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Abstract: This paper is concerned with an observer-based guaranteed cost control (GCC) problem for 
networked control systems (NCSs) with random data packet dropouts. Both the sensor-to-controller (S/C) 
and controller-to-actuator (C/A) packet dropouts are modeled by two mutually independent stochastic 
variables satisfying Bernoulli binary distribution. The resultant observer-based controller guarantees that 
the closed-loop system is stochastically exponentially mean-square stable and the cost function value is not 
more than a specified upper bound. The controller design problem is transformed to a convex optimization 
problem, which can be solved by a linear matrix inequality (LMI) approach. A numerical example is given 
to illustrate the effectiveness of the proposed design method. 

 
 

1. INTRODUCTION 

Networked control system (NCS) is a type of distributed 
control system whose feedback control loop is based on a 
communication network. Comparing with the conventional 
point-to-point control systems, the NCSs show some nice 
features, such as, flexibility of operation, ease of diagnosis 
and maintenance, small volume of wiring, low cost, etc. 
However, the insertion of communication networks in 
feedback control loops complicates the analysis and synthesis 
of NCSs, because the network-induced data packet 
transmission delays and dropouts will inevitably degrade the 
control performance of the NCSs, or even cause the systems 
instable. This has motivated increasing research interests in 
the study of the analysis and synthesis of NCSs in the last 
decade (Nilsson, Bernhardsson, & Wittenmark, 1998; Zhang, 
Branicky, & Phillips, 2001; Walsh, Ye, & Bushnell, 2002; 
Hu, & Zhu, 2003; Yue, Han, & Peng, 2004; Yang et al., 2006; 
Hu et al., 2007).  

In NCSs, data packets through networks suffer not only 
transmission delays, but also, possibly, transmission packet 
dropouts. The latter is a potential source of instability and 
poor performance in NCSs because of the critical real-time 
requirement in control systems. Therefore, the effect of 
packet dropouts is also an important aspect in the analysis 
and synthesis of NCSs and this issue has been received 
widely attentions recently (Yu et al., 2004; Ling & Lemmon, 
2004; Huo & Fang, 2007; Wu & Chen; 2007). There are two 
typical ways to model packet dropouts in previous literatures. 
The first approach assumes that the packet dropouts follow 
certain probability distributions and describes NCSs with 
packet dropouts via stochastic models, such as Markov jump 
systems. For example, the work of Wu & Chen (2007) 
models the packet dropouts’ history behaviors as two 
independent Markov chains. Based on this model, the 
deferent model of NCSs with single-and multiple-packet 

transmission are also investigated in Wu & Chen (2007). The 
second approach is deterministic, and models the NCSs with 
packet dropouts as switched linear systems or asynchronous 
dynamical system (ADS). An iterative approach is proposed 
to model NCSs with arbitrary but finite data packet dropouts 
as switched linear systems in Yu et al., (2004). Using ADS 
methods, the integrity design problems for a class of NCSs 
with sensors, actuators failures and network-induced packet 
dropouts are considered in Huo & Fang (2007). Because of 
the complicated NCS modeling, the effect of controller-to-
actuator (C/A) packet dropouts is neglected and only the 
packet dropouts existing in the sensor-to-controller (S/C) side 
is considered in the work of Yu et al., (2004) and Huo & 
Fang (2007). 

Since data packet dropouts might be potential sources to 
instability and poor performance of NCSs, the main objective 
of this paper is to design guaranteed cost controllers for a 
class of NCSs with random packet dropouts. Both the S/C 
and C/A packet dropouts are considered which modeled by 
two mutually independent stochastic variables satisfying 
Bernoulli binary distribution. An observer-based control 
scheme is proposed such that the closed-loop NCS is 
stochastically exponentially mean-square stable and the 
specified GCC performance is achieved. A linear matrix 
inequality (LMI) approach is developed to tackle the 
addressed problem, which can be solved conveniently by 
Matlab LMI toolbox. 

