence of state feedback controller such that the closed-
loop NCSs is asymptotically stable.

Without loss generosity, we assume that the initial control
inputs are zeros, i.e., u(0) = 0. Noting that the last control
signal is used to control the plant when the new control
signal is not available, we have u(l) = 0 for 0 ≤ l ≤ i1,
where i1 is the time index of the first effective packet. With
the initial plant state x0 := x(0), we get

x(l) = F lx0 (14)

for 0 ≤ l ≤ i1. Let z(0) =
[
xT

0 0 · · · 0
]T . Then, for

0 ≤ l ≤ i1, we have

z(l) = M̂ lz0 (15)

where z(l) =
[
xT

l xT
im−1

· · · xT
im−Ndelay

]T

, and

M̂ l =




F l 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




(16)

Moreover, for im < l < im+1, the behavior of (10) can be
expressed by

z(l) = M̄ rz(im) (17)

where im ∈ S, z(l) =
[
xT

l xT
im−1

· · · xT
im−Ndelay

]T

, and

M̄ r is similar to (11) but with η(im) replaced by l − im.

Theorem 1. With given network parameters Ndelay,
Ndrop and a given matrix K, the NCS (10) in the presence
of random time delay and arbitrary packet dropout is
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asymptotically stable, if there exists a common positive
definite matrix P with appropriate dimension satisfying

MT
i PM i − P < 0 (i ∈ {1, · · · , Ndelay}) (18)

where M i is of form (11).

Proof : Construct a Lyapunov functional as:

V (im) = zT (im)Pz(im) (19)

We first prove lim
l→∞

z(l) = 0 for NCS (10). By considering

(10) and by letting dτim/he := i, then we have V (im) =
zT (im)Pz(im) and V (im+1) = zT (im)MT

i PM iz(im).
From the condition (18), one can easily show that

V (im+1)− V (im) = zT (im)(MT
i PM i − P )z(im) < 0

(20)
for any z(im) 6= 0.

For im < l < im+1, we have V (l) = zT (im)M̄T
i PM̄ iz(im).

From (17), one can see that M̄ i ⊂ M i, and correspond-
ingly, M̄

T
i PM̄ i − P < 0 is a subset of (18). Thus, if the

condition (18) holds, for im < l < im+1, we can get

V (l)− V (im) = zT (l)
(
M̄

T
i PM̄ i − P

)
z(l) < 0 (21)

for any z(l) 6= 0.

Therefore, from (20), we get V (im+1) − V (im) < 0 for
any z(im) 6= 0, which implies that lim

im→∞
V (im) = 0 for

NCS (10). By considering (21), we can get lim
l→∞

V (l) = 0

for NCS (10), where l 6= im. Summarizing the above two
cases, we can conclude that lim

l→∞
V (l) = 0 for l ∈ Z+,

which implies that lim
l→∞

z(l) = 0 for NCS (10).

We now prove that NCS (10) is stable if the conditions
(18) hold. That is, given any ε > 0, we can find a δ(ε) > 0
such that ‖z(0)‖ < δ(ε) implies ‖z(l)‖ < ε for l ∈ Z+.
Let α1 = ‖P ‖ and α2 = 1

/∥∥P−1
∥∥. From the definition of

Lyapunov function, we get α2 ‖z(l)‖2 ≤ V (l) ≤ α1 ‖z(l)‖2.
In NCS (10), three cases may arise and are discussed as
follows.

Case 1: 0 ≤ l ≤ i1. Since z0 =
[
xT

0 0 · · · 0
]T , we have

‖z0‖ = ‖x0‖. Let α3 := maxl∈{1,··· ,Ndrop}
∥∥∥M̂ l

∥∥∥, then
given any ε > 0, if we let x0 < min {1/α3, 1} ε, we
can therefore obtain ‖z(l)‖ =

∥∥∥M̂ lz0

∥∥∥ ≤
∥∥∥M̂ l

∥∥∥ ‖z0‖ <∥∥∥M̂ l

∥∥∥min {1/α3, 1} ε < ε.

