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Abstract: This paper presents nonlinear model following control for a class of nonlinear systems using
the fuzzy model-based control approach. We propose the construction method of augmented fuzzy
control system for continuous-time nonlinear systems by differentiating the original nonlinear system.
Moreover, we introduce the dynamic fuzzy controller which can make outputs of the nonlinear system
converge to outputs of the reference nonlinear system, and derive the controller design conditions in
terms of LMIs. A design example illustrates the utility of this approach.

1. INTRODUCTION

Recently, fuzzy model-based control has been discussed in
a huge number of literatures [2]–[5]. Most of them deal
with Takagi-Sugeno (T-S) fuzzy model [1] and LMI-based
designs[11]. By employing the T-S fuzzy model, which utilizes
local linear system description for each rule, we can devise a
control methodology to fully take advantages of linear control
theory. However, most of literatures have mainly dealt with
the regulation problem to discuss stability or convergence to
the origin. Unfortunately, theoretical controllability of model
following control for nonlinear systems was not discussed in
the literature. In [6], nonlinear model following control based
on cancellation technique is discussed. The control approach is
powerful. However, it is difficult to apply the control approach
to systems which the cancellation technique cannot work well.

In this paper, we deal with model following control for a
class of nonlinear systems using the fuzzy model-based control
approach. We propose the construction method of augmented
fuzzy control system for continuous-time nonlinear systems
by differentiating the original nonlinear system. Moreover,
we introduce the dynamic fuzzy controller which can make
outputs of the nonlinear systems converge to the outputs of
the reference nonlinear system, and derive the controller design
conditions in terms of LMIs. A design example illustrates the
utility of this approach.

2. PRELIMINARY RESULTS

In this section, we explain the basic procedures of fuzzy model-
based control approach for nonlinear systems and model fol-
lowing control for linear systems.

2.1 Fuzzy Model-based Control [6]

Consider the following continuous-time nonlinear system.

⋆ This research was supported by the Japan Society for the Promotion of

Science, Grant-in-Aid for Young Scientists (B) 19760151, 2007.

ẋ(t) = f1(x(t)) + f2(x(t))u(t) (1)

y(t) = g(x(t)) (2)

where x(t) = [x1(t) x2(t) · · · xn(t)]T is the state vector,
u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector, y(t) =
[y1(t) y2(t) · · · yq(t)] is the output vector. For the above
nonlinear system, by applying sector nonlinearity concept [6],
we can obtain the following T-S fuzzy model.

Rule i : IF z1(t) is Mi1 and · · · and zp(t) is Mip

THEN

{
ẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

(3)

where, i = 1, 2, · · · , r and r is the number of fuzzy model
rules. Mij is the fuzzy set. zj(t) is the known premise variable.
The fuzzy reasoning process is defined as

ẋ(t) =

r∑

i=1

wi(z(t)) (Aix(t) + Biu(t))

r∑

i=1

wi(z(t))

=

r∑

i=1

hi(z(t)) (Aix(t) + Biu(t)) (4)

y(t) =

r∑

i=1

wi(z(t))C ix(t)

r∑

i=1

wi(z(t))

=

r∑

i=1

hi(z(t))Cix(t) (5)

where
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z(t) = [z1(t) z2(t) · · · zp(t)]

wi(z(t)) =

P∏

j=1

Mij(zj(t)), hi(z(t)) =
wi(z(t))

r∑

i=1

wi(z(t))

Mij(zj(t)) is the grade of membership of zj(t) in Mij .
wi(z(t)) and hi(z(t)) have the following properties.

r∑

i=1

wi(z(t)) > 0, wi(z(t)) ≥ 0, ∀i

r∑

i=1

hi(z(t)) = 1, hi(z(t)) ≥ 0, ∀i

To stabilize the T-S fuzzy model (4), we employ the so-called
parallel distributed compensation (PDC) control approach [2,
3]. The PDC fuzzy controller is represented as

u(t) = −
r∑

i=1

h(z(t))Kix(t) (6)

where Ki is a feedback gain. The PDC fuzzy controller design
is to determine the feedback gains Ki. By substituting (6) into
(4), the overall fuzzy control system is represented as follows:

ẋ(t) =

r∑

i=1

r∑

j=1

hi(z(t))hj(z(t)) (Ai − BiKj)x(t) (7)

The feedback gain Ki is determined by solving Theorem 1.

