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Abstract: A Quantum Genetic Based Scheduling Algorithm (QGBSA) for stochastic flow shop scheduling 
with random breakdown and random repair time is proposed in this paper, which combines stochastic 
programming and stochastic simulation theory, quantum compute and genetic algorithm together. In the 
QGBSA, the Q-bit based representation in discrete 0-1 hyperspace is employed, which is then converted 
into decimal scheduling code, and quantum gate is used to update the current generation. Meanwhile, 
catastrophe operator is added to avoid premature. In order to improve the effectiveness of scheduling 
scheme, the stochastic programming theory is used to set up a stochastic flow shop scheduling model 
without breakdown. Then we consider two different working modes—preemptive-resume and preemptive-
repeat under breakdown. The former processes the rest part of interrupted job while the later reprocesses 
the interrupted job. Under each working mode, the situations where breakdown happened at any time or at 
machine’s life-span time were discussed. Finally, compared with traditional Genetic Algorithm (GA), 
computational results show the feasibility and effectiveness of QGBSA policy. 

 

1. INTRODUCTION 

Flow shop scheduling problem with strong engineering 
background is an important optimization problem, which is 
of the difficulties such as inaccurate estimation of 
optimization objective and NP-hardness. Meanwhile, there 
are many uncertainties in process industry such as machine 
breakdown, operator–stock condition, changes in availability 
date and latest completion times; we must consider them to 
ensure the production running successfully. See (Xingsheng 
Gu, 2000). Commonly, the processing time of jobs are known 
in advance only with uncertainty. At present, basic methods 
for solving scheduling problem with uncertain processing 
time are stochastic programming, fuzzy programming, rough 
sets, etc. If the processing time of each job is initially 
described in terms of a probability distribution, then we call 
such problem as stochastic scheduling, which could be solved 
by stochastic programming. Moreover, the machines are not 
always available and breakdowns can happen at any time. So 
considering random breakdowns is more realistic. Generally, 
the machine’s repairing time is fixed, but here we let it obey 
random distributions. 

This stochastic model is much more realistic than 
deterministic models while expressing real world problems. 
By means of the stochastic model, it becomes much easier to 
meet the demands of large projects in the face of uncertainty 
in the initial project parameters. Unfortunately, stochastic 
scheduling problems tend to be far more difficult to deal with 
from both a theoretical and computational point of view than 

their deterministic counterparts. So we use stochastic 
programming to set up stochastic model, and employ 
stochastic simulation to achieve stochastic sampling. 

In the literature research of stochastic flow shop scheduling 
problem with breakdowns, many different approaches have 
been applied and a rich harvest have been obtained, such as 
heuristic arithmetic, Genetic Algorithm, etc, see (Allaoui, H. 
and Artiba, A. 2004; Li, Su-Fen et al., 2005) . A detailed 
review of scheduling in a flow shop with breakdowns is 
given by M. Gourgand et al. (2000). Meanwhile, 
ALLAHVERDI A, et al. (1995) also give some research 
results concerning flow shop with stochastic breakdown. 
Besides, ALCAIDE D et al. (2002) propose an approach to 
converts breakdowns scheduling problems into a series of 
problems without breakdowns. 

Recently, quantum evolution, burgeon of computing theory, 
comes into being, which is also a combined product of 
quantum physics and computer science. As we all known, 
evolution algorithm simulates heuristic searching based on 
nature species’ evolution. Quantum evolution algorithm, 
combing quantum system’s adding character and parallel 
character, could improve the efficiency of algorithm. So far, 
many efforts on quantum computer have been paid due to its 
superiority to classical computer for various specialized 
problems. As a novel evolutionary method, Quantum 
evolution Algorithm has gained much attention and 
application for both function and combinatorial problems, but 
there is little research on stochastic scheduling.  
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2. PROBLEM DESCRIPTION 

The permutation flow shop scheduling problem is often 
designated by the symbols , where a set of jobs max/ / /n m P C

{1,..., }Job n= have to be processed on m machines in the 
same order. The processing of each job on each machine is an 
operation which requires the exclusive use of the machine for 
an uninterrupted duration called the processing time. Here, 
we assume that the jobs are all available for processing at 
time zero and, at any time, each job can be processed on at 
most one of the machines which are subjected to stochastic 
breakdowns. On the other hand, each machine can process at 
most one job at a time.  

