
A simple state feedback controller design
method of networked control systems with

time delay and packet dropout ?

Hongbo Li ∗ Zengqi Sun ∗ Mo-Yuen Chow ∗∗ Badong Chen ∗

∗Department of Computer Science and Technology, State
Key Laboratory of Intelligent Technology and Systems, Tsinghua

University, Beijing, China, 100084.
(E-mail: Hb-li04@mails.tsinghua.edu.cn).

∗∗Department of Electrical and Computer Engineering, North Carolina
State University, Raleigh, NC 27695-7911, USA.

(E-mail: chow@ncsu.edu)

Abstract: This paper presents a simple yet effective method to design state feedback controller
for networked control systems (NCSs). By introducing the lifting technique into NCSs and by
considering the balance between effectiveness and simplicity, a novel discrete-time switch model
is proposed with the consideration of time delay and packet dropout during the transmission
of packets. In terms of the given model, we give sufficient conditions for the existence of state
feedback controller such that the closed-loop NCSs are asymptotically stable. Based on the
obtained stability conditions, a homotopy-based iterative LMI algorithm is developed to get
the state feedback gain. Simulation and experimental results are given to demonstrate the
effectiveness of the proposed approaches.

1. INTRODUCTION

Networked control systems (NCSs) of which communi-
cation networks are used for the connections between
spatially distributed system components have recently at-
tracted much attention from research communities. Cer-
tain issues such as network-induced delay (Nilsson et al.
[1998], Hu et al. [2003], Tipsuwan et al. [2004], Zhang
et al. [2005], Liu et al. [2006], Zhang et al. [2001]), packet
dropout (Zhang et al. [2001], Xiong et al. [2007]), network
constraints (Montestruque et al. [2003], Peter et al. [2003]),
signal quantization (Li et al. [2004], Montestruque et al.
[2007]), and scheduling (Zhang et al. [2005], Walsh et al.
[2001]), were investigated and some useful results were
reported. In addition, due to the advantages of low cost,
simple installation and high reliability (Xiong et al. [2007],
Yue et al. [2004]), NCSs have been finding applications in
DC motors (Liu et al. [2006]), vehicles (Seiler et al. [2005])
and robots (Tipsuwan et al. [2003]), etc.

In practice, controller design for NCSs with both network-
induced delay and packet dropout is a very interesting and
practical problem since the packets in NCSs usually suffer
network-induced delay and packet dropout simultaneously
during the network transmissions. Recently, some impor-
tant results are developed in this field. Based on the LMI
approach, state feedback control method was investigated
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by Yue et al. [2004] and Yu et al. [2004] respectively. In the
case of H∞ control, Yue et al. [2005] studied the controller
design for NCSs with external disturbance and parameter
uncertainties. Note that those results investigated NCSs
in continuous-time domain. In discrete-time domain, Yu
et al. [2004] and Lin et al. [2005] studied the stabilization
problem for NCSs. However, in those results, the controller
and actuator are combined together. That means network
exists only between sensor and controller. Xiong et al.
[2007] studied the state feedback control for NCSs under a
general framework. However, it assumes network-induced
delay is constant, and therefore can not deal with the
case when network-induced delay is random. Therefore,
despite the progress made in controller design for NCSs
with both network-induced delay and packet dropout, it
has become evident that the state feedback control for
NCSs in discrete-time domain, especially for NCSs under
a general framework and with random network-induced
delay, are still required.

In this paper, we focus on solving the state feedback
controller design problem of NCSs in discrete-time domain
and under a general framework, where random network-
induced delay and arbitrary packet dropout are taken into
account simultaneously. By using the lifting technique (see
Li et al. [2002], Park et al. [2004]) and by considering
the balance between effectiveness and efficiency, a simple
mathematic model is proposed for the considered NCSs. It
describes NCSs as a switch system, and therefore enables
us to apply the theory from switch systems to study NCSs
in discrete-time domain. In terms of the given model, we
give sufficient conditions for the existence of state feedback
controller such that the closed-loop NCSs are asymptot-
ically stable. Based on the obtained stability conditions,
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we further investigated the corresponding state feedback
controller design problem. Simulation and experimental
results are given to demonstrate the effectiveness of the
proposed approaches.

