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Abstract: Nonantagonistic two-person differential game with fixed final time and with vector
terminal payoff functionals for players is considered. Both the players act in the class of
strategies defined as arbitrary functions of a position of the game and a precision parameter. A
formalization of the game is given. A concept of a solution of the game is introduced. It is shown
that the problem of finding the solutions of the game is reduced to a problem of constructing
program controls of players satisfying some special conditions. Two examples are considered.
The first one is devoted to control motions of a material point on the plane. The second one
deals with repeated prisoners’ dilemma.

1. INTRODUCTION

At present the theory of differential games with scalar
payoff functionals for players is developed sufficiently well
(see, for example, the monographs: Krasovskii [1985],
Krasovskii and Subbotin [1988], Basar and Olsder [1999]).
Considerably less papers deal with differential games with
vector payoff functionals. Note the monograph Zhukovskiy
and Salukvadze [1994] which is devoted to vector-valued
problems under uncertainty.

This paper deals with nonantagonistic two-person posi-
tional differential games with vector payoff functionals.
Formalization of players’ strategies and motions generated
by them is similar to the formalization introduced in
Krasovskii [1985], Krasovskii and Subbotin [1988] with the
exception of technical details (see Kleimenov [1993]).

Binary preference relations on the set of collections of sets
in a finite-dimensional Euclidean space such as P (i)- and
S(i)- dominations are introduced. They are generalizations
of well-known concepts of Pareto and Sleiter optimality.
On this base a concept of a solution is defined.

The paper is organized as follows. Section 2 contains
formalization of strategies and motions. Admissible pairs
of strategies are defined. Definition of a solution of the
game is given in Section 3. It is proved that the problem
of finding the solutions of the game is reduced to a problem
of constructing program controls of players satisfying some
special conditions. Section 4 contains two examples. The
first one deals with control motions of a material point on
the plane. The second one deals with repeated prisoners’
dilemma.

? This work was supported by the Russian Foundation for Basic
Researches, project 06-01-00436.

2. FORMALIZATION OF TWO-PERSON
NONANTAGONISTIC POSITIONAL DIFFERENTIAL

GAMES WITH VECTOR PAYOFF FUNCTIONALS

2.1 Dynamics and payoff functionals

Let dynamics of two-person nonantagonistic positional
differential game be described by the equation

ẋ = f(t, x, u, v), t ∈ [t0, θ], x(t0) = x0 (1)
where x ∈ Rn is a phase vector, the controls u ∈ P ∈
compRp and v ∈ Q ∈ compRq are handled by Player 1
(P1) and Player 2 (P2), respectively, and θ is a fixed final
time.

Let G be a compact set in R1×Rn whose projection on the
time axis is equal to the given interval [t0, θ]. We assume,
that all the trajectories of system (1), beginning at an
arbitrary position (t∗, x∗) ∈ G, remain within G for all
t ∈ [t∗, θ].

Let the following assumptions be fulfilled.

10. The function f : G × P × Q 7→ Rn is continuous over
the set of arguments, and satisfies the Lipschitz condition
with respect to x.

20. There exists a constant λ > 0 such that
‖f(t, x, u, v)‖ ≤ λ(1 + ‖x‖)

for all (t, x) ∈ G, u ∈ P, v ∈ Q.
30. The function f(t, x, u, v) satisfies the condition

max
u∈P

min
v∈Q

sT f(t, x, u, v) = min
v∈Q

max
u∈P

sT f(t, x, u, v)

for any s ∈ Rn and (t, x) ∈ G.

Here and below the upper symbol T denotes the operation
of transposition.

Player i chooses his control to maximize the vector payoff
functional
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Ii = σi(x(θ)) = (σi1(x(θ)), ..., σili(x(θ))), i = 1, 2, (2)
where σij : Rn → R1, i = 1, 2, j = 1, ..., li are given
continuous functions.

2.2 Formalization of strategies

Suppose that both players have complete information
about the current position (t, x(t)) of the game. The for-
malization of players’ strategies and of motions generated
by them in nonantagonistic positional differential games is
similar to the formalization introduced for antagonistic po-
sitional differential games in Krasovskii [1985], Krasovskii
and Subbotin [1988] with the exception of technical details
(see Kleimenov [1993]).