In this paper, we assume S is the job 
permutation . The processing time of job on 
machine is a nonnegative random with a mean

{ 1 2, ,..., nS s s s= } i
j ijp ijμ and a 

variance 2
ijσ , and all the processing times are independent and 

following normal distributions. We also suppose each 
machine happen breakdown only once.  The breakdown time 
point  and repair time length  on machine  obey normal 
distributions and their means are

ib ir i

ibμ , irμ  and the variances 
are ibσ , irσ . 

{ } { },ij ij ij ijE p Var pμ σ= =  

{ } { },i i ib E b b Var bμ σ= = i

i

 

{ } { },i i ir E r r Var rμ σ= =  

ijp —the processing time of job on machine i , which is an 
independent stochastic variable 

j

im —continuous available time on machine  i

ijst —starting time of job on machine , a stochastic 
variable 

j i

ijc —completing time of job -th on machine , a stochastic 
variable. 

j i

3. STOCHASTIC FLOW SHOP WITH RANDOM 
BREAKDOWN MODEL AND SOLVING METHOD 

Only considering the random processing time, the expected 
completing times of each job on each machine are described 
as follows (Expected value model):  

{ }11 0sE st =                                                                            (1) 

{ } { } { }1 11 1 11s sE c E st E p= + s

j

                                                  (2) 

{ } { } { }11 1 1  2,...,
j j js s sE c E c E p j n

−
= + =                                 (3) 

{ } { } { }1 1 1( 1)  2,...,is i s isE c E c E p i m−= + =                               (4) 

{ } { } { }{ } { }1 ( 1) ( 1)max ,

                                            2,...,
                                            2,...,

j j jis is i s i sE c E c E c E p

i n
j m

− − −= +

=
=

                 (5) 

When the stochastic breakdown is added into the problem, 
the solving method can be described as follows. 

Woking mode 1 (preemptive-resume model): After repairing, 
the rest part of job being interrupted by breakdown will be 
processed. 

Woking mode 1 contains two cases as follows. 

Case 1: Breakdown can happen at any time.  

The expected time when breakdown occurs on machine  is: i

{ } { } { }
1iE b  1, 2,...,is iE st E m i m= + =  

EA EB

Mi-2

Mi-1

Mi

j-2 j-1 j

breakdown                  EA, EB--expected time of breakdown  

Fig. 1. The gantt chart of flow shop scheduling problem with 
breakdown 

EA is the time when breakdown happened during machine’s 
idle time interval. EB is the breakdown time happened in 
machine’s processing time interval, which can be shown in 
Fig 1. 

The expected completing time of job can be calculated as 
follow: 

j

{ }( ) { }( )
{ } { } { }{ } { }

{ }( ) { } { }( )( )
{ } { } { } { }

1 ( 1)  

      max ,

  

       

 

j j

j j j

j j j

j j j

is i s

is is i is

is is is

is is is i

If E c EA and E c EA

E c E st EA E r E p

Elseif E st EB and E st E p EB

E c E st E p E r

end if

− −≤ >

= + +

≤ +

= + +

>  

Case 2: Each machine has its life-span, if the total working 
time of a machine exceeds its life-span, breakdown will 
happen. 

In this case, breakdown only happens at EB time. So the 
expected value of breakdown time on machine is its life-
span time. 

i

The expected completing time of job can be calculated as 
following: 

j

Without loss of generality, we suppose EB to be the 
breakdown of machine i , and denote by Q the last job before 
EB.  
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{ } { } { } { }
{ }( ) { }( )

{ } { } { } { }

1

1 1
  ,  

     

        

 

k k

j j j

Q j Q j

i is i is
k Q k Q

i i

is is is i

Let E M E p E N E p i m

If E M EB and E N EB

E c E st E p E r

end if

+ − +

= + = +

= =

≤ >

= + +

∑ ∑ 1, 2,...=

) >

=

 

Woking mode 2 (preemptive-repeat model): After repairing, 
the job being interrupted by breakdown will be reprocessed. 

In the same way, breakdown may happen at time EA or time 
EB. The expected completing time of job can be calculated 
as follows: 

j

Case 3: Breakdown can happen at any time. 

{ }( ) { }( )
{ } { } { }{ } { }

{ }( ) { } { }(( )
{ } { } { }

1 ( 1)  

      max ,

  

       

 

j j

j j j

j j j

j j

is i s

is is i is

is is is

is is i

If E c EA and E c EA

E c E st EA E r E p

Elseif E st EB and E st E p EB

E c EB E p E r

end if

− −≤ >

= + +

≤ +

= + +

 

Case 4: If the total working time of a machine exceeds its 
life-span, breakdown will happen. 

