
The Markovian Jump Contour Tracker ?

Albino A. A. Cordeiro Jr. ∗ Marcelo D. Fragoso ∗

Nicolas D. Georganas ∗∗ Jauvane C. de Oliveira ∗

∗ Laboratorio Nacional de Computacao Cientifica, Brazil
(e-mail: acordeiro@discover.uottawa.ca)

∗∗ University of Ottawa, Canada

Abstract: In this paper a novel contour tracking algorithm based on a Markovian jump
extension of the Kalman filter is presented, we call it the Markovian jump tracker (MJT).
Markovian jump linear systems (MJLS) are suitable to model physical systems that behaves
linearly but suffers abrupt changes in the dynamics from time to time (accordingly to a Markov
chain process) with applications ranging from aircraft control systems to macroeconomics
simulation. The tracking method we devised uses Markovian jump filter technology to profit from
available multiple linear models -to achieve overall tracker stability- each roughly describing a
specific type of expected motion, for example: rotation, translation, cyclic motion, and so on. We
verify the method’s efficacy in preliminary experiments and compare aspects of its performance
with other popular contour tracking algorithm.

Keywords: Switched discrete and hybrid systems, Linear Parametrically Varying (LPV)
Methodologies; Estimation and Filtering.

1. INTRODUCTION

The contour is one of the most descriptive visual feature
of an object, thus, an effective contour tracking algorithm
features out as a very desirable tool for many computer
vision applications. Contour tracking in natural video is
a rather challenging task, for many factors concur to
distract the tracker and to degrade performance such as,
for instance: change in illumination, weak color contrast,
intrinsic image noise, and other objects in the scene that
may mimic some of the target’s features.

Often, a single linear dynamic model is used by the
tracker to estimate motion for the whole video, although,
throughout the video the actual target motion dynamic
(or operation mode) usually varies significantly. The ideal
solution would consider this dynamic variation during
motion, such that for each time step the appropriate
dynamic model would be utilized by the tracker.

In this work we deal with the case where multiple dynamic
models are available, each roughly describing a certain
kind of motion that is expected to be present in the
target videos, for example, a model for rotation, another
for in-plane translation, one more for scale variation, and
possibly models for combinations of these types of motion.
In practice, these models are learned from available data.
We assume also that the transitions between motion modes
occur in such small time intervals that we may consider
them as abrupt changes in the dynamics.

This perhaps restrictive case, nonetheless, cover important
real-life applications such as, for example, hand tracking
for gesture-based human-computer interfaces (see Tomasi
? This work was supported in part by CNPq under Grants
470527/2007-2 and 301740/2007-0 and by FAPERJ under Grant E-
26/100579/2007.

et al. (2003) and Athitsos and Sclaroff (2002)) which was
the underlying motivation of this work.

In the kernel of our contour tracker is an optimal Marko-
vian jump filter, that is presented in Costa et al. (2005)
combined with a contour modeling and measurement
framework found in Blake and Isard (1998). The resulting
algorithm, aside other interesting characteristics, is simple
to understand -since it is a generalization of the Kalman
filter- and it’s also easy to implement, notwithstanding, it
presents compelling empirical results.

1.1 Related Work

Multiple models methods for visual tracking has received
significant attention in recent years and has been perceived
as a strong tool for increasing robustness of traditional
object tracking algorithms. These methods are also called
hybrid methods in the literature, that is because an usual
form to describe the problem is to utilize hybrid state
vectors, such that, one of the coordinates evolves discretely
and indicates which dynamic model is active at each time
step. Important practical and theoretical results for hybrid
systems have already been published (for example Doucet
et al. (2000)).

In Nascimento and Marques (2004) the authors propose
a multiple model tracker (and a model identification
method) for improving robustness under cluttered back-
ground conditions. In this case a joint probability data
association filter was devised.