A pure strategy (or strategy for short) of P1 is identified
with a pair U ÷ {u(t, x, ε), β1(ε)}, where u(·) is an
arbitrary function depending on the position (t, x) and on
a positive precision parameter ε and having values in the
set P . The function β1 : (0,∞) 7→ (0,∞) is a continuous
monotone one and satisfies the condition β1(ε) → 0 if
ε→ 0.

The function β1(·) has the following sense. For a fixed ε the
value β1(ε) is the upper bound for the step of a subdivision
of the interval [t0, θ] which P1 uses for forming step-by-
step motion.

A strategy V ÷ {v(t, x, ε), β2(ε)} of P2 is defined analo-
gously.

Remind that in antagonistic positional differential games
theory a strategy of P1 is identified with a function Ua ÷
u(t, x, ε) and a strategy of P2 is identified with a function
V a ÷ v(t, x, ε) (see Krasovskii [1985]).

2.3 Formalization of motions

Motions of two types: approximated (step-by-step) ones
and ideal (limit) ones are considered as motions generated
by a pair of strategies of players.

Approximated motion x [·, t0, x0, U, ε1, ∆1, V, ε2, ∆2] is
introduced for fixed values of players’ precision parameters
ε1 and ε2 and for fixed subdivisions ∆1 = {t(1)i } and
∆2 = {t(2)j } of the interval [t0, θ] chosen by P1 and P2,
respectively, under the conditions

δ(∆i) ≤ βi(εi), i = 1, 2. (3)

Here step of subdivision ∆i is δ(∆i) = max
k

(t(i)k+1 − t
(i)
k ).

A limit motion generated by the pair of strategies (U, V )
from the initial position (t0, x0) is a continuous function
x[t] = x[t, t0, x0, U, V ] for which there exists a sequence of
approximated motions

{x[t, tk0 , x
k
0 , U, ε

k
1 ,∆

k
1 , V, ε

k
2 ,∆

k
2 ]}

uniformly converging to x[t] on [t0, θ] as

k →∞, εk
1 → 0, εk

2 → 0, tk0 → t0,

xk
0 → x0, δ(∆k

i ) ≤ βi(εk
i ).

A pair of strategies (U, V ) generates a nonempty compact
(in the metric of the space C[t0, θ]) set X(t0, x0, U, V )
consisting of limit motions x[·, t0, x0, U, V ].

In Subsection 3.2 we use the sets of motions X(t0, x0, U
a)

and X(t0, x0, V
a) generated by the strategy of P1

Ua ÷ u(t, x, ε) and by the strategy of P2 V a ÷ v(t, x, ε),
respectively. Refine the determination of these sets. For
instance, a motion of the set X(t0, x0, U

a) is determined
as an uniform limit for some sequence of approximated
motions

{
x
[
t, tko , x

k
0 , U

a, εk,∆k
1 , v

k[·
]}

as k → ∞, εk → 0, tk0 → t0, xk
0 → x and vk[·]

are measurable realizations of control of P2. Note that the
condition (3), i = 1 is lacking here.

2.4 Guaranteed payoffs for players

Let a pair strategies (U, V ) and a position (t∗, x∗) ∈ G be
fixed. Define the sets

Γi(t∗, x∗, U, V ) = Pmin(σi(X(t∗, x∗, U, V )), i = 1, 2
where

σi(X(t∗, x∗, U, V )) = {z ∈ Rli , z = σi(x[θ]),

x[·] ∈ X(t∗, x∗, U, V )}
and the symbol Pmin(A) denotes the set of Pareto-minimal
elements of the set A ∈ Rk.

The sets Γi(t∗, x∗, U, V ) are nonempty compacts. Elements
of set Γi(t∗, x∗, U, V ) can be interpreted as ”guaranteed
payoffs” of i-th player when both players use strategies
(U, V ). The guarantee is understood in the following sense:
for any motion x[·] ∈ X(t∗, x∗, U, V ) there exists a vector
ξ ∈ Γi(t∗, x∗, U, V ) such that the inequality σi(x(θ) ≥ ξ
holds.

Here and below the vector inequality ≥ denotes the same
inequality for corresponding coordinates.

2.5 Binary preference relations

Introduce the following binary preference relations.

Let A,B,Ai and Bi be nonempty sets in the space Rk.

Definition 1. A set A ρ - dominates a set B (use the
notation AρB) if for any a ∈ A there exists b ∈ B such
that a ≥ b, and moreover, for at least one such pair a 6= b.