{ } { } { } { }
{ }( ) { }( )

{ } { } { }

1

1 1
  , , 1, 2,...

     

        

 

k k

j j

Q j Q j

i is i is
k Q k Q

i i

is is i

Let E M E p E N E p i m

If E M EB and E N EB

E c EB E p E r

end if

+ − +

= + = +

= =

≤ >

= + +

∑ ∑

 

4. QUANTUM GENETIC BASED SCHEDULING 
ALGORITHM 

In the QGBSA, Q-bit based representation is employed for 
exploration in discrete 0-1 hyperspace by using updating 
operator of quantum gate as well as genetic operators of Q-bit. 
Meanwhile, the Q-bit representation is converted to random 
key representation, which is then transferred to job 
permutation for objective evaluation (Li, Bin-Bin et al., 
2007). 

4.1 Basic quantum compute 

Before we introduced the QGBSA, let’s briefly review the 
basic knowledge of quantum compute. 

Quantum compute uses quantum bit as information unit. The 
advantage of quantum bit is when there are two quantum bit, 
it can stay in adding states of four state 00,01,10,11. 

The state of a Q-bit can be represented as follows: 

0

, where α and β are complex numbers that specify the 
probability amplitudes of the corresponding states. 

Thus, 2α and 2β denote the probabilities that the Q-bit will 
be found in the “0”state and “1”state respectively. Because 
our paper discusses flow shop scheduling problem, 
soα and β  is in real number. 

A Q-bit individual , a string of m Q-bits,  is defined as 
follows: 

p

1 2

1 2

...

...
m

m

α α α
β β β

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Where 2 2 1, 1, 2,...,i mα β+ = =  

4.2 Coding and Decoding of QGBSA 

In QGBSA, the quantum unit is converted to random key 
representation, which is the final flow shop code. The 
detailed process can be described as: 

Firstly, let η  be a random number generated between[0 . If ,1]

iα of individual  satisfiesp 2 , 1,...,i iα η> = m , then set 
1ir = , otherwise 0ir = . 

Then, the binary representation is viewed as random key 
representation.  

Finally, job permutation is constructed based on random key.  

For example, consider a 3-job, 3-machine problem, let 3 Q-
bits represent a job. Suppose a binary representation is [0 1 1| 
1 0 1| 1 0 1] which is converted from Q-bit representation, 
then the random key representation is [3 5 5]. If values of two 
random key representations are different, let smaller random 
key denote the job with smaller index; otherwise, we let the 
first one denote the job with smaller index. So, the above 
random key representation is corresponding to job 
permutation [1 2 3]. Obviously, if enough Q-bits are used to 
represent a job, any job permutation would be constructed 
with the above strategy from binary representation based 
space. Example can be seen from Fig 2. 

0        1        1    |    1       0       1  |    1       1        0

converted into decimal digits

3         |          5                |         6

permutation from big to small

1  |      2     |   3the decoding code:

the initial code: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.995 0.979 0.9955 0.916 0.866 0.8 0.7141 0.6 0. 4359

⎡ − − − − ⎤
⎢ ⎥− − − − −⎣ ⎦

 

Fig. 2. Decoding way of flow shop

1ψ α β= +                                                                   (6) 4.3 Selection of QGBSA 
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In this paper, the selection method of our QGBSA is 
gambling. Since many results concerning gambling selection 
could be found, here, details about it are omitted. 

4.4 Crossover of QGBSA 

Here, two-point crossover is used, which sets two crossover 
points randomly, and selects the section between the points 
from one parent and other sections outside the points from 
the other parent and recombines them. 

4.5 Mutation of QGBSA 

One position is randomly chosen, and then the corresponding 
iα and iβ are exchanged. To avoid premature, a catastrophe 

operator is used. In this paper, if a solution does not change 
in certain consecutive generations, and it could be regarded to 
be trapped in local optimal, then the local best solution is 
reserved while the others will be replaced by solutions 
generated randomly. 

4.6 Rotation Operator 

The rotation gate is applied on the probability amplitude of 
quantum states in Quantum evolution algorithm in order to 
maintain diversity of population, which is an important 
updating method of quantum evolution algorithm. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Polar plot of the rotation gate for Q-bit individuals 

The quantum transforming matrix accomplishes quantum 
mutation. The selection of quantum gate has many types: not 
gate, controlled Not gate, hadamard gate, rotation gate, etc. 
Here we choose rotation gate as quantum mutation. The plot 
of polar coordinate concerning quantum rotation gate can be 
described in Fig 3. 