Theorem 1. [6] If there exist positive definite matrix X and
M i satisfying (8), (9) and (10), then the fuzzy model (4) can
be stabilized by the fuzzy controller (6).

X > 0, (8)

AiX + XAT
i − BiM i − MT

i BT
i < 0, ∀i, (9)

AiX + XAT
i + AjX + XAT

j

−BiM j − MT
j BT

i − BjM i − MT
i BT

j < 0, (10)

∀i, i < j,

where Ki = M iX
−1.

2.2 Model Following Control for Linear Systems

In this section, we explain the model following control for
continuous-time linear systems. Consider the following linear
system.

ẋ(t) = Ax(t) + Bu(t) (11)

y(t) = Cx(t) (12)

For the above linear system, we consider the model following
control problem, that is, the control problem to make the output
y(t) converge to the output of the following reference linear
system.

ẋr(t) = Arxr(t) + Brr (13)

yr(t) = Crxr(t) (14)

where r is the constant vector. We assume that x(t) and xr(t)
are measurable.

Firstly, we define the error vector e(t) and its time derivative as
follows:

e(t) = y(t) − yr(t) (15)

d

dt
e(t) = ẏ(t) − ẏr(t) = Cẋ(t) − Crẋr(t) (16)

Then, by differentiating the linear system (11) and the reference
system (13) with respect to time t, we can obtain the following
equations.

d

dt
ẋ(t) = Aẋ(t) + Bu̇(t) (17)

d

dt
ẋr(t) = Arẋr(t) (18)

Next, we construct the following augmented system by adding
(16), (17) and (18).

d

dt

[
ẋ(t)
ẋr(t)
e(t)

]

=

[
A 0 0

0 Ar 0

C −Cr 0

] [
ẋ(t)
ẋr(t)
e(t)

]

+

[
B
0

0

]

u̇(t)

= Â

[
ẋ(t)
ẋr(t)
e(t)

]

+ B̂u̇(t) (19)

Finally, we design the following dynamic controller to stabilize
the augmented system (19).

u̇(t) = −K

[
ẋ(t)
ẋr(t)
e(t)

]

(20)

where K is a feedback gain. The controller design is to deter-
mine the feedback gain K. By substituting (20) into (19), we
can obtain the following linear control system.

d

dt

[
ẋ(t)
ẋr(t)
e(t)

]

=
(

Â − B̂K
)
[

ẋ(t)
ẋr(t)
e(t)

]

(21)

The feedback gain K is determined by solving Theorem 2.

Theorem 2. If there exist positive definite matrix X and M
satisfying (22) and (23), then the augmented system (19) can
be stabilized by the dynamic controller (20).

X > 0, (22)

ÂX + XÂ
T − B̂M − MT B̂

T
< 0, (23)

where K = MX−1.

By using the designed controller, we can make the output y(t)
of the linear system (11) converge to the output yr(t) of the
linear reference system (13).

3. FUZZY MODEL-BASED MODEL FOLLOWING
CONTROL FOR NONLINEAR SYSTEMS

In this section, we propose fuzzy model based model follow-
ing control. Consider the following continuous-time nonlinear
system.

ẋ(t) = f(x(t), u(t)) (24)

y(t) = g(x(t)) (25)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6851



For the above nonlinear system, we consider the control prob-
lem to make the output y(t) converge to the output of the
following reference system.

ẋr(t) = fr(xr(t)) (26)

yr(t) = gr(xr(t)) (27)

We assume that f , g, f r and gr are known. We define the error
vector e(t) as follows:

e(t) = y(t) − yr(t) (28)

3.1 Construction of Augmented Fuzzy System

Firstly, we construct the following time-derivative systems by
differentiating the nonlinear system (24) and the reference
system (26) with respect to time t.