The paper is organized as follows. Section 2 provides 
preliminaries and the formulation of the problem. Section 3 
investigates the stability conditions for the closed-loop NCS. 
Section 4 presents the design methods of the observe-based 
guaranteed cost controller. A numerical example is given to 
illustrate the proposed design methods in Section 5, followed 
by conclusions in Section 6. 
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 2. PRELIMINARIES AND PROBLEM STATEMENT 

If Consider the NCS with random data packet dropouts in 
Fig.1, where sensor, controller, and actuator are clock-driven. 

 
Fig. 1. Structure of an NCS with packet dropouts 

The plant is assumed to be of the form 
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where n
kx ∈  is the state vector, m

ku ∈  is the control 
input vector, p

ky ∈  is the measurement output vector. 
n nA ×∈ , n mB ×∈ , and p nC ×∈  are known constant 

matrices. 

Suppose the controller has a buffer to hold the most 
recent packets as the new sensor output when the packet 
dropout happens. For example, when a sensor data ky  is lost, 
the controller will read out the most recent data , 1c ky −  from 
the buffer and utilize it as ,c ky  to calculate the new controller 
output ,c ku , which will be sent to the plant; otherwise, the 
new sensor data ky will be saved to the buffer and used by 
the controller as ,c ky . And on the actuator side, the latest 
control input is kept when a packet is lost. Thus, for Fig.1, we 
have 

 ,

, 1

if transmitted successfully

otherwise

k

c k

c k

y
y

y −

⎧⎪= ⎨
⎪⎩

 (2) 

 
,

1

if transmitted successfully

otherwise

c k

k

k

u
u

u −

⎧⎪= ⎨
⎪⎩

 (3) 

Assume that the probability of a packet dropout in the 
network satisfy the Bernoulli random binary distribution. 
Thus, the measurement output and control input can be 
described by  

 , , 1(1 )c k k k k c ky y yα α −= − +  (4) 
 , 1(1 )k k c k k ku u uβ β −= − +  (5) 

where the stochastic variables kα  and kβ  are the mutually 
independent Bernoulli binary distributed white sequences 
taking values on 0 and 1 with 
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From (1), (4) and (5), the NCS model can be described as 
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where  
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In this paper, we propose an observer-based control scheme 
for (8) described by 
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             , 1 2 1ˆ ˆˆController: =  =c k k k ku Kz K x K u −+  (11) 

where 1ˆ ˆˆ
TT T n m

k k kz x u +
−⎡ ⎤= ∈⎣ ⎦ R  is the state estimate of 

system (8), ,ˆ p
c ky ∈R  is the observer output, ( )n m pL + ×∈R  

and [ ] ( )
1 2

m n mK K K × += ∈R  are the observer gain and 
controller gain, respectively. In the control scheme (10) and 
(11), it is assumed that the information of the past packet 
transmission from controller to actuator is available to the 
controller, that is, at the time 1k + , the value of kβ (0 or 1) is 
available to the controller. One way to achieve this is by 
transmitting this information with high priority when a packet 
is lost. And at the time k , the packet dropout information ( kα ) 
is available to the controller, which can be achieved by 
comparing the value of ,c ky  and , 1c ky − .  

Remark 1: The packet dropout model (4) and (5) is an 
extended version of the delay model of Yang et al., (2006), in 
which the 1ky −  and , 1c ku − are substituted by , 1c ky − and 1ku − , 
respectively. But the model of Yang et al., (2006) can merely 
describe the network induced delay shorter than a sampling 
period. In the proposed control scheme (10) and (11), the 
plant output ky produced at a time k  is sent to the observer 
via a communication network at the time k  if there is no 
packet is dropped, i.e., ,c k ky y= , 0kα = (the influence of the 
delay is neglected in our model). If the date packet of ky is 
dropped, the controller will read out the most recent data 

, 1c ky −  from the buffer and utilize it as ,c ky , i.e., , , 1c k c ky y −= , 
1kα = . From (10) and (11), it can be easily see that the 

values of ˆkz and ,c ku can be calculated by the observer and 
controller at the time k , if the value of 1kβ − and kα is 
available to the controller. 