A rotation gate ( )U θ  is employed in quantum evolution 
algorithm to update a Q-bit individual as a variation operator. 
( , )i iα β of the i-th Q-bit is updated as:  

( ) ( ) ( )
( ) ( )

'

'

cos sin
.

sin cos
i i i i

i
i ii ii

U

, where iθ  is rotation angle. Let ( ),i i is iθ α β θ= Δ , 

where ( ),i is α β  is the sign of iθ that determines the direction, 

iθΔ is the magnitude of rotation angle whose lookup table is 
shown in Table 1. In the table, BE and are the i-th bits 
of the best solution  and the binary solution  respectively. 

iS iBIS
b r

Table 1.  Rotation angle 

iBIS
 

iBES
 

( ) ( )f r f b< iθΔ  0i iα β >

 
0i iα β <  0iα =

 
0iβ =

0 0 False 0 0 0 0 0 
0 0 True 0 0 0 0 0 
0 1 False 0 0 0 0 0 
0 1 True 0.05pi -1 +1 1or-1 0 
1 0 False 0.01pi -1 +1 1or-1 0 
1 0 True 0.025pi +1 -1 0 1or-1
1 1 False 0.005pi +1 -1 0 1or-1
1 1 true 0.025pi +1 -1 0 1or-1

4.7 Procedure of QGBSA 

Procedure of the QGBSA algorithm for stochastic flow shop 
scheduling with random breakdown is following: 

Step 0: input initial parameters: PS (population size), Pc 
(crossover probability), Pm (mutation probability), Sampling 
Times, iterative generation (GN), let k=0; 

Step 1: randomly generate an initial population 
( ) { }1 ,...,t t

QP t P P= N , which was converted to a binary 
representation, then decoded into random key representation, 
which is corresponding to job permutation in decimal code. 

Step 2: using stochastic simulation to calculate ma  of kespan

( )QP t , and then record the best scheduling result.  

Step 3: if stopping condition (k=GN) is satisfied, then output 
the best scheduling result; otherwise go to step 4. 

Step 4: perform quantum selection, crossover, mutation for 
( )QP t to generate ( )'

QP t . 

Step 5: if catastrophe condition is satisfied, perform 
catastrophe for ( )'

QP  to generate  and go to step 7; 
otherwise go to step 6. 

t )( 1QP t +

Step 6: applying rotation gate ( )U θ  to update ( )'
QP t to 

generate ( )1QP t + . 

Step 7: The generation ( )1QP t  was converted to decimal 
codes, which denote flow shop permutation. Then use 
stochastic simulation to calculate makespan of

iα α θ θ
θ

θ θ
α

β ββ

⎡ ⎤ ⎡ − ⎤⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

+

( )1QP t + , and 
update the best scheduling solution if possible. Let k=k+1, go 
back to step 3. ⎥                   (7) 

5. EXPERIMENT 
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The new algorithm is tested by solving benchmark Taillard 
problems. Five representative instances of different size have 
been selected, which are 20 , , , 5× 20 10× 20 20× 50 5× , 

.The results obtained are comparable to the GA 
method and show the appropriateness of the new algorithm 
on stochastic flow shop with random breakdown. 

50 10×

The processing time, breakdown time point and repairing 
time obey normal distributions. We use benchmark datas as 
processing times’ mean value and variances are fetched 
from . The mean value of breakdown time point is [0,1]

100ibμ = , variance is 10ibσ = . The mean value of repair 
time is 100irμ = , variance is 10irσ = . Stochastic 
simulation is used to achieve stochastic sampling. The 
procedure is running on Pentium(R) 2CPU 3.06GHZ. 

In QGBSA, the population size is 50, crossover probability is 
0.9 and mutation probability is 0.1. If the catastrophe 
condition is satisfied, mutation probability is added another 
0.5. Times of Iteration are 200 and stochastic time’s sampling 
times is 20. In GA, the population size is 50, crossover 
probability is 0.9 and mutation probability is 0.2.  