Definition 2. A pair of sets (A1, A2) S(i) - dominates a
pair of sets (B1, B2), i = 1, 2, if the condition AiρBi is
fulfilled.

Definition 3. A pair of sets (A1, A2) P (i) - dominates a
pair of sets (B1, B2), i = 1, 2, if the condition AiρBi is
fulfilled, and moreover, the set B3−i does not ρ - dominate
the set A3−i.

Definition 4. A pair of sets (A1, A2) P (1, 2) - dominates
a pair of sets (B1, B2), i = 1, 2, if the pair (A1, A2) P (i)
- dominates the pair (B1, B2) for at least one i ∈ {1, 2}.

2.6 Admissible pairs of strategies

The next definition determines admissible pair of strate-
gies in the considered game.
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Definition 5. A pair of strategies
(
Ũ , Ṽ

)
is called an

admissible one in the game, if for any trajectory x̃ [·] ∈
X(t0, x0, Ũ , Ṽ ), any τ ∈ [t0, θ), and any strategies U and
V the pair of sets (Γ1(τ, x̃(τ), Ũ , Ṽ ), Γ2(τ, x̃(τ), Ũ , Ṽ )) is
not S(1) - dominated by the pair of sets (Γ1(τ, x̃(τ), U, Ṽ ),
Γ2(τ, x̃(τ), U, Ṽ )) and is not S(2) - dominated by the pair
of sets (Γ1(τ, x̃(τ), Ũ , V ), Γ2(τ, x̃(τ), Ũ , V )).

It follows from this definition that it does not pay for
each player to deviate from admissible pair of strategies
at any instant of time τ ∈ [t0, θ). The utility of deviation
is understood as regards S(i)-domination of the deviator’s
set of guaranteed payoffs.

Denote by D∗ the set of admissible pairs of strategies.
Obviously, a pair of strategies which is not admissible can
not be a solution of the game.

Remark. The set D∗ is, in general, nonclosed in the sense
of convergence understood as the convergence of families
of sets {Γi(t∗, x∗, U, V )} in the Hausdorf metric.

3. DEFINITION OF SOLUTIONS OF THE GAME.
STRUCTURE OF SOLUTIONS

3.1 A concept of a solution of the game

Formulate the following problem.

Problem 1. It is required to find a subset D0 ⊆ D∗

of admissible pair of strategies (U, V ) such that for any
pairs (U (1), V (1)) ∈ D0 and (U (2), V (2)) ∈ D0 the
pair (Γ1(t0, x0, U

(1), V (1)), (Γ2(t0, x0, U
(1), V (1))) and the

pair (Γ1(t0, x0, U
(2), V (2)), (Γ2(t0, x0, U

(2), V (2))) do not
P (1, 2)−dominate each other.

Definition 6. Any element of the set D0 is called a solution
of the game.

Remark. Because of nonclosure of the set D∗ Problem 1
may have no solutions. In this case one can solve Problem
1 for the closure of the set D∗ and then any element of
the obtained set D0 can be approximated by a sequence
of elements belonging to the set D∗.

Proposition 1. It is sufficiently to solve Problem 1 in the
class of pair of strategies (U, V ) which generate a single
limit motion.

Proof. Indeed, if the set X(t0, x0, U, V ), (U, V ) ∈ D0

is not singleton, then one can choose an element x∗[·]
∈ X(t0, x0, U, V ) such that vector σi(x∗[θ]) ρ - dom-
inates the set Γi(t0, x0, U, V ) for at least one number
i ∈ {1, 2}. Let a pair of strategies (U∗, V ∗) generate a
single trajectory x∗[·]. Then the pair (Γ1(t0, x0, U

∗, V ∗),
Γ2(t0, x0, U

∗, V ∗)) P (1, 2)- dominates the pair (Γ1(t0, x0,

U, V ), Γ2(t0, x0, U, V )). This implies that (U, V ) /∈ D0.
The contradiction proofs the proposition.

3.2 Auxiliary approach- evasion games

Now consider trajectories x(t), t0 ≤ t ≤ θ of the system
(1) generated by all possible pairs of measurable controls
(u(t), v(t), t0 ≤ t ≤ θ). Denote the set of these trajec-

tories by L. The endpoints of these trajectories form the
attainability set G(θ) of the system (1).