Defining the estimation error by 

 ˆ:k k ke z z= −  (12) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3750



 
 

     

 

the closed-loop system can be described as 
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where 
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Since the closed-loop system (13) contains both stochastic 
quantities kα and kβ , it is actually a stochastic parameter 
system, and we need to introduce the notion of stochastic 
stability in the mean-square sense for the problem 
formulation.  

Definition 1 (Yang et al., 2006): The closed-loop system (13) 
is said to be exponentially mean-square stable if there exist 
constants 0γ > and ( )0 1τ ∈  such that  

 { } { }2 2
0 0for all ,k n

kE E kη γτ η η +≤ ∈ ∈R I  (15) 

where .
TT T

k k kz eη ⎡ ⎤= ⎣ ⎦  

With this definition, our objective is to design the observer 
(10) and controller (11) for the system (1) such that the 
closed-loop system (13) is exponentially mean-square stable, 
and the GCC performance constraint is satisfied. In other 
words, we aim to design a controller such that the closed-
loop system satisfies the following requirements Q1) and Q2) 
simultaneously. 

Q1)  The closed-loop system (13) is exponentially mean-
square stable. 
Q2)  The cost function associated with the closed-loop 
system  

 
0

T T
k k k k

k
J E x Qx u Ru

∞

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑  (16) 

is not more than a specified upper bound *J , where 0Q >  
and 0R >  are given weighting matrices. 

3. STABILITY ANALYSIS 

In this section, we will investigate the stability conditions for 
the closed-loop system (13). The following lemma will be 
needed in our derivation. 

Lemma 1 (Yang et al., 2006):  Let ( )kV η  be a Lyapunov 
functional. If there exist real scalars 0, 0, 0,λ μ ν≥ > >  and 
0 1ϕ< <  such that 
 ( )2 2

k k kVμ η η υ η≤ ≤  (17) 

 ( ){ } ( ) ( )1 |k k k kE V V Vη η η λ ϕ η+ − ≤ −  (18) 

then the sequence kη  satisfies  

 { } ( )2 2
0 1 k

kE υ λη η ϕ
μ μϕ

≤ − +  (19) 

The following theorem presents sufficient conditions for the 
existence of the controller such that the closed-loop system 
(13) is exponentially mean-square stable. 

Theorem 1:  Given the controller gain matrix K and the 
observer gain matrix .L  The closed-loop system (13) is 
exponentially mean-square stable, if there exit positive 
definite matrices P  and S  satisfying the following matrix 
inequality  
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where ( ) ( )1 21 , 1 .ε α α ε β β= − = −  

Proof:  Define a Lyapunov function 

 ( ) T T
k k k k kV z Pz e Seη = +  (21) 

From (13), and in terms of 
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In light of  

( ){ } ( )2 1kE a α α α− = −  

( ){ } ( )2
1kE β β β β− = − , 

 the formula (22) results in 
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                                                                                             (24) 
By Schur complement, it can be easily obtained that (20) is 
equivalent to 0Λ < .  

Define real scalars σ  and θ  satisfying 

 ( ) ( ){ }max maxmax ,P Sσ λ λ=  (25) 

 ( ){ }min0 min ,θ λ σ< < −Λ  (26) 

From 0Λ <  and (26) we have 
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By (25) and  (27) yields 
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Using Lemma 1, (28) imply that 
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k

kE θ θ θη η
σ σ σ
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Therefore, by Definition 1, it can be verified that the closed-
loop system (13) is exponentially mean-square stable.□ 

4. OBSERVER-BASED GCC DESIGN 

In this section, a design method of the observe-based 
guaranteed cost controller is presented and the controller 
design problem is transformed to a convex optimization 

problem, which can be solved by a linear matrix inequality 
(LMI) approach. 