On the other hand, in Isard and Blake (1998b), the authors
propose a particle filter contour tracker adjusted to accept
multiple models, a joint probability density function was
conceived to comprise both the state and the model label
in order to improve robustness of a hand-contour tracking

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15499 10.3182/20080706-5-KR-1001.2797

system for gesture recognition. Other important filters
and adaptations of the particle filter for multiple model
systems could arguably substitute the filter used in that
work, such as Blom and Bar-Shalom (1988) and Blom and
Bloem (2004). These ones however were not yet tested in
the contour tracking context.

One upfront difference between the other proposals men-
tioned in this section and our algorithm is that the later
doesn’t attempt to measure nor estimate the jump pa-
rameter directly. This is neither a positive nor a negative
characteristic in general, but will be a useful one or not
accordingly to the underlying application.

1.2 Paper Organization

In section 2, the basic elements of the problem are set
forth and the problem itself is defined. In section 3,
the Markovian Jump framework is introduced. In section
4, the tracker design is described and some aspects of
the implementation are discussed. In section 5, some
preliminary experiments on hand tracking are reported.
In section 6, we conclude the paper and propose paths for
future research.

2. PROBLEM FORMULATION

In the early 1990’s, Andrew Blake and collaborators de-
veloped a very successful contour tracking framework in
a series of papers, they based their work on B-splines
for contour representation (see Blake and Isard (1998)
and references therein). The developments we present here
builds upon their work.

B-splines curves are parametric curves with many inter-
esting properties: there are available well tested algo-
rithms for point set interpolation -or approximation- with
B-splines and, since B-splines curves are polynomial by
parts, computer representation, manipulation and storage
is, thus, greatly simplified, for all those operations reduce
to manipulations with small vectors.

Basically, contours are described as linear combinations of
elements of a set of spline functions previously defined,
namely spline basis. The contour curve rk in time step k
can be described as matrix product:

rk(s) = U(s)T Qk , 0 ≤ s ≤ L (1)
where each s ∈ [0, L] determines a point in rk, L is said to
be the number of curve spans 1 , the column vector

Qk =
(
Qx

k
Qy

k

)
(2)

with Qx
k,Qy

k ∈ <NQ is called the control vector 2 , and

U(s) =
(
BT (s) 0

0 BT (s)

)
with 0 = (0, 0, ..., 0)T ∈ <NB is a 2× 2NQ matrix. For its
turn, B(s) is called the spline basis vector and

BT (s) = (B0(s), B1(s), ..., BNB−1(s)) (3)
where Bj(s), j = 0, ..., NB − 1, are the spline basis
functions.
1 L is a parameter of the spline formulation specifically. In our
experiments L was set to 50.
2 The control vector actually defines the curve shape at time step k.

The matrix U(s) may be computed off-line for a fine dis-
cretization of the parameter space [0, L], so that, retrieving
points on the curve becomes the trivial task of calculating
(1) given a control vector Qk. In practice NQ is previously
fixed (≈ 200).

We assume, henceforth, rigid body motion and that the
distance camera-target is such that perspective effects may
be ignored. Therefore, given the contour description for
k = 0, Q0, every other subsequent contour disposition,
Qk, is a result of an affine transformation of Q0, that is

Qk = W0Xk + Q0 (4)
where Xk ∈ <NX is the configuration vector for time-step
k and

W0 =
(
1 0 Qx

0 0 0 Qy
0

0 1 0 Qy
0 Qx

0 0

)
(5)

with 1 = (1, 1, ..., 1)T ∈ <NB defines all acceptable
transformations of Q0, in fact, its column vectors form
a basis for the space of affine transformations of Q0. The
subset of contours Qk for which (4) holds is said to be the
configuration (or shape) space of Q0.

We assume also that we have some a priori knowledge of
the dynamics in the form of a second-order autoregressive
dynamic equation:

Xk = A2Xk−2 + A1Xk−1 + B0ωk (6)
where A1, A2 and B0 are NX ×NX matrices, and ωk is a
vector of Gaussian random variables with zero mean and
variance equals to 1.

However, defining the state vector

xk =
(

Xk−1

Xk

)
(7)

we’re able to rewrite (6) as
xk = Axk−1 + Bωk (8)

where

A =
(

0 1
A2 A1

)
and B =

(
0

B0

)
(9)

The state vector xk is measured under noise, for which an
observation model is assigned

yk = Lxk + Hηk (10)
where yk is the observation or measurement, L the obser-
vation coefficient matrix, H the observation noise covari-
ance, and ηk is defined in the same way as ωk.