Notation. Throughout this paper, Rn and Rn×m denote
the n dimensional Euclidean space and the set of all n ×
m real matrices respectively. ‖·‖ refers to the Euclidean
norm for vectors and induced 2-norm for matrices. The
superscript “T ” denotes matrix transposition; and for
symmetric matrices X and Y , the notation X > Y means
that X − Y is positive definite. I is the identity matrices
with appropriate dimensions, and the notation Z+ stands
for the set of nonnegative integers. Finally, in symmetric
block matrices, we use “∗” as an ellipsis for the terms
introduced by symmetry.

2. PROBLEM FORMULATION

The setup of NCSs considered in this paper is depicted in
Fig.1, where networks exist between sensor and controller,
and between controller and actuator. The controller has
a buffer denoted as buffer A, and the actuator has a
buffer denoted as buffer B. Each component is described
as follows.

Discrete-time Equivalent Plant

Controller

Actuator Continuous Plant Sensor

Network

Buffer B

Network

Buffer A

Fig. 1. The structure of the concerned networked control
systems

The controlled plant is given by
x(k + 1) = Fx(k) + Gu(k) (1)

where k ∈ Z+ is the time index, x(k) ∈ Rn and u(k) ∈ Rm

are the plant state and control input respectively. x0 :=
x(0) ∈ Rn is the initial plant state. F and G are known
matrices with appropriate dimensions.

The sensor is clock-driven, i.e., at time instant kh, it sends
the most recent plant state to the controller, where h is
the step length of the plant.

The controller, as a receiver, has a buffer size of 1. The
packet with the latest time stamp is used to update the
buffer content. The networked controller is a memoryless
state feedback controller of following form:

u = Kbuffer(A) (2)
where K is the feedback gain to be designed, buffer(A)
is the updated content of buffer A. The controller is
event-driven, i.e., whenever there is new data in buffer
A, the controller starts calculating new control signal and
transmits it to the actuator.

In the presence of networks, network-induced delay, packet
dropout and packet out-of-order occur inevitably. Let τk

express the RTT (Round Trip Time) delay encountered
by kth packet from the sensor, i.e., the time interval from
the time instant kh when the sensor samples the plant
state to the time instant kh + τk when the control signal
based on this packet reaches the actuator. Apparently,
τk is a combination of the sensor-to-controller delay, the
controller processing delay and the controller-to-actuator
delay. In this paper, without loss of generality, we assume
τk ∈ U1 := [τmin, τmax], where τmin and τmax are the lower
and upper bounds of τk respectively, τmin is shorter than
h, τmax can be larger then h. Note that using control signal
with longer time delay to control the plant will make the
NCSs model and the NCSs analysis complex. To strike the
balance between effectiveness and simplicity, the control
signal with τk shorter than 2h are used to control the
plant in the concerned NCSs. Noting that, we introduce
the following definition.

Definition 1. A packet from the sensor is called effective
packet under the controller (2), if the RTT delay encoun-
tered by this packet is shorter than 2h.

Since only effective packet is used to control the plant,
we can consider the rest packets from the sensor as
dropout packets. Let S := {i1, i2, · · ·} ⊆ Z+ (im+1 > im,
m ∈ {1, 2, · · ·}) denote the sequence of time index of the
effective packets in NCSs, and Ndrop := maxim∈S{im+1 −
im} be the maximum upper bound. Then the following
concept and mathematical model is used to capture the
nature of packet dropout in NCSs.

Definition 2. The packet dropout process in the con-
cerned NCSs is defined as

{η(im) := im+1 − im, im ∈ S} (3)

which means that, from im to im+1, the number of packet
dropout is η(im)−1. By noting im ∈ S and by considering
the definition of Ndrop, we can conclude that η(im) takes
values in a finite set Ω := {1, 2, · · · ,Ndrop}.
Let τim

express the RTT delay encountered by mth ef-
fective packet. By considering the definition of effective
packet, we have τim

∈ U := [τmin, 2h]. From previous
discussions, the time delay and packet dropout information
can be embodied as

{{η(im), τim} : im ∈ S, τim ∈ U, η(im) ∈ Ω} (4)

Definition 3. (4) is said to model random time delay
and arbitrary packet dropout, if τim takes values in U
randomly, and im takes values in Z+ arbitrarily. Corre-
spondingly, η(im) takes values in Ω arbitrarily.