We take QGBSA to be compared with GA, using case1 as an 
example. First stochastic sampling technology is used to get a 
series solutions each time, from which, we find out those 
solutions with the min, average and max makespan. After ten 
runs on each problem instance, we get ten groups data. Then 
we calculate the average number of min, average and max 
makespan. The statistical results are shown in Table 2, where 
we can see QGBSA-based on stochastic flow shop 
scheduling problem with random breakdown can get much 
better solutions than GA with relatively less iterative times. 
The results obtained by QGBSA are very close to the best 
solution of the determinate FSSP. The average performance 
of the QGBSA is also better than that of the GA, especially 
for the large-scale problems. If the convergence generation is 
very small, GA is easy to trap in local optimal solution, but 
QGBSA won’t have this phenomenon. 

Fig. 3 is convergence curves of QGBSA and GA with 
different size. By comparison, the simulation solution shows 
clearly that the convergence rate of QGBSA is faster than the 
GA. Fig.4 is the best result among ten runs at 20 5× size, in 
which the black rectangle denotes the breakdown. So, we 
conclude that QGBSA is very efficient for stochastic FSSP 
with random breakdown, especially for large-scale with many 
jobs and machines, which can obtain optimal solution with 
small iterative generations and population size.  

Table 3 is computational results for different cases of 
TA  benchmark problem, which are achieved by 
QGBSA to compute. We found case 1 takes less time than 
case 3, case 2 takes less time than case 4, which means that 
the rest part of job being interrupted by breakdown need less 
processing time than the job to be reprocessed. Under the 
same working mode, breakdown happened at the life-span 
time needs more processing time than breakdown happened 
at any time.  

20 5×

Table 2.  Statistical results of QGBSA and GA 
Ps Sampl 

Times 
PS  
GN 

The 
best 

Min/average/max 
QGBSA 

Min/average/max 
GA 

20,20 20 200, 
50 

2297 2913.32/2639.52/2965.49 2910.12/2954.3/2993.35 

20, 5 20 200, 
50 

1278 1499.4/1523.59/1572.5 1523.6/1556.45/1602.3 

20,10 20 200, 
50 

1582 1975.3/2010..96/2049.08 2001.73/2034.46/2085.94 

50,5 20 200, 
50 

2724 2942.3/2958.79/2988.4 2935.3/2962.4/2998.54 

50,10 20 200, 
50 

3025 3568.3/3634.55/3685.86 3583.4/3678.36/3720.24 

Remark: Ps is the problem size. PS and GN indicate the size 
of population and the generation of termination respectively. 
The best means the best solution of the determinate FSSP. 

Table 3.  Computational results under different 
breakdown cases 

PS  
GN 

Min/average/max 
Case1 

Min/average/max 
Case3 

Min/average/max 
Case2 

Min/average/max 
Case4 

200 
50 

1484/1512.7/1583 1582.6/1573.1/1642.2 1511/1606.7/1685.2 1728/1731.3/1915.7 

 1504/1535/1557.3 1594/1597/1655.1 1508/1592.8/1672.7 1668/1709.2/1860.4 

 1417/1495.2/1543 1590/1592.3/1679.9 1532/1590.5/1705.5 1555/1657.3/1796.3 

 1503/1518.3/1540 1545/1590.8/1700.3 1472/1585.1/1714.1 1670/1671.6/1781.5 

 1514/1544.8/1636 1513/1549.8/1613 1500/1594.4/1658.3 1603/1671.6/1791.9 

 1498/1517/1556.6 1513/1549.8/1713 1489/1562.8/1640.5 1563/1661.8/1782.8 

 1520/1550.2/1578 1533/1612.1/1896.6 1489/1562.8/1640.5 1558/1649.6/1780.1 

 1524/1538/1601.3 1562/1589.2/1764.6 1471/1566.2/1698 1527/1649.7/1764.5 

 1486/1516.8/1601 1569/1579/1599.8 1511/1590.8/1697.1 1606/1665.3/1770.6 

 1490/1507.8/1529 1571/1605.7/1628.8 1509/1589.5/1669.2 1566/1681.1/1811.9 

AV 1494/1523.6/1573 1557.26/1583.8/1689 1499.2/1444.16/1674 1604.4/1674/1805.7 

Remark: AV is the average value of ten times. 
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Fig. 3. Convergence curves of different size

6. CONCLUSION 
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A QGBSA-based Algorithm for stochastic flow shop 
scheduling with random breakdown problem is proposed in 
this paper. We consider four different working cases of 
breakdown. Through simulation on Taillard benchmark 
problem, compared with GA, the proposed algorithm can 
achieve a solution of better quality and good robustness on 
uncertainty for stochastic flow shop scheduling problem. 
Experiment results show the feasibility and effectiveness of 
this algorithm. 
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Fig. 4.  The gantt chart of 20 5×
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