In this context we define the contour tracking problem as
the problem of recursive estimation of the state vector xk,
to be carried out over a n-dimensional state space 3 , given
the dynamic model (8), the observation model (10), and
the measurement process {yk}.

3. MARKOVIAN JUMP LINEAR SYSTEMS

MJLS describes processes subject to uncertain changes
in their dynamics, where the variations caused by these
changes significantly alter the dynamic behavior of the
system. More specifically, a MJLS is characterized by
a finite set of discrete-time linear systems with modal

3 Note that n � 2NQ, in fact, n = 2NX where NX = 6 for the
configuration space we’re working with.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15500

transition given by a Markov chain, that is, we consider
systems of the form:

G =

{ xk+1 = Aθk
xk + Bθk

ωk

yk = Lθk
xk + Hθk

ηk

x0, θ0 given.
(11)

where the noise processes ωk and ηk are defined in the same
way as in (7) and (10), θk is called the jump parameter and
determines the current system parameter matrices, and x0

and θ0 are the given initial conditions of the contour state
and the jump parameter. The jump parameter is assumed
to evolve stochastically as a Markov chain process with
transition matrix T and finite state-space S = {1, · · · , N}.
The MJT is based on an adaptation of the Linear
Minimum Mean Square Error (LMMSE) Estimator for
Discrete-time Markovian jump linear systems first pre-
sented in Costa (1994) (see Fragoso et al. (2005) and
Fragoso and Rocha (2006) for continuous-time versions).

In our work, we assume that the current operation mode
θk is unknown at each time k. In this case, it is well known
that the optimal nonlinear filter is obtained from a varying
size bank of Kalman filters, which requires exponentially
increasing amount of memory and processing with time.
Many important nonlinear sub-optimal filters were pro-
posed among them the Interactive Multiple Model (IMM)
algorithm by Blom and Bar-Shalom (1988) and the one in
Doucet et al. (2000). The LMMSE filter is, in contrast, a
optimal-linear state estimator for the MJLS.

The LMMSE filter works with the following assumptions:

(1) BiB
′
i > 0 (′ = transpose) for all i ∈ S.

(2) {ωk} and {ηk} are null mean second-order, inde-
pendent wide sense stationary sequences mutually
independent with covariance matrices equal to the
identity.

(3) x0δ{θ0=i}, i ∈ S are second order random vectors
with the expected value E(x0δ{θ0=i}) = µi and
E(x0x′0δ{θ0=i}) = Vi, i ∈ S.

(4) x0 and {θk} are independent of {ωk} and {ηk}.
In fact, the LMMSE filter doesn’t estimate the state xk

directly, instead it estimate the random vector zk defined
as follows:

zj
k , xkδ{θk=j} ∈ <n (12)

zk ,

 z1
k
...

zn
k

 ∈ <Nn. (13)

where, in our case, n = 2NX . We also define qk =
E(zk), the projection ẑk|k−1 of zk onto the linear subspace
spanned by yk−1 = (y∗

k−1 · · ·y∗
0) and

z̃k|k−1 , ẑk − zk|k−1.

The second-moment matrices associated to the above
variables are

Qi
k , E(zi

kz
i∗
k) ∈ B(<n), i ∈ S,

Zk , E(zkz∗k) = diag[Qi
k] ∈ B(<Nn),

Ẑk|l , E(ẑk|lẑ∗k|l) ∈ B(<Nn), 0 ≤ l ≤ k,

Z̃k|l , E(z̃k|lz̃∗k|l) ∈ B(<Nn), 0 ≤ l ≤ k. (14)

where diag[Qi
k] is the block diagonal matrices with di-

agonal elements Qi
k,∀i ∈ S. We consider the following

augmented matrices

A ,

 T11A1 · · · TN1AN

...
. . .