In the considered NCSs, the actuator also has a buffer
size of 1. The control signal based on the most recent
effective packet will be put into buffer B. The actuator is
clock-driven. At time instant kh, it updates the actuator
output based on the value read from buffer B. Thus, the
last control signal is used to control the plant when the
new control signal is not available.

The objective of this paper is to propose a mathematic
model to describe the concerned NCSs, and construct a
networked controller (2) such that the closed-loop system
is asymptotically stable.
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3. MODELS FOR NETWORKED CONTROL
SYSTEMS.

In this section, we will present a discrete-time switch model
for the concerned NCSs.

Refer to [imh im+1h] as a “lifted sampling period”. As
shown in Fig.2, for NCSs during the “lifted sampling
period”, three cases may arise and are discussed as follows.

mi

Case 1

Case 2

Case 3

1m
i1mi

The control input
1( )

m
Kx i ( )

m
Kx i

( )
m

Kx i1( )
m

Kx i

( )
m

Kx i
1( )

m
Kx i2( )

m
Kx i

Lifted sampling period

Sampling periods

Fig. 2. A timing diagram of the concerned networked
control systems.

Case 1: Because of the time delay τim
∈ [τmin h), the last

control signal, Kx(im−1), is used to control the plant for
[ imh (im + 1)h ), and the new control signal, Kx(im), is
used to control the plant during [ (im + 1)h im+1h ). Then
the evolution of NCS can be described as:

x(im + 1) = Fx(im) + GKx(im−1)

x(im + 2) = F 2x(im) + FGKx(im−1) + GKx(im)
... (5)

Therefore, for the time instant im+1h, we have

x(im+1) = F η(im)x(im) +
η(im)−2∑

r=0

F rGKx(im)

+ F η(im)−1GKx(im−1) (6)

Case 2: In this case, we have τim
∈ [h 2h), the new

control signal and the last control signal, i.e., Kx(im)
and Kx(im−1), are used to control the plant dur-
ing [ (im + 2)h im+1h ) and [ imh (im + 2)h ) respectively.
Similar to case 1, we can get:

x(im+1) = F η(im)x(im) +
η(im)−3∑

r=0

F rGKx(im)

+
η(im)−1∑

r=η(im)−2

F rGKx(im−1)

(7)

Case 3: In this case, we have τim
∈ [h 2h), and the new

control signal, Kx(im), is also used to control the plant
during [ (im + 2)h im+1h ). However, the last two control
signals, Kx(im−2) and Kx(im−1), are used to control
the plant for [ imh (im + 1)h ) and [ (im + 1)h (im + 2)h )
respectively. In this situation, we have

x(im+1) = F η(im)x(im) +
η(im)−3∑

r=0

F rGKx(im)

+F η(im)−2GKx(im−1) + F η(im)−1GKx(im−2)

(8)

To facilitate the stability analysis of NCS, introduce

z(im) =
[
xT

im
xT

im−1
xT

im−2

]T

into (6)-(8). Then, the
NCSs can be expressed by the following switched system

z(im+1) = M rz(im) (9)
where M r is function of the switch {r} which take values
in a finite set S := {1, 2, 3}. Note that the switch state
{r} = 1, {r} = 2 and {r} = 3 are corresponding to case 1,
case 2 and case 3 respectively. Then we have

M3 =




F
η(im)

+

η(im)−3∑
r=0

F
r
GK F

η(im)−2
GK F

η(im)−1
GK

I 0 0

0 I 0




M2 =




F
η(im)

+

η(im)−3∑
r=0

F
r
GK

η(im)−1∑
r=η(im)−2

F
r
GK 0

I 0 0

0 I 0




M1 =




F
η(im)

+

η(im)−2∑
r=0

F
r
GK F

η(im)−1
GK 0

I 0 0

0 I 0


 (10)

where η(im) ∈ Ω.