ẍ(t) = F (x(t), ẋ(t), u(t), u̇(t)) (29)

ẍr(t) = F r(xr(t), ẋr(t)) (30)

Then, by differentiating error vector (28) with respect to time t,
we can obtain the following equation.

ė(t) = ẏ(t) − ẏr(t)

= G(x(t), ẋ(t)) − Gr(xr(t), ẋr(t)) (31)

Next, by adding (29), (30) and (31), the augmented system is
constructed as follows:

[
ẍ(t)
ẍr(t)
ė(t)

]

=

[
F (x(t), ẋ(t), u(t), u̇(t))
F r(xr(t), ẋr(t))
G(x(t), ẋ(t)) − Gr(xr(t), ẋr(t))

]

(32)

By applying sector nonlinearity concept [6] to each nonlinear
term in the augmented system (32), we can obtain the following
augmented T-S fuzzy model.

[
ẍ(t)
ẍr(t)
ė(t)

]

=

r∑

i=1

hi(x(t), u(t), xr(t))

×
([

Ai 0 0

0 Ari 0

Ci −Cri 0

] [
ẋ(t)
ẋr(t)
e(t)

]

+

[
Bi

0

0

]

u̇(t)

)

(33)

Remark 1. From the property of differentiation, note that total
derivatives of (29), (30) and (31) are represented as the follow-
ing forms.

ẍ(t) =
d

dt
ẋ(t)

=
∂f(x(t), u(t))

∂x(t)
ẋ(t) +

∂f(x(t), u(t))

∂u(t)
u̇(t)

ẍr(t) =
d

dt
ẋr(t)

=
∂fr(xr(t)

∂xr(t)
ẋr(t)

ė(t) =
d

dt
y(t) − d

dt
yr(t)

=
∂g(x(t))

∂x(t)
ẋ(t) − ∂gr(xr(t))

∂xr(t)
ẋr(t)

This means that the time derivatives of the nonlinear system
(24), the reference system (26) and the error vector (28) are
linear with respect to ẋ(t), ẋr(t) and u̇(t). Therefore, the
augmented system (32) can be represented as the augmented
T-S fuzzy model (33) which has linear consequent parts with
respect to ẋ(t), ẋr(t) and u̇(t).

3.2 Dynamic Fuzzy Controller Design

To stabilize the augmented T-S fuzzy model (33), we propose
the following dynamic PDC controller.

u̇(t) = −
r∑

i=1

hi(x(t), u(t), xr(t))K̂i

[
ẋ(t)
ẋr(t)
e(t)

]

(34)

where K̂i is a feedback gain. By utilizing the dynamic con-
troller, note that the membership function hi(x(t), u(t), xr(t))
can be calculated although the membership function includes
the control input u(t). Moreover, ẋ(t) and ẋr(t) can be cal-
culated from Eqs. (24) and (26). By substituting the dynamic
controller (34) into the augmented fuzzy model (33), we can
obtain the following fuzzy control system.

[
ẍ(t)
ẍr(t)
ė(t)

]

=

r∑

i=1

r∑

j=1

hi(x(t), u(t), xr(t))hj(x(t), u(t), xr(t))

×
([

Ai 0 0

0 Ari 0

Ci −Cri 0

]

−
[

Bi

0

0

]

K̂j

)[
ẋ(t)
ẋr(t)
e(t)

]

=
r∑

i=1

r∑

j=1

hi(x(t), u(t), xr(t))hj(x(t), u(t), xr(t))

×
(

Âi − B̂iK̂j

)
[

ẋ(t)
ẋr(t)
e(t)

]

(35)

The feedback gain K̂i is determined by solving Theorem 3.
Note that (36), (37) and (38) are represented in terms of LMIs.
Hence we can effectively determine the feedback gains by
computer software like MATLAB.

Theorem 3. If there exist positive definite matrix X and M̂ i

satisfying (36), (37) and (38), then the fuzzy system (33) can
be stabilized by the dynamic fuzzy controller (34).

X > 0, (36)

ÂiX + XÂ
T

i − B̂iM̂ i − M̂
T

i B̂
T

i < 0, ∀i, (37)

ÂiX + XÂ
T

i + ÂjX + XÂ
T

j

−B̂iM̂ j − M̂
T

j B̂
T

i − B̂jM̂ i − M̂
T

i B̂
T

j < 0, (38)

∀i, i < j,

where K̂i = M̂ iX
−1.