...
T1NA1 · · · TNNAN

 ∈ B(<Nn) (15)

H ,
[

H1π
1/2
1 · · · HNπ

1/2
N

]
∈ B(<Nn,<n) (16)

L , [L1 · · · LN] ∈ B(<Nn,<n) (17)

B , diag
[[

T1jπ
1/2
1 B1 · · · TNjπ

1/2
N BN

]]
∈ B(<N2NX ,<Nn). (18)

where πi = Prob(θk = i), i ∈ S. With that in hand, it
can be shown that, accordingly to Costa (1994), the linear
minimal mean squared error state estimative, x̂k, is given
by

x̂k =
N∑

i=1

ẑi
k|k (19)

where ẑi
k|k satisfies the recursive equation

ẑk|k = ẑk|k−1 + Z̃i
k|k−1L ∗ (LZ̃k|k−1L

∗ +

+HH∗)−1(yk − Lẑk|k−1) (20)

ẑk|k−1 = Aẑk−1|k−1, k ≥ 1 (21)

ẑ0|−1 = q(0)

In Costa et al. (2005) was proved that the covariance
matrix obtained from the LMMSE can be written in terms
of the following recursive Riccati difference equation of
dimension Nn that is added with the additional term
B(Qk, k) that depends on the second moment matrix of
the state variable

Z̃k+1|k = AZ̃k|k−1A
∗ + B(Qk, k) + BB∗

−AZ̃k|k−1L
∗(LZ̃k|k−1L

∗ + HH∗)−1

×LZ̃k|k−1A
∗. (22)

where Z̃k|k−1 is the covariance matrix as defined in (14)
Qk = (Q1

k, · · · , QN
k) are given by the following recursive

equation

Qj
k+1 =

N∑
i=1

Tij(AiQ
i
kA∗

i + πiBiB
∗
i),

Qj
0 = Q0πj , j ∈ S (23)

and the functional B(·, k) : Hn 7→ B(<Nn) is defined for
Υ = (Υ1,Υ2, · · · ,ΥN) ∈ Hn by

B(Υ, k) , diag

[
N∑

i=1

TijAiΥiA
∗
i

]
− A(diag[Υi])A∗. (24)

note that the extra term B(·, k) would be zero for the case
with no jumps reducing the equation (22) to the standard
Kalman filter Riccati equation.

4. TRACKER DESIGN AND IMPLEMENTATION

In this section we deal with important aspects of the MJT
design and implementation, including: the initialization

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15501

procedure, the generation of the observation sequence,
the method for acquiring the dynamic models (the pairs
(Ai, Bi), i = 1, · · · , N) and the contour-state estimation
by the LMMSE Markovian jump linear filter.

4.1 Initialization

Each video frame -a digital image- is represented in the
computer as a 640×480 matrix of pixels in the RGB color
space, that is, each color is decomposed in its red, green
and blue components and represented as a 3-dimensional
vector.

The MJT uses image measurements based on color fea-
tures, therefore, prior to actual tracking it is necessary to
acquire a color statistical characterization of the object
and of the background. Thus, in the first frame of every
input video, a number of pixels in the object constituting
a representative sample of the object’s color is provided.
In practice, a small rectangle is placed by hand on the
object in the first frame (figure 1a), then, the average pixel
RGB value of the pixels in that rectangle µobj , the object’s
pixel variance σobj variance, as well as the RGB covariance
matrix Σ, are calculated for later use. The whole image
average RGB value µbg is also calculated, which is assumed
to be a fair model to the object background.

At the current version the tracker works based on the
knowledge of the initial contour Q0 using it as a template.
In order to obtain Q0, again, considering only the first
video frame, we use the statistical color information in
hand to segment the whole image using a nonlinear pixel-
wise transformation we designed 4 for this purpose defined
by the equation:

Mij = exp

(
−
(
|iij − µobj |mh

σobj

)2
)

(25)

where iij is the RGB pixel (i, j) of the input image and the
norm subscript mh refers to Mahalanobis distance measure
which we used as a color dissimilarity measure with good
empirical results. The Mahalanobis distance between two
random vectors x, y of the same distribution covariance
matrix Σ is given by:

|x− y|mh =
√

(x− y)T Σ−1(x− y) (26)

Note that the resulting segmented image M is not in the
RGB color space, but is a real matrix with entries in the
interval [0, 1]. An example of a segmented image obtained
in this fashion is shown in figure 1b.