Case 2: l = im. From previous discussions, we get

V (l) < V (i1) ≤ α1 ‖z(i1)‖2 = α1

∥∥∥M̂ i1z0

∥∥∥
2

and ‖z(l)‖ ≤√
V (l)/α2. Therefore, with any given ε > 0, if we let x0 <

(
√

α2/α1/α3)ε, then we can get ‖z(l)‖ ≤
√

V (l)/α2 <√∥∥∥M̂ i1

∥∥∥
2

‖z0‖2 α1/α2 = ‖z0‖α3

√
α1/α2 < ε.

Case 3: im < l < im+1. In this case, we have

V (l) < V (im) < V (i1) ≤ α1

∥∥∥M̂ i1

∥∥∥
2

‖z0‖2. Let

α4 := maxi∈{1,··· ,Ndelay}
∥∥M̄ i

∥∥. With any given ε >

0, if we let x0 <
√

α2/α1/(α3α4)ε, then we get

‖z(l)‖ =
∥∥M̄ rz(im)

∥∥ ≤ ∥∥M̄ r

∥∥ ‖z(im)‖ ≤ α4 ‖z(im)‖ <

‖z0‖α3α4

√
α1/α2 < ε.

Based on the above analysis, if we let
α := min{min {1/α3, 1} ,

√
α2/α1/α3,

√
α2/α1/(α3α4)}

then we can conclude that ‖z(0)‖ < αε implies that
‖z(l)‖ < ε for NCS (10), where l ∈ Z+.

According to the definition of “asymptotically stable”, we
can complete the proof.

4. STATE FEEDBACK CONTROLLER DESIGN

In this section, we consider the design of networked con-
troller (2) such that the closed-loop system (10) is asymp-
totically stable.

By using Schur complement to (18), (18) is equivalent to

Ψi(Q, K) :=
[ −Q ∗

M iQ −Q

]
< 0 (22)

where Q = P−1, M i is of form (11) with variable K.

From theorem 1 we see that the feasible solutions of
(22) can lead to the desired networked controllers (2).
Unfortunately, (22) can not be formulated into LMIs since
M iQ involve the products between the unknown variables
K and Q. However, an important feature of (22) is that
if K is fixed, finding Q becomes an LMI problem and
vice versa. So (22) is in fact a set of bilinear matrix
inequalities (BLMI). To circumvent the synthesis problem,
a homotopy-based iterative LMI algorithm is developed as
follows.

Define

Σi(Q, K, λ) :=
[−Q ∗

Σ21
i −Q

]
< 0 (23)

where

Σ21
i = H1Q + λH2

i diag {K, · · · , K}Q + (1− λ)H2
i K̄

H1 =




Fη(im) 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


 , H2

i =




Ai
1 Ai

2 · · · Ai
Ndelay+1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




K̄ = diag {K, · · ·K}Q (24)

Note that λ is a real number varying from 0 to 1. Then

Σi(Q, K) =
{

Ψi(Q, K) if λ= 1
Φi(Q, K̄) if λ= 0 (25)

where

Φi(Q, K̄) :=
[ −Q ∗

H1Q + H2
i K̄ −Q

]
< 0 (26)

Based on the above discussions, an iterative LMI algorithm
can be summarized as follows.

Controller Design Procedure:

Step 1. Initiation: Set k = 0, select N , Nmax. Solve
Φi(Q, K̄) to get Q, K̄, and let Q(0) := Q, K̄(0) := K̄.

Step 2. Set k = k + 1 and λk = k/N . Let Q := Q(k − 1),
K̄ := K̄(k − 1). If (23) upon K is feasible, then denote
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the feasible solution as K(k), let Q(k) := Q(k − 1),
K̄(k) := K̄(k − 1), and go to Step 4. Otherwise, go to
Step 3.

Step 3. Let K := K(k − 1) and K̄ := K̄(k − 1). If (23)
upon Q is feasible, then solve the minimization problem:

OP : min tr (trace(Q))
s.t. Inequalities (23) (27)

Denote the feasible solution as Q(k), let K(k) := K(k−1)
and K̄(k) := K̄(k − 1), then go to Step 4. Otherwise, set
N = 2N . If N > Nmax, then the algorithm fails in giving
feasible solution, else set k = 0, go to Step 2.

Step 4. If k < N , go to Step 2. If k = N , the obtained
solutions K(k) and Q(k) are a set of feasible solutions of
(22).

