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Abstract: The nonlinear optimal Bayes filter is computationally intractable and at present
there exists no analytical method for the nonlinear filtering problem. The standard approaches
for linear approximation in the literature work reasonably well for the class of systems that are
only mildly nonlinear. In this paper, we introduce a filtering approach for the most general class
of nonlinear models by transforming the state space model to an equivalent representation given
by the linear fractional transformation (LFT) model which is nonlinear in the feedback loop
only. Based on an approximation localized to the feedback path only, we derive a closed form
solution to Bayes recursion for the LFT model. We give simulation results to demonstrate the
potential of the proposed filtering approach for applications where conventional methods fail.

1. INTRODUCTION

For linear systems the optimal Bayes filter is the celebrated
Kalman filter. However, most real processes do not exhibit
linear behavior and evolve in a nonlinear fashion with
time. Unfortunately, the nonlinear optimal Bayes filter is
computationally intractable and there exists no analytical
method to determine the optimal solution. For this reason,
nonlinear filtering relies on approximation methods for a
solution that lies in the proximity of the exact solution.
In the literature there are two standard approaches for
linear approximation. The extended Kalman filter (EKF)
applies local linearization of the nonlinear mapping around
the state estimate. The approximation is based on the
assumption that the state estimate lies in the proximity
of the global trajectory. In general, such an assumption
is weak and breaks down for large state covariance. The
unscented Kalman filter (UKF) Julier and Uhlmann [1997,
2004] on the other hand employs the unscented transfor-
mation which is based on statistical linear regression tech-
nique Lefebvre et al. [2002] to approximate the filtering
distribution. While it has been shown that in general UKF
performs better than EKF Julier and Uhlmann [2004],
both methods are more suited to a class of models that
are only mildly nonlinear to give reasonably good approx-
imation.

In recent years sequential Monte Carlo methods have
been applied to nonlinear Bayesian filtering problems
Doucet et al. [2000, 2001]. These methods approximate
the filtering distribution by a set of samples drawn from a
proposal distribution and give better approximation than
the linearization techniques. However, this is conditional
on the convergence of the estimates which is guaranteed
only in the limit that the number of samples is infinity.
The large number of samples needed in practice makes
these methods computationally inefficient. Moreover, these
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methods suffer from inconsistency due to the unreliability
of clustering techniques for extracting the state estimate.

In gain-scheduling control, the linear fractional transfor-
mation model (LFT) K. Zhou and Glover [1996] is applied
extensively to describe nonlinear plants (see e.g., Apkarian
and Gahinet [1995], Apkarian and Adams [1997] and the
references therein). The model gives an equivalent repre-
sentation for any smooth nonlinear mapping in terms of a
linear structure and a simple nonlinear feedback connec-
tion K. Zhou and Glover [1996], Tuan et al. [2003, 2004].
Unlike the feedback linearization technique Isidori [1989],
Khalil [2002] which is applicable in certain situations only,
the LFT model is flexible enough to accommodate the
most general class of nonlinear models. In particular, for
systems involving complicated fractional terms where a
transformation using feedback linearization may not be
possible, the LFT model gives an exact equivalent repre-
sentation. In this paper, we exploit the efficiency of the
LFT model and introduce Bayesian filtering technique for
such models. By localizing the application of the unscented
transformation to the feedback loop only we derive a closed
form solution to Bayes recursion for estimating the state
of a system given a sequence of data. Simulation results
demonstrate that the proposed filter can be applied to
highly nonlinear problems where conventional techniques
do not work.

The paper is organized as follows: section II gives some
background on the nonlinear filtering problem. In section
III we review the standard approaches for linear approxi-
mation and discuss the LFT model before presenting the
main result of this paper, a closed form solution to Bayes
recursion for the LFT model. In section IV we demonstrate
through simulations the performance of the proposed filter.
We conclude with some final comments in section V.

The notations in the paper are standard. In particular, x|y
denotes a random variable x restricted by a realization
of the conditioning random variable y, x ∼ N (x; x̄, Rx)
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denotes a random variable with normal or Gaussian dis-
tribution with expected value or mean x̄ and covariance
Rx, while N (·; x̄, Rx) is its probability density function.

2. BACKGROUND

Consider the state-space model given by

xk+1 = f(xk) + Bkwk, (1)

zk = g(xk) + Dkvk, (2)

where f(xk) and g(xk) denote arbitrary mappings (not
necessarily linear), xk ∈ R

n denotes the state of the system
at time k, zk ∈ R

m denotes the measurement at time k,
Bk ∈ R

n×p and Dk ∈ R
m×q. The process noise wk ∼

(wk; 0, Qk) and the measurement noise vk ∼ N (vk; 0, Rk)
are mutually uncorrelated and independent of the state
xk.