(a) Color sample (b) Segmentation (c) Contours

Fig. 1. Initialization image processing steps.

The final initialization step is the extraction of Q0 it
self, for this we use the standard contour extraction
4 To the best of the authors’ knowledge this nonlinear segmentation
transform wasn’t proposed previously.

algorithm in the Intel’s open computer vision C/C++
library, OpenCV, which returns a list of closed contours
extracted from the segmented image. In order to select,
from the list of extracted contours, the one most likely to
be the object’s contour we use the fact that it is probably
one of the lengthier and is also likely to be located near the
sample rectangle earlier mentioned (see figure 1c). Recall
also that W0 is obtained from Q0 by (5).

4.2 Observation method

The process of extracting meaningful data from real digital
images -the observation process- is a task far from trivial.
In fact, solutions to this problem varies largely with the
targeted application. One particularity of the application
we’re working on -tracking- is that for each image a prior
estimative of the contour state obtained from the imme-
diately precedent image is available. The measurement
method we elected profits from this idiosyncrasy for it
traces a number of line normals crossing the mentioned
prior contour estimative at evenly separated points. With
that accomplished the next step is for each normal the
functional

J (t0) =
∫

t

|pi(t)− Ti,t0(t)|2mhdt (27)

is minimized, for which, pi(·) is the image RGB pixel
value along the ith line normal, t work as an index that
takes value equals zero in the inner extreme of the normal
and grows linearly up to the total length of the line
normal, Ti,t0(t) is a known template built in the following
manner:Ti,t0(t) is equal to the average object color for
t ≤ t0 and Ti,t0(t) is equal to the average background
color for t > t0. The value of t0 that minimizes the
functional is probably placed on the current position of the
boundary of the object. Line search for feature extraction
instead of 2D whole image processing was chosen in order
to reduce computational load. The functional in (27) is
a generalization for color images of the one presented in
Nascimento and Marques (2004).

The next step is to build the actual contour observation
Yk ∈ <NX from the above measured feature points, that
is, to fit the template to the measurement points. For that
purpose we use the method found in chapter six of Blake
and Isard (1998). In their work, the curve fitting problem
can be stated as a minimization problem, in the following
manner: given a prior shape estimate rk−1(s) (or Xk−1

in shape-space) with normals n(s), and a regularization
weight matrix S̄ 5 , solve:

min
Yk

T where

T = (Yk −Xk−1)T S̄(Yk −Xk−1)

+
Ns∑
i=1

1
σ2

i

(νi − h(si)T [Yk −Xk−1])2 (28)

where Ns is the number of normals traced in the mea-
surement process and we assume to be also the number of
feature points available. We consider therefore the parti-
tion si, i ∈ S, s.t. s1 = 0, si+1 = si+h, sN = L of the curve
parameter space [0, L] and let rf (si) be the feature point

5 In our case S̄ = W T
0 UW0, where U = 1

L

∫ L

0
UT (s)U(s)ds.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15502

obtained from the norm passing through precedent curve
point rk−1(si) using the measurement method mentioned
in the beginning of this section.

That being so, the contour observation is obtained by algo-
rithm 1. Basically, the algorithm iteratively approximate
the solution for (28), which is equivalent to iteratively
find the contour-configuration Yk that fits best to the
feature data rf (·). The algorithm uses the normal dis-

Algorithm 1 Curve Fitting

Z0 = 0 and S0 = 0
Iterate, for i = 1, ..., I

νi = (rf (si)− r̄(si))n̄(si);

h(si)T = n̄(si)T U(si)W ;

ρi =
√

h(si)T h(si);

if (|νi| < 2ρ) then

Si = Si−1 +
1
σ2

i

h(si)h(si)T ;

Zi = Zi−1 +
1
σ2

i

h(si)νi;

Else

Si = Si−1 , Zi = Zi−1; (29)
The aggregated observation factor is Z = ZI with associ-
ated statistical information S = SI .
Finally, the best fitting curve is given in shape-space by:

Yk = Xk−1 + (S̄ + S)−1Z.

placement νi = (rf (si)− r̄(si))n̄(si) instead of the simple
displacement (rf (si)− r̄(si)) in order to avoid the burden
of variable curve parameterization and its effects on the
norm |r(g(s)) − r(s)|, where g(·) is a re-parameterization
in [0, L].