Let a trajectory x∗(·) ∈ L and a value of parameter ε > 0
be given. Consider the sets
Mε(x∗(·), i, j) = {x ∈ G(θ) : σij(x) ≤ σij(x∗(θ))− ε} ,

i = 1, 2; j = 1, ..., li,

Nε
i (x∗(·)) =

⋃
j∈1,li

Mε(x∗(·), i, j), i = 1, 2.

Consider the following family of antagonistic positional
differential games of approach- evasion Γ1(τ, x∗(·), ε) and
Γ2(τ, x∗(·), ε), τ ∈ [t0, θ), ε > 0 (Krasovskii [1985],
Krasovskii and Subbotin [1988]). Dynamics of the game
is described by the equation (1). The position (τ, x∗(τ))
is an initial one. The players act in the class of positional
strategies Ua ÷ u(t, x, ε) and V a ÷ v(t, x, ε).

In the game Γ1(τ, x∗(·), ε) P1 chooses his strategy Ua

such that for any motion x(·) ∈ X(τ, x∗(τ), Ua) the state
x(θ) contacts the set Nε

1 (x∗(·)). On the other hand, P2
chooses his strategy V a such that for any motion x(·)
∈ X(τ, x∗(τ), V a) the condition x(θ) /∈ Nε

1 (x∗(·)) holds.

Analogously, in the game Γ2(τ, x∗(·), ε) P2 chooses his
strategy V a such that for any motion x(·) ∈ X(τ, x∗(τ), V a)
the state x(θ) contacts the set Nε

2 (x∗(·)). On the other
hand, P1 chooses his strategy Ua such that for any motion
x(·) ∈ X(τ, x∗(τ), Ua) the condition x(θ) /∈ Nε

2 (x∗(·))
holds.

It is well known (see Krasovskii and Subbotin [1988]) that
under the assumptions 10−30 the games Γ1(τ, x∗(·), ε) and
Γ2(τ, x∗(·), ε), τ ∈ [t0, θ), ε > 0 have saddle points and
solving strategies for both players.

Denote a solving strategy of P2 in the game Γ1(τ, x∗(·), ε)
by v(t, x, ε|τ, x∗(·)) and a solving strategy of P1 by
u(t, x, ε|τ, x∗(·)).

3.3 Acceptable trajectories

Introduce the following definitions.

Definition 7. A trajectory x(·) ∈ L is called an acceptable
one for P1, if for any position (τ, x∗(τ)), τ ∈ [t0, θ) there
exists a strategy of P2 such that P1 can not guarantee
payoff which ρ- dominates his payoff on the trajectory
x∗(·). Analogously, a trajectory x(·) ∈ L is called an
acceptable one for P2, if for any position (τ, x∗(τ)),
τ ∈ [t0, θ) there exists a strategy of P1 such that P2 can
not guarantee payoff which ρ- dominates his payoff on the
trajectory x∗(·).
Definition 8. A trajectory x(·) ∈ L is called an acceptable
one, if it is an acceptable one for both players simultane-
ously.

Denote the set of acceptable trajectories by L0.

3.4 Structure of solutions

Let a pair of measurable controls (u∗(t), v∗(t), t0 ≤ t ≤
θ) generate a trajectory x∗(·) ∈ L0 of the system (1).
Consider the following strategies of P1 and P2.

U0 ÷ {u0(t, x, ε), β1(ε)), V 0 ÷ {v0(t, x, ε), β2(ε)) (4)
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where
u0(t, x, ε) = (5){

u∗(t), if ‖x− x∗(t)‖ < εϕ(t)
u(t, x, ε|τ, x∗(·)), if ‖x− x∗(t)‖ ≥ εϕ(t) ,

v0(t, x, ε) = (6){
v∗(t), if ‖x− x∗(t)‖ < εϕ(t)

v(t, x, ε|τ, x∗(·)), if ‖x− x∗(t)‖ ≥ εϕ(t)

for all (t, x) ∈ G, ε > 0.

The functions βi(·) and positive increasing function ϕ(·)
are chosen so that the following ineguality∥∥x(t, t0, x0, U

0, ε,∆1, V
0, ε,∆2)− x∗(t)

∥∥ < εϕ(t)
holds for t ∈ [t0, θ), if δ(∆i) ≤ βi(ε).