Without loss generosity, we assume that the initial control
inputs are zeros, i.e., u(0) = 0. Since the last control signal
is used to control the plant when the new control signal
is not available, we have u(l) = 0 for 0 ≤ l ≤ i1, where
i1 is the time index of the first effective packet. With the
initial plant state x0 := x(0), for 0 ≤ l ≤ i1, we have

x(l) = F lx0 (11)

Let z(0) =
[
xT

0 0 0
]T , then for 0 ≤ l ≤ i1, we have

z(l) = M̂ lz0 (12)

where z(l) :=
[
xT

l xT
im−1

xT
im−2

]T

, and

M̂ l =


 F l 0 0

I 0 0
0 I 0


 (13)

Moreover, for im < l < im+1, the behavior of NCSs can
be expressed by

z(l) = M̄ rz(im) (14)

where z(l) :=
[
xT

l xT
im−1

xT
im−2

]T

, and for i ∈ S, M̄ r is
similar to (10) but with η(im) replaced by l − im.

4. STABILITY ANALYSIS OF CLOSED-LOOP NCSS.

In this section, we will give sufficient conditions for the
existence of state feedback controller such that the closed-
loop NCSs (9) is asymptotically stable.

Theorem 1. With a given network parameter Ndrop and
a given matrix K, the NCS (9) in the presence of random
time delay and arbitrary packet dropout is asymptotically

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12577



stable, if for i ∈ S, there exists a common positive definite
matrix P ∈ R3n×3n satisfying

MT
i PM i − P < 0 (15)

where M i is of form (10).

Proof : Construct a Lyapunov functional as:
V (im) = zT (im)Pz(im) (16)

First, we prove lim
l→∞

z(l) = 0 for NCS (9). Let r in (9) be

i, then we have V (im) = zT (im)Pz(im) and V (im+1) =
zT (im)MT

i PM iz(im). From the conditions (15), one can
easily show that

V (im+1)− V (im) = zT (im)(MT
i PM i − P )z(im) < 0

(17)
for any z(im) 6= 0. For im < l < im+1, we have
V (l) = zT (im)M̄T

i PM̄ iz(im). From (14), one can see
that M̄ i ⊂ M i, and correspondingly, M̄

T
i PM̄ i − P < 0

is a subset of (15). Thus, if the conditions (15) hold, one
can easily show that:

V (l)− V (im) = zT (l)
(
M̄

T
i PM̄ i − P

)
z(l) < 0 (18)

for any z(l) 6= 0, where im < l < im+1.

From (17), we get V (im+1)−V (im) < 0 for any z(im) 6= 0,
which implies that lim

im→∞
V (im) = 0 for NCS (9). By

considering (18), we can get lim
l→∞

V (l) = 0 for NCS (9),

where l 6= im. Summarizing the above two cases, we can
conclude that lim

l→∞
V (l) = 0 for l ∈ Z+, which implies that

lim
l→∞

z(l) = 0 for NCS (9).

We now prove that NCS (9) is stable if the conditions (15)
hold. That is, given any ε > 0, we can find a δ(ε) > 0
such that ‖z(0)‖ < δ(ε) implies ‖z(l)‖ < ε for l ∈ Z+.
Let α1 = ‖P ‖ and α2 = 1

/∥∥P−1
∥∥. From the definition of

Lyapunov function, we get α2 ‖z(l)‖2 ≤ V (l) ≤ α1 ‖z(l)‖2.
In NCS (9), three cases may arise and are discussed as
follows.

Case 1: 0 ≤ l ≤ i1. From z0 =
[
xT

0 0 0
]T , we have

‖z0‖ = ‖x0‖. Let α3 := max0≤l≤i1

∥∥∥M̂ l

∥∥∥, then given any
ε > 0, if we let x0 < min {1/α3, 1} ε, we have ‖z(l)‖ =∥∥∥M̂ lz0

∥∥∥ ≤
∥∥∥M̂ l

∥∥∥ ‖z0‖ <
∥∥∥M̂ l

∥∥∥min {1/α3, 1} ε < ε.