4.3 State Estimation

For the state estimation we make use of the observation
state instead of the observation contour configuration,
which we chose to be

yk =
(
Xk−1

Yk

)
(30)

For our purposes, Lj = Hj = In×n for all j ∈ S is appro-
priate. The dynamical model parameters {(Ai, Bi)}{i=1,2,...,N},
however, are learned from training data in the process
described in the next section. The transition matrix T and
the probability vector π are adjusted by hand. The state
estimation is done using the equations presented in section
3.

4.4 Parameter Learning

For learning the parameters we provide N short videos
with clutter free background, low noise, and deliberately
slow motion, so that, the optimality conditions of the
Kalman Filter are approximated. The video should be
short and representative of a specific kind of motion
(rotation, translation, etc.) that is expected to be present

in the test videos. We then use the following procedure to
acquire the parameters:

(1) For each short video run the single model (Kalman)
filter assuming constant velocity default dynamics,
that is, using:

Adefault =
(

0 1
A2 A1

)
(31)

Bdefault =
(

0
B0

)
(32)

with A1 = −INX
, A2 = 2INX

and

B0 = γ0t
3/2
(
WT

0 UW0

)− 1
2

where INX
is the NX × NX identity matrix, t is

the time in seconds and γ0 is the rate of growth
of the radii of spherical search area (≈ 35pixels/s).
The estimated configuration sequence {Xk} for the
interval in which the tracker estimates correctly is
recorded, let’s say the first J video frames.

(2) The training data obtained in the above step is then
employed in the following equations to identify the
dynamic parameters Ai and Bi that would emulate
the i− th training set.

First calculate the auxiliary vectors Ri and matri-
ces Rij and R′

ij for i, j = 0, 1, 2:

Ri =
J∑

k=3

Xk−i, Rij =
J∑

k=3

Xk−iXT
k−j ,

R′
ij = Rij −

1
J − 2

RiR
T
j . (33)

Then estimate the subparts of Ai and Bi as in (9):

A2 =
(
R′

02 −R′
01R

′−1
11 R′

12

) (
R′

22 −R′
21R

′−1
11 R′

12

)−1

A1 =
(
R′

01 −A2R′
21

)
R′−1

11

B0 =
(

1
J − 2

(
R00 −A2R20 −A1R10 −DRT

0

)) 1
2

where

D =
1

J − 2
(
R0 −A2R2 −A1R1

)
.

finally, Ai and Bi are obtained in terms of A2, A1 and
B0 as defined by (9).

(3) Repeat the process above for the N available exem-
plar videos .

5. EXPERIMENTS

We initially predicted that using a large number of very
specific dynamic models would yield a superior perfor-
mance compared to the usage of a smaller number of
more general models, therefore, we considered at first
different motion models for different directions of transla-
tion instead of a single model model for every translation
direction. We acted analogously for rotation and scaling
ending up with 14 models. However, when the result was
compared to the one obtained when the tracker was run
with only 3 models (rotation, translation and scaling) the
later presented better stability, being able to track the
whole test video, i.e. 719 frames, whether the 14-model
MJT was able to track accurately for the first 500 frames
and suddenly lose the object thereafter.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15503

Another problem with an arbitrary large number of mod-
els, aside higher instability, is the computational load. In
fact, the 14-models MJT is rather slow (≈ 4 frames per
second) compared to the 3-models MJT which executes in
real-time (faster than 20 frames per second) on a 2.0GHz
notebook with 1GB of memory. In general, the MJT filter
working with N modes is roughly N times slower than
the single mode Kalman filter and for a small number of
dynamic models (≈ 4), our algorithm performed faster and
with a smaller memory footprint than our particle filter
implementation.