By using the designed dynamic fuzzy controller, we can make
the output y(t) of the nonlinear system (24) converge to the
output yr(t) of the reference system (26).
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Remark 2. In general, differentiating dynamics of a nonlinear
system with respect to time makes the differential equation
complicated. The complexity makes the fuzzy model construc-
tion and controller design difficult. In [8, 9, 10], we have pro-
posed the switching fuzzy model which can be automatically
constructed by solving optimization conditions, and derived
controller design conditions in terms of LMIs. By utilizing
switching fuzzy control approach, we can automatically and
effectively design the switching fuzzy controller by computer
software for such a complicated system.

The dynamic controller may cause slow convergence and large
error. By using the following theorem, we can guarantee the
maximum value of error vector e(t).

Theorem 4. [6] Assume that initial condition x̃(0) = [ẋ(0)
ẋr(0) e(0)] is known. The constraint ‖eℓ(t)‖ ≤ µℓ is enforced
at all times if the LMIs

[

1 x̃T (0)
x̃(0) X

]

≥ 0,

[

X XC̃
T

ℓ

C̃ℓX µ2

ℓI

]

≥ 0,

hold, where C̃ℓ is the vector to determine which error is
constrained, that is, eℓ(t) = C̃ℓx̃(t), where,

C̃ℓ = [

n
︷︸︸︷

0

n
︷︸︸︷

0

q
︷︸︸︷

c̃ℓ ]

c̃ℓ ∈ R1×q is a vector whose ℓth element is 1 and all the other
elements are 0.

4. DESIGN EXAMPLE

To illustrate the utility of this model following control ap-
proach, we show a simulation example.

Consider the following nonlinear system.

[
ẋ1(t)
ẋ2(t)

]

=

[
x2(t)
− sinx1(t) + (x2(t) + 6)u(t)

]

(39)

y(t) = [1 0]

[
x1(t)
x2(t)

]

(40)

where we assume that |x1(t)| ≤ 10, |x2(t)| ≤ 5, |u(t)| ≤ 5.
In many cases, these assumptions are determined from the
physical specification of the system. For the above nonlinear
system, we consider the model following control problem to
make the output y(t) converge to the output of the following
reference system.

[
ẋr1(t)
ẋr2(t)

]

=

[
−0.01xr1(t) + xr2(t)
−xr1(t) − 0.01xr2(t)

]

+

[
−3
−1

]

(41)

yr(t) = [1 0]

[
xr1(t)
xr2(t)

]

(42)

We define the error system e(t) as follows:

e(t) = y(t) − yr(t) (43)

Firstly, by differentiating the nonlinear system (39), the refer-
ence system (41) and the error system (43) with respect to time
t, we can obtain the following augmented system.










ẍ1(t)
ẍ2(t)

ẍr1(t)
ẍr2(t)
ė(t)










=










ẋ2(t)
−ẋ1(t) cos x1(t)
+ẋ2(t)u(t) + (x2(t) + 6)u̇(t)
−0.01ẋr1(t) + ẋr2(t)
−ẋr1(t) − 0.01ẋr1(t)
ẋ1(t) − ẋr1(t)










(44)

Then, by applying sector nonlinearity concept to the nonlinear
terms cosx1(t), u(t) and x2(t) in the augmented system, the
augmented T-S fuzzy model is constructed as follows:

[
ẍ(t)
ẍr(t)
ė(t)

]

=

8∑

i=1

hi(x(t), u(t))

×
(

Âi

[
ẋ(t)
ẋr(t)
e(t)

]

+ B̂iu̇(t)

)