The strategies u(t, x, ε|τ, x∗(·)) and v(t, x, ε|τ, x∗(·)) are
defined in Subsection 3.2.

These strategies can be interpreted as universal penalty
strategies used in the case when the partner refuses to
follow the trajectory x∗(·) at some moment of time
τ ∈ [t0, θ).

Penalty strategies were considered in Kononenko [1976],
Kleimenov [1982] and Tolwinskii et al. [1986].

So, for any trajectory x∗(·) ∈ L0 one can find the
pair of strategies (U0, V 0) (4) - (6) which generates a
single limit motion x∗(·). Let the set of such pair of
strategies be denoted by W ∗. It follows from acceptability
of the trajectory x∗(·) that it does not pay for any
player to deviate from the pair (U0, V 0) moving along the
trajectory.

Denote by W 0 the subset of the set W ∗ such that
for any pairs of strategies (U (1), V (1)) ∈ W 0 and
(U (2), V (2)) ∈ W 0 the pair (Γ1(t0, x0, U

(1), V (1)),
(Γ2(t0, x0, U

(1), V (1))) and the pair (Γ1(t0, x0, U
(2), V (2)),

(Γ2(t0, x0, U
(2), V (2))) do not P (1, 2)−dominate each

other.

Proposition 2. The sets D0 and W 0 coincide.

Indeed, the inclusion W 0 ⊆ D0 is obvious. The inverse
inclusion follows from the definions of the sets.

Proposition 2 gives a way for finding solutions of the game
which is based on determination of acceptable trajectories.

In conclusion note that, in general, Problem 1 is difficult.
We give its solution for two special examples in next
Section.

4. EXAMPLES

4.1 Example 1. Motion of material point on the plane

The vector equation

ξ̈ = u+ v, ξ, u, v ∈ R2, ‖u‖ ≤ 1, ‖v‖ ≤ 1, (7)

ξ[t0] = ξ0, ξ̇[t0] = ξ0

describes the motion of a material point of unit mass on
the plane (ξ1, ξ2) under the action of a force F = u + v .
P1 (P2) which governs the control u(v) tends to maximize
the cost functional σ1(ξ[θ]) (σ2(ξ[θ])) where

σi(ξ[θ]) = (< ξ[θ]), a(i) >, < ξ[θ]), b(i) >), i = 1, 2 (8)

ξ = (ξ1, ξ2)T , a(i) = (a(i)
1 , a

(i)
2 )T , b(i) = (b(i)1 , b

(i)
2 )T .

Here a(i), b(i), i = 1, 2 , are given vectors on the plane
(ξ1, ξ2); θ is the given final time. The symbol < · , · >
denotes the scalar product.

By setting

y1 = ξ1, y2 = ξ2, y3 = ξ̇1, y4 = ξ̇2

and making the following change of variables

x1 = y1 +(θ−t)y3, x2 = y2 +(θ−t)y4, x3 = y3, x4 = y4

we shall get a system whose first and second equations are

ẋ1 = (θ − t)(u1 + v1),
ẋ2 = (θ − t)(u2 + v2). (9)

Further, (7) can be written

σi(x[θ]) = (< x[θ]), a(i) >, < x[θ]), b(i) >), (10)
x = (x1, x2)T , i = 1, 2.

Since the cost functional (10) depends on variables x1 and
x2 only and the right-hand side of (9) does not depend
on other variables, one can conclude that it is sufficiently
to consider only the shortened system (9) with vector cost
functionals (10).

Then initial conditions for the system (9) are given by
formulas

xi[t0] = x0i = ξ0i − (θ − t0)ξ̇0i, i = 1, 2.

Let the following initial conditions be given:

t0 = 0, ξ01 = −1.6, ξ02 = 1, 2, ξ̇01 = 0.8, ξ̇02 =
−0.6, θ = 2.

Then we have x01 = 0, x02 = 0.

Consider two variants of vectors a(i) and b(i) :

1) a(1) = (−5, 2)T , b(1) = (−4, 4)T , a(2) =
(4, 4)T , b(2) = (5, 2)T (Fig. 1).

Fig.1

2) a(1) = (−5, 2)T , b(1) = (5, 2)T , a(2) = (4, 4)T , b(2) =
(−4, 4)T (Fig. 2).
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Fig.2

Sets of solutions of the game were calculated. Describe
these sets of solution by means of sets of endpoints of
trajectories generated by considered solutions.