5. NUMERICAL EXAMPLE

In this section, a numerical example is used to validate the
proposed approaches. Let us consider a NCS with setup
shown in Fig.1, where the controlled plant is borrowed
from Xiong et al. [2007] and given by

ẋp(t) =

[−1 0 −0.5
1 −0.5 0
0 0 0.5

]
xp(t) +

[ 0
0
1

]
u(t) (28)

When the sampling period is specified to 0.1s, the dis-
cretized system is of form (1) with

F =

[ 0.9048 0.0000 −0.0488
0.0928 0.9512 −0.0024
0.0000 0.0000 1.0513

]
G =

[−0.0025
−0.0001
0.1025

]
(29)

To carry out numerical simulations, we assume the RTT
delay τim

is random, ranging from 0ms to 195ms, and in
three consecutive packets from sensor, there is at least
one effective packet. From the above assumptions, we get
Ndelay = 2 and Ndrop = 3. In the following text, we will
consider three controller design methods, and compare the
corresponding NCSs performance. For fair comparisons,
the three controller design methods are selected with the
same form u = Kx. The main difference between them
resides in that they are developed with different network
effects taken into account.

Case 1: The controller considering only packet dropout

Let us consider the state feedback controller design
method proposed by Xiong et al. [2007], where the
controller is designed with only packet dropout being
considered. We apply the Theorem 11 in Xiong et al.
[2007] to the concerned NCS (i.e., we design the net-
worked controller considering only packet dropout, with-
out considering time delay), and therefore obtain K =
[0.5716, 0.1591,−4.6618]. When this feedback gain matrix
is used to control the NCS in the presence of time delay and
packet dropout, we can conclude that it leads to a unstable
NCS by using the obtained stability criterion equation
(18). With the initial state x0 = [−5, 0, 5]T , the simula-
tion result of NCS under u = [0.5716, 0.1591,−4.6618]x
is shown in Fig.3, which indicates that the networked
controller considering only packet dropout is not capable
of guaranteeing a stable NCS for this special example.
Clearly the simulation result is consistent with the ana-
lytical stability criterion.
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Fig. 3. Typical NCS performance under a networked
controller considering only packet dropout.

Case 2: The controller considering only time delay

We apply the proposed controller design method con-
sidering only time delay, without considering packet
dropout, to the concerned NCS, and therefore obtain
K = [−0.5530,−0.4318,−0.1040]. Using the obtained
closed-loop stability criterion, we see that when time de-
lay and packet dropout are present, the designed feed-
back matrix results in an unstable NCS. With the same
initial state, the simulation result of NCS under u =
[−0.5530,−0.4318,−0.1040]x is depicted in Fig.4, which
implies that the networked controller considering only
time delay is also not capable of guaranteeing a stable
NCS in this case. Apparently, the simulation result is also
consistent with the analytical stability criterion.
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Fig. 4. Typical NCS performance under a networked
controller considering only time delay.

Case 3: The proposed state feedback controller

Now, we apply the proposed controller design method
considering both time delay and packet dropout to the
concerned NCS. Solving the Design Procedure, we get
K = [−0.1943,−0.1373,−1.3080]. With the same ini-
tial state, the simulation result of NCS under u =
[−0.1943,−0.1373,−1.3080]x is depicted in Fig.5, which

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6630



demonstrates that the proposed controller can stabilize the
concerned NCS very well.
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Fig. 5. Typical NCS performance under the proposed
controller.

As can be seen in this example, the discretized plant is
unstable because of eig(F ) = 0.9512, 0.9048, 1.0513. The
networked controller considering only network-induced de-
lay or packet dropout can not stabilize the unstable NCS.
However, under the proposed controller, the NCS is not
only stable but also shows good performance. This demon-
strates demonstrate the effectiveness of the proposed ap-
proaches.

6. CONCLUSIONS

This paper has investigated the state feedback controller
design and stability analysis problems for NCSs under
effects of network-induced delay and packet dropout. A
discrete-time switch model is proposed by introducing the
lifting technique into the considered NCSs, which enables
us to apply the theory from switch systems to study
NCSs in discrete-time domain. In the proposed framework,
sufficient conditions for the existence of state feedback
controller such that the closed-loop NCSs is asymptotically
stable is derived and the corresponding controller design
problem is also addressed. Simulation results are given to
demonstrate the effectiveness of the proposed approaches.
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