Theorem 2:  Consider system (1) with cost function defined 
by (16). If there exist positive-definite matrices P , S , and 
matrices X , Y and P̂ , such that the following matrix 
inequalities 
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and matrix equation 
 ˆPB BP=  (31) 
hold, where 
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then the system (10) and (11) construct an observe-based 
controller which guarantees that the closed-loop system (13) 
is exponentially mean-square stable and the corresponding 
value of the cost function satisfies 
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T TJ J z Pz e Se< = +  (33) 

where ( )0 0 0 0 0ˆ0 , 0
TT TTz x e x x⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎣ ⎦ . Furthermore, 

the gain K  and L can be given as 
 1 1ˆ ,K P X L S Y− −= =  (34) 
Proof:  Denoting  

 ˆ ,X PK Y SL= =  (35) 
Pre- and post-multiplying both sides of (30) with 

1 1 1 1 1{ , , , , , , }diag I I P P S S S− − − − −  and substituting (31) into 
(30), it can be obtained  
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It can be easily obtained that (36) implies (20), hence it 
follows from Theorem 1 that the closed-loop system (13) is 
exponentially mean-square stable.  

Denoting new vectors  

 1 1ˆ0, and 0u u− −= =  (37) 
the cost function (16) can be rewritten as 
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From (23), we have 
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By Schur complement, it can be easily obtained that (36) is 
equivalent to 
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Thus, we have 
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Summing up (41) from 0  to ∞ with respect to k  yields 
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Since the closed-loop system is exponentially mean-square 
stable, and in light of (37), we have 

 ( ){ } ( ){ } ( ){ } *
0 0J E V E V E V Jη η η∞< − = =  (43) 

where ( ) ( )0 0 1 0 0 1 1ˆ ˆ
TT TT Tx u x x u uη − − −

⎡ ⎤= − −⎣ ⎦ . 

On the other hand, since the matrix 
( )T n m mTB B I + ×⎡ ⎤= ∈⎣ ⎦ R is of full column rank, hence, if 

there exists the matrix P̂  satisfying (31) with 0P > , we 
have 

 ( ) ( ) ( ) ( )ˆ ˆ =rank P rank BP rank PB rank B m≥ ≥ =  

which implies that the matrix ˆ m mP ×∈R must be nonsingular. 
Therefore, (34) can be obtained from (35). □ 

Remark 2:  The condition of Theorem 2 is an LMI (30) with 
matrix equation constraint (31). For the existence of the 
equation constraint (31), (30) cannot be solved by standard 
LMI methods. In the work of Yang et al., (2006), a singular 
value decomposition (SVD) method is first proposed to solve 

this type of problem. In the following, we will convert the 
conditions (30) and (31) into a strict LMI form using the 
similar method which is proposed in Yang et al., (2006). 

For the matrix ( )T n m mTB B I + ×⎡ ⎤= ∈⎣ ⎦ R  is of full column 
rank, there exists the SVD as  

 [ ]1 20 0
B U V U U V

Σ Σ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (44) 

where ( ) ( )n m n mU + × +∈R  and m mV ×∈R are orthogonal matrices 
and m m×Σ∈R is a diagonal matrix with positive diagonal 
elements in decreasing order, ( )

1
n m mU + ×∈R , ( )

2
n m nU + ×∈R  

are the matrices satisfying [ ]1 2U U U= . 