In Fig.1 and Fig.2, the circle of radius 4 with center at the
initial point (0, 0) represents the attainability set of the
system (9) at the moment of time θ = 2. In Fig.1 the bold-
faced arc ABCD is a set of endpoints of the trajectories for
the variant 1). In Fig.2 the arc BC is the set of endpoints
of the trajectories for the variant 2).

For the solution (U0, V 0) (4) - (6) with u∗(t) ≡ (0, 1)T ,

v∗(t) ≡ (0, 1)T , 0 ≤ t ≤ 2 the generated trajectory
in the plane (ξ1, ξ2) was calculated. This trajectory is
represented in Fig.3 by the curve AB.

Fig.3

4.2 Example 2. Repeated prisoner’s dilemma

In this Subsection some results of the paper (Kleimenov
[2000]) are interpreted from point of view of theory of
dynamics game with vector payoff functionals. The talk
is about repeated prisoner’s dilemma (see, for example,
Smale [1980], Kleimenov [1998]).

Remind that in the bimatrix ”prisoner’s dilemma” game,
the payoff matrices of P1 and P2 are

A =
∥∥∥∥ a11 a12

a21 a22

∥∥∥∥ , B =
∥∥∥∥ a11 a21

a12 a22

∥∥∥∥ , (11)

where the inequalities

a21 > a12 > a22 > a12, 2a11 > a21 + a22 (12)

hold. Each player has two strategies. The first one is C
(cooperate) and the second one is D (defect). It follows
from (12) that the pair (D,D) is an unique Nash equilib-
rium. In this pair, each player gets payoff equals to a22.
At the same time, both players get payoff a11 > a22 on
the pair (C,C) which is not a Nash equilibrium.

Let the players act in the class of mixed strategies. A pair
(p, 1− p), where p ∈ [0, 1], is a mixed strategy of P1 and
a pair (q, 1 − q), where q ∈ [0, 1], is a mixed strategy of
P2. Then payoffs of P1 and P2 are defined by

f1(p, q) = cpq − c1p− c2q + a22 (13)
f2(p, q) = cpq − c2p− c1q + a22 (14)

where

c = a11−a12−a21 +a22, c1 = a22−a12, c2 = a22−a21

A point (p, q) in the unit square

E = {(p, q) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1}

characterizes the state of the game.

Now let this bimatrix game be repeated. Then P1
and P2 can govern dynamics of the process. It is natural
to require that a state (p, q) arrives at the cooperation
state (C,C).

Under this additional requirement the repeated prisoner’s
dilemma was investigated in Kleimenov [2000]. Furter-
more, it was assumed in this paper, that dynamics of the
repeated prisoner’s dilemma is constructed according to
some special procedure given in Kleimenov [1997]. The
following points are characteristic in this procedure. First,
using the principle of non-decrease of players’payoffs, and,
secondly, using of Nash equalibria in some auxiliary ”local”
bimatrix games.

Generated trajectories were constructed for various values
of parameters aij of the game. For one of considered cases
these trajectories are represented in Fig.4.

Fig.4
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Arrows in Fig.4 show directions of motions for a current
state (p, q). Let the set bounded by bold line be denoted
by H. Analyzing the trajectories one obtain that:

(i) For initial states (p0, q0) ∈ H dynamics leads a state
(p, q) to the state (C,C) in a finite number of rounds;
moreover, both functions (13), (14) reach the maximum
along the trajectory in the state (C,C).

(ii) For initial states (p0, q0) ∈ E\H dynamics does not
lead to the state (C,C) but the functions (13), (14) reach
the maximum along the trajectory in the state (C,C)
again.

This process can be interpreted as a two-person dynamic
game with vector payoff functionals. Indeed, each player
has his own payoff (13) or (14) and, in addition, the
another payoff which consists in leading a current state
(p, q) to the state (C,C). So, for initial states of the set
H P1 and P2 maximize their functionals (13), (14) and
lead the system to the state (C,C). For initial states of
the set E\H P1 and P2 maximize payoffs (13), (14) but
they do not lead a state (p, q) to the state (C,C).

5. CONCLUSION

This approach can be generalized for the case of m players
(m > 2). For this case one can use the formalization of the
game given in Kleimenov [1993].

It will be interesting to develop general methods of finding
solutions in nonantagonistic differential game with vector
payoff functionals.
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