Fig. 2. Sample frames of the output of the MJT with
N = 3.

Notwithstanding, the MJT (see figure 2), with either 14 or
3 models, has shown to be more stable than the Kalman
filter (see figure 3), presenting however a similar tracking
accuracy.

Fig. 3. Sample frames from the output of the Kalman
filter. This estimator is accurate when is locked on
the object but is very unstable.

The CONDENSATION algorithm (Isard and Blake (1998a))
is a well known adaptation of the particle filter for con-
tour tracking. In our experiment the test video presented
abrupt changes in the type of motion and , in spite of
its robustness, the CONDENSATION algorithm based on
a single dynamic model performed poorly (see figure 4)
suggesting the necessity of multiple models for this type
of motion.

Fig. 4. Sample frames from the video output of the
CONDENSATION algorithm.

6. CONCLUSIONS

In this paper we modeled the problem of contour track-
ing in videos as a MJLS state estimation problem and
proposed a solution for it based on the LMMSE state
estimator, a non-linear transformation for image segmen-
tation, and other concepts. Our method, named MJT
for short, presented a superior stability compared to the
Kalman filter and clearly a greater precision compared to
the standard particle filter in our preliminary experiments.

REFERENCES

V. Athitsos and S. Sclaroff. An appearance-based frame-
work for 3D hand shape classification andcamera view-
point estimation. Automatic Face and Gesture Recogni-
tion, 2002. Proceedings. Fifth IEEE International Con-
ference on, pages 40–45, 2002.

A. Blake and M. Isard. Active Contours: The Application
of Techniques from Graphics, Vision, Control Theory
and Statistics to Visual Tracking of Shapes in Motion.
Springer-Verlag New York, Inc. Secaucus, NJ, USA,
1998.

H.A.P. Blom and Y. Bar-Shalom. The interacting multiple
model algorithm for systems with Markovianswitching
coefficients. Automatic Control, IEEE Transactions on,
33(8):780–783, 1988.

H.A.P. Blom and EA Bloem. Particle filtering for stochas-
tic hybrid systems. Decision and Control, 2004. CDC.
43rd IEEE Conference on, 3, 2004.

O.L.V. Costa. Linear minimum mean square error esti-
mation for discrete-timeMarkovian jump linear systems.
Automatic Control, IEEE Transactions on, 39(8):1685–
1689, 1994.

O.L.V. Costa, M.D. Fragoso, and R.P. Marques. Discrete-
time Markov Jump Linear Systems. Springer, 2005.

A. Doucet, A. Logothetis, and V. Krishnamurthy. Stochas-
tic sampling algorithms for state estimation of jump
Markovlinear systems. Automatic Control, IEEE Trans-
actions on, 45(2):188–202, 2000.

M.D. Fragoso and N.C.S. Rocha. Stationary filter for
continuous-time markovian jump linear systems. SIAM
Journal on Control and Optimization, 44(6):801–815,
2006.

M.D. Fragoso, O.L.V. Costa, J. Baczynski, and N.C.S.
Rocha. Optimal linear mean square filter for continuous-
time jump linear systems. IEEE Transactions on Auto-
matic Control, 50(9):1364–1369, September 2005.

M. Isard and A. Blake. CONDENSATION—Conditional
Density Propagation for Visual Tracking. International
Journal of Computer Vision, 29(1):5–28, 1998a.

M. Isard and A. Blake. A mixed-state condensation tracker
with automatic model-switching. Computer Vision,
1998. Sixth International Conference on, pages 107–112,
1998b.

J.C. Nascimento and J.S. Marques. Robust shape tracking
in the presence of cluttered background. Multimedia,
IEEE Transactions on, 6(6):852–861, 2004.

C. Tomasi, S. Petrov, and A. Sastry. 3d tracking = clas-
sification + interpolation. In Ninth IEEE International
Conference on Computer Vision (ICCV’03), 2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15504