Theorem 3. The system (11) with (10) is an observe-based 
controller which guarantees that the closed-loop system (13) 
is exponentially mean-square stable and the corresponding 
value of the cost function satisfies (33), if there exist 
positive-definite matrices 1P , 2P , S , and matrices X , Y , 
such that the LMI (30) hold, where 

 1
1 1 1 2 2 2

2

0
0

T T TP
P U U U PU U PU

P
⎡ ⎤

= = +⎢ ⎥
⎣ ⎦

 (45) 

where matrix 1U  and 2U  are defined in (44). Furthermore 
the gain K  and L  can be given as 

 1L S Y−=  (46) 
 1 1

1
TK V P VX− −= Σ Σ  (47) 

 Proof.  Suppose 

 
'

1 12
'

21 2

TP P
P U U

P P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (48) 

where '
1

m mP ×∈R , '
2

n nP ×∈R and 12 21
T m nP P ×= ∈R , then the 

matrix equation constraint (31) can be rewritten as 

 
'

1 12
'

21 2

ˆ
0 0

TP P
U VP U U U V

P P
Σ Σ⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 (49) 

Above formula is equivalent to 

 
'

1

21

ˆ

0
P VVP
P V

⎡ ⎤ ⎡ ⎤ΣΣ
=⎢ ⎥ ⎢ ⎥Σ⎣ ⎦⎣ ⎦

 (50) 

Above formula is solvable on P̂ if and only if 21 0P VΣ = , 
that is 21 12 0P P= = . Hence, (48) can be rewritten as 

 
'

1
'

2

0
0

TP
P U U

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (51) 

Comparing with (45), it is obviously to see that '
1 1P P= , 

'
2 2P P= . This implies that there exists a non-singular matrix 

P̂ satisfying (31) if and only if there exit 1 0P > , 2 0P >  such 
that (45) holds. Thus we can compute the matrix P̂  from (50) 
which is equivalent to 
 1

ˆVP P VΣ = Σ  (52) 
which implies that 
 1

1
ˆ TP V P V−= Σ Σ  (53) 
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Thus (47) can be obtained from (35) and (53). For the rest of 
the proof, please refer to the proof of Theorem 2. □ 

5.  A NUMERICAL EXAMPLE 

In this section, a numerical example will be presented to 
demonstrate the effectiveness of the proposed approach. 
Consider the linear discrete-time system (1) with 

 [ ]0.9 0 1
, , 1 0 ,

2 0.1 1
A B C⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

and the weighting matrices of the cost function (16) and the 
packet dropout stochastic variable expectation are given with 

 
1 0

, 0.1, 0.1,
0 1

Q R α β
⎡ ⎤

= = = =⎢ ⎥
⎣ ⎦

 

then the closed-loop system (13) can be given with 

 [ ]
0.9 0 0.1 0 0 1 1
2 0.1 0.1 , 0 0 1 , 1 , 1 0 0
0 0 0.1 0 0 1 1

A A B C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

By Theorem 3, the observer gain L  and control gain K  can 
be obtained as follows 

 [ ] = -0.6778   -0.1785   -0.1784K  

 [ ] 0.5957   1.6830   0.1972 TL =  

 
Fig. 2 The trajectories of the state variables of the closed-

loop NCS 

Choose the initial conditions as  

[ ]0 0 0 1 1.5 0
T TTz x⎡ ⎤= =⎣ ⎦ , [ ]0ˆ 0 0 0 Tz =  

the corresponding upper bound of performance index 
function can be obtained as * 179.4352J = . The simulation 
results of the state responses are given in Fig. 2.  From the 
Fig. 2, it can be seen that the system can work well via the 
proposed observer-based control scheme.  

6. CONCLUSIONS 

In this paper, an observer-based GCC problem is presented to 
solve the effect of random packet dropouts for a class of 
NCSs in which sensor, controller, and actuator are all clock-
driven. Both the S/C and C/A packet dropouts are modeled 
by two mutually independent stochastic variables satisfying 
Bernoulli binary distribution. An observer-based controller 
designed such that the closed-loop NCS is stochastically 
exponentially mean-square stable and the specified GCC 
performance is achieved. A linear matrix inequality (LMI) 

approach is developed to tackle the addressed problem, which 
can be solved conveniently by Matlab LMI toolbox. A 
numerical example has shown that the present design 
approach is both simple and effective. 
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