Case 2: l = im. From previous discussions, we can get

V (l) < V (i1) ≤ α1 ‖z(i1)‖2 = α1

∥∥∥M̂ i1z0

∥∥∥
2

and ‖z(l)‖ ≤√
V (l)/α2. Therefore, with any given ε > 0, if we let x0 <

(
√

α2/α1/α3)ε, then we can get ‖z(l)‖ ≤
√

V (l)/α2 <√∥∥∥M̂ i1

∥∥∥
2

‖z0‖2 α1/α2 = ‖z0‖α3

√
α1/α2 < ε.

Case 3: im < l < im+1. From (18), we have V (l) <
V (im) for this case. Let α4 := maxi∈S

∥∥M̄ i

∥∥. With any
given ε > 0, if we let x0 <

√
α2/α1/(α3α4)ε, then by

considering the discussions in case 2, we can get ‖z(l)‖ ≤∥∥M̄ r

∥∥ ‖z(im)‖ ≤ α4 ‖z(im)‖ < ‖z0‖α3α4

√
α1/α2 < ε.

Based on the above analysis, if we let

α := min{min {1/α3, 1} ,
√

α2/α1/α3,
√

α2/α1/(α3α4)}

then we can conclude that ‖z(0)‖ < αε implies that
‖z(l)‖ < ε for NCS (9), where l ∈ Z+.

According to the definition of “asymptotically stable”, we
can complete the proof.

5. STATE FEEDBACK CONTROLLER DESIGN

In this section, we consider the design of networked con-
troller (2) such that the closed-loop system (9) is asymp-
totically stable.

By using Schur complement to (15), (15) is equivalent to

Ψi(Q, K) :=
[ −Q ∗

M iQ −Q

]
< 0 (19)

where Q = P−1, M i is of form (10) with variable K.

From theorem 1 we see that the feasible solutions of
(19) can lead to the desired networked controllers (2).
Unfortunately, (19) can not be formulated into LMIs since
M iQ involve the products between the unknown variables
K and Q. However, an important feature of (19) is that
if K is fixed, finding Q becomes an LMI problem and
vice versa. So (19) is in fact a set of bilinear matrix
inequalities (BLMI). To circumvent the synthesis problem,
a homotopy-based iterative LMI algorithm is developed as
follows.

Define

Σi(Q, K, λ) :=[
−Q ∗

H1
i Q + λH2

i diag {K, K, K}Q + (1− λ)H2
i K̄ −Q

]
< 0(20)

where i ∈ S, and

H1 =


 F η(im) 0 0

I 0 0
0 I 0




H2
i = M i −H1 (i ∈ S)

K̄ = diag {K, · · ·K}Q (21)

λ is a real number varying from 0 to 1. Especially, when
λ = 0 and λ = 1, we have

Σi(Q, K) =
{

Ψi(Q, K) if λ= 1
Φi(Q, K̄) if λ= 0 (22)

where

Φi(Q, K̄) :=
[ −Q ∗

H1Q + H2
i K̄ −Q

]
< 0 (23)

Based on the above discussions, an iterative LMI algorithm
can be summarized as follows.

Controller Design Procedure:

Step 1. Initiation: Set k = 0, select N , Nmax. Solve
Φi(Q, K̄) to get Q, K̄, and let Q(0) := Q, K̄(0) := K̄.

Step 2. Set k = k + 1 and λk = k/N . Let Q := Q(k − 1),
K̄ := K̄(k − 1). If (20) upon K is feasible, then denote
the feasible solution as K(k), let Q(k) := Q(k − 1),
K̄(k) := K̄(k − 1), and go to Step 4. Otherwise, go to
Step 3.

Step 3. Let K := K(k − 1) and K̄ := K̄(k − 1). If (20)
upon Q is feasible, then solve the minimization problem:
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OP : min tr (trace(Q))
s.t. Inequalities (20) (24)

Denote the feasible solution as Q(k), let K(k) := K(k−1)
and K̄(k) := K̄(k − 1), then go to Step 4. Otherwise, set
N = 2N . If N > Nmax, then the algorithm fails in giving
feasible solution, else set k = 0, go to Step 2.

Step 4. If k < N , go to Step 2. If k = N , the obtained
solutions K(k) and Q(k) are a set of feasible solutions of
(19).