(45)

where

Â1 = Â5 =








0 1 0 0 0
−1 5 0 0 0
0 0 −0.01 1 0
0 0 −1 −0.01 0
1 0 −1 0 0








,

Â2 = Â6 =








0 1 0 0 0
1 5 0 0 0
0 0 −0.01 1 0
0 0 −1 −0.01 0
1 0 −1 0 0








Â3 = Â7 =








0 1 0 0 0
−1 −5 0 0 0
0 0 −0.01 1 0
0 0 −1 −0.01 0
1 0 −1 0 0








,

Â4 = Â8 =








0 1 0 0 0
1 −5 0 0 0
0 0 −0.01 1 0
0 0 −1 −0.01 0
1 0 −1 0 0








B̂1 = B̂2 = B̂3 = B̂4 =








0
11
0
0
0








,

B̂5 = B̂6 = B̂7 = B̂8 =








0
1
0
0
0








h1(x(t), u(t)) = ĥ11(x1(t)) × ĥ21(u(t)) × ĥ31(x2(t))

h2(x(t), u(t)) = ĥ12(x1(t)) × ĥ21(u(t)) × ĥ31(x2(t))

h3(x(t), u(t)) = ĥ11(x1(t)) × ĥ22(u(t)) × ĥ31(x2(t))

h4(x(t), u(t)) = ĥ12(x1(t)) × ĥ22(u(t)) × ĥ31(x2(t))

h5(x(t), u(t)) = ĥ11(x1(t)) × ĥ21(u(t)) × ĥ32(x2(t))

h6(x(t), u(t)) = ĥ12(x1(t)) × ĥ21(u(t)) × ĥ32(x2(t))

h7(x(t), u(t)) = ĥ11(x1(t)) × ĥ22(u(t)) × ĥ32(x2(t))

h8(x(t), u(t)) = ĥ12(x1(t)) × ĥ22(u(t)) × ĥ32(x2(t))
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ĥ11(x1(t)) =
cosx1(t) + 1

2
, ĥ12(x1(t)) =

1 − cosx1(t)

2

ĥ21(u(t)) =
u(t) + 5

10
, ĥ22(u(t)) =

5 − u(t)

10

ĥ31(x2(t)) =
x2(t) + 5

10
, ĥ32(x2(t)) =

5 − x2(t)

10
For the augmented fuzzy model (45), by simultaneously solving
Theorems 3 and 4 with the initial condition x̃(0) = [−5 4

−2 − 1 0], C̃5 = [0 0 0 0 1; ] and µ5 =
√

10, we can obtain
the following feedback gains.

P = X−1

=








0.0367 0.0032 −0.0383 −0.0045 0.1088
0.0032 0.0003 −0.0034 −0.0004 0.0093
−0.0383 −0.0034 0.0419 0.0047 −0.1152
−0.0045 −0.0004 0.0047 0.0025 −0.0134
0.1088 0.0093 −0.1152 −0.0134 0.4281








K1 = [0.1049 0.0103 − 0.1089 − 0.0132 0.2825]× 103

K2 = [0.1057 0.0104 − 0.1095 − 0.0133 0.2839]× 103

K3 = [0.1089 0.0098 − 0.113 − 0.0137 0.2935]× 103

K4 = [0.109 0.0097 − 0.1129 − 0.0137 0.2932]× 103

K5 = [0.8892 0.0872 − 0.9233 − 0.1136 2.4459]× 103

K6 = [0.9496 0.0932 − 0.9854 − 0.1216 2.6187]× 103

K7 = [0.6815 0.0646 − 0.7077 − 0.0874 1.8830]× 103

K8 = [0.7720 0.0734 − 0.8013 − 0.0992 2.1383]× 103

Figures 1 and 2 show the control result and the control input,
where initial states are x(0) = [−5 4] and xr(0) = [−2 − 1].
By using the designed controller, the output of the nonlinear
system (39) converges to the output of the reference system
(41).

5. CONCLUSIONS

This paper has presented model following control for a class
of nonlinear systems using the fuzzy model-based control ap-
proach. We have shown the construction method of augmented
fuzzy control system for continuous-time nonlinear systems
by differentiating the original nonlinear system and the refer-
ence system. Moreover, we have introduced the dynamic fuzzy
controller which can make the output of the nonlinear system
converge to the output of the reference system, and derived the
controller design conditions in terms of LMIs.

Our future work is to apply this approach to real complicated
systems.
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