Remark 1: Note that in the Controller Design Procedure,
(20) and (23) can be easily solved by using the command
“feasp” in MATLAB environment, and the optimization
problem OP can be readily solved by using the command
“mincx” in MATLAB environment. Therefore, the pro-
posed controller design procedure can be readily solved.
For more details on the commands “feasp” and “mincx”,
interested readers can refer to the MATLAB Help.

Remark 2: It is also worth noting that since the actuator
is clock-driven, (1) can be considered as discretized from
a continuous-time system given by

ẋp(t) = Axp(t) + Bu(t) (25)
with sampling period h and

F = eAh, G =
∫ h

0

eAτdτB. (26)

6. EXPERIMENTAL EXAMPLE

To validate the proposed approaches, we set up a net-
worked DC motor control system over network. The pa-
rameters of the motor used in this paper are listed in Table
I. Let xp = [θ, ω]T , where θ and ω are the output angle
and the angular speed respectively, then the DC motor
dynamics can be expressed as:

ẋp(t) =
[

0 1
1 −217.4

]
xp(t) +

[
0
1669.5

]
u(t) (27)

Table 1. The paramors of the DC motor

J Inertia (10.3 + 0.7)× 10−7kg •m2

L Inductance 0.24× 10−3H

R Resistance 2.32Ω

K Torque Constant 23.4× 10−3N •m/A

n Gear reduction ratio 1/318

Ke Back-EMF Constant 23.4× 10−3Vs/rad

The block diagram of the networked servo motor control
system is shown in Fig.1, and the actual system setup is
depicted in Fig.3. As shown in Fig.3, the experimental
apparatus consists of a PC controller, a local board and
a DC motor. The PC controller is used to implement the
networked controller. The local board is on the plant side
and is used for two tasks. The first task is to convert the
control signal read from the controller into a pulse width-
modulation (PWM) signal, and then send the PWM signal
to drive the DC motor. The second one is to send the
plant state measurements to the PC controller. To carry
out the experiment, the PC controller and the motor were
placed in different locations and were linked by CERNET
(China Education and Research Network). To carry out
experiment, we assume the controller processing delay is

zero due to its negligible small value by comparing with
the network delay, and the sampling period used is 0.03s.
According to the practical measurements, in the used
CERNET, the RTT delay ranges from 5ms to 62ms, and
in three consecutive packets from sensor, there is at least
one effective packet. Note that the upper bound of RTT
delay is longer than 2h, and up to 66.7% of the packets
can be lost.

The PC controller

The DC motor  and  the local board

NetworkNetwork

Fig. 3. The actual networked DC motor control system
setup

We apply the proposed controller design method to the
concerned networked motor control system, and therefore
obtain K = [−0.0660, 0.0276]. The control system is
designed to drive the networked DC motor to a pre-set
angle. With the initial state x0 = [3.65, 0]T , the simulation
result of this system using the designed controller is
depicted in Fig.4, and the experimental result of networked
motor control system is depicted in Fig.5. Apparently,
the experimental result is consistent with the simulation
result. As can be seen in this example, although the upper
bound of RTT delay is longer than 2h, and up to 66.7% of
the packets can be lost, the proposed controller can still
stabilize the networked DC motor system very well. This
demonstrates the effectiveness of the proposed approaches.
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Fig. 4. Typical simulation result of networked DC motor
control system under the proposed controller
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Fig. 5. Typical experimental result of networked DC motor
control system under the proposed controller

7. CONCLUSIONS

This paper has investigated the state feedback controller
design and stability analysis problems for NCSs under
effects of network-induced delay and packet dropout. A
discrete-time switch model is proposed by introducing
the lifting technique into the considered NCSs, which
enables us to apply the theory from switch systems to
study NCSs in discrete-time domain. In the proposed
framework, sufficient conditions for the existence of state
feedback controller such that the closed-loop NCSs is
asymptotically stable is derived and the corresponding
controller design problem is also addressed. It has been
shown that the obtained controller design procedure can
be readily solved and the proposed controller can be
easily implemented. Simulation and experimental results
are given to demonstrate the effectiveness of the proposed
approaches.
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