From Bayesian filtering viewpoint, the problem is to esti-
mate the state xk of the system at time k given a sequence
of measurements Zk = {z0, z1, . . . , zk} ⊂ R

m at time k.
Under linear assumption on the mappings f(xk) and g(xk),
the state-space model (1)-(2) can be rewritten as

xk+1 = Akxk + Bkwk, (3)

zk = Ckxk + Dkvk, (4)

where Ak ∈ R
n×n and Ck ∈ R

m×n. For xk with Gaus-
sian distribution, linear transformations involving xk give
Gaussian random variables. Moreover, for two random
variables x ∼ N (x; x̄, Rx) and y ∼ N (y; ȳ, Ry) related lin-
early, the distribution of the random variable x conditional
on y is given by the standard result

x|y∼N
(

·; x̄ + RT
yxR

−1
y (y − ȳ), Rx − RT

yxR
−1
y Ryx

)

. (5)

Given an initial estimate of the state x0 ∼ N (x0; x̄0, Rx,0),
the distribution of z0 in (4) conditional on x0 is z0|x0 ∼
N (·;C0x̄0, C0Rx,0C

T
0 +D0R0D

T
0 ) and the cross-covariance

of z0 and x0 is C0Rx,0. Let z̄0 and Rz,0 denote the mean
and covariance of z0|x0 respectively and Rzx,0 denote the
cross-covariance of the two random variables, then on
arrival of data z0 the distribution of x0 conditional on z0

follows from the standard result (5),

x0|z0∼N
(

·; x̄0+RT
zx,0R

−1
z,0(z0−z̄0),Rx,0−RT

zx,0R
−1
z,0Rzx,0

)

.

(6)
Using the notation x̄0|0 and Rx,0|0 to denote the first
two moments of x0|z0, the prediction of the state x1

in (3) conditional on data z0 is given by x1|z0 ∼
N (·;A0x̄0|0, A0Rx,0|0A

T
0 + B0Q0B

T
0 ). Using this estimate

the distribution of z1|x1 and the cross-covariance of z1 and
x1 can be determined as above. On arrival of data z1, the
estimate of x1|Z1 (x1|z0 also conditional on z1) is given
by (5). The steps above outline the optimal Bayes filter
recursions under linear assumption on f(xk) and g(xk)
known as Kalman filter prediction and update steps to
estimate the conditional random variable xk|Zk at each
time step.

In general, where f(xk) and g(xk) are not restricted
to linear mappings, transformations involving xk do not
give Gaussian random variables. Moreover, for a random
variable y related nonlinearly to x with Gaussian distri-
bution, the standard result (5) does not hold. With no
tractable method to estimate the conditional random vari-
able xk|Zk, nonlinear filtering involves an approximation
for y = f(xk) to propagate the moments of the state

to the next time step given an estimate of the state at
time k. Similarly, an approximation for y = g(xk) given
the distribution of the predicted state, gives the required
estimate for xk|Zk on applying the standard result (5).
In the literature the following two approaches for linear
approximation are standard. The extended Kalman filter
(EKF) uses the first-order Taylor series approximation of
f(xk) and g(xk) around x̄k. The approximation neglects
higher order terms of the series under the assumption
that x̄k lies in the neighborhood of the global trajectory.
This poses a potential problem if either Rx,k is large or
f(xk) and g(xk) depart from linear behavior. A better ap-
proximation given by the unscented Kalman filter (UKF)
Julier and Uhlmann [1997, 2004], Lefebvre et al. [2002]
applies the unscented transformation to approximate the
filtering distribution. This approach is based on the as-
sumption that it is easier to approximate the distribution
of a random variable than an arbitrary nonlinear mapping.
Despite better performance, UKF gives reasonably good
approximation for mildly nonlinear systems only.

The efficiency and ease of implementation of the LFT
model have been demonstrated in Tuan et al. [2004] by
applying it to a highly nonlinear control problem. This
gives the motivation for introducing Bayesian filtering for
the LFT model to address the nonlinear filtering problem
for a general class of models which to our knowledge has
not been considered. The simple nonlinear structure in the
feedback loop only compounded by the highly uncorrelated
feedback connection give better approximation than con-
ventional methods for highly nonlinear models.

3. FILTERING FOR THE LFT MODEL

3.1 The linear fractional transformation (LFT) model

Given a random variable x = [ x(1), x(2), . . . , x(n) ]T

with mean x̄ = [ x̄(1), x̄(2), . . . , x̄(n) ]T and covari-
ance Rx and the observation y = g(x) where g(x) =
[ g1(x), g2(x), . . . , gm(x) ]T is a smooth nonlinear map-
ping, the local linearization of g(x) around x̄ gives

g(x) ≈
∂g(x)

∂x

∣

∣

∣

∣

x=x̄

(x − x̄) + g(x̄). (7)

Based on this approximation EKF estimates y given x
with mean g(x̄) and covariance ARxAT and the cross-
covariance of the two random variables as ARx where A
denotes the derivative of g(x) w.r.t. x evaluated at x̄. The
estimate of x|y is then given by applying the standard
result (5).

The observation y can be expressed in terms of the
conditional expectation of y given x as

g(x) = RyxR−1
x (x − x̄) + g(x̄) + e, (8)

where Ryx denotes the cross-covariance of y and x. The
error e = y − E{y|x} is independent of x and E{·}
denotes the expectation operator. UKF applies the so
called unscented transformation which is based on the
statistical linear regression of g(x) around x̄,

g(x) ≈ (Ax + b) + e, (9)

where A = RyxR−1
x and b = g(x̄)−Ax̄. The procedure for

the unscented transformation is as follows: p regression
points xi, i = 1, . . . , p are selected around x̄ such that
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x̄ =
1

p

p
∑

i=1

xi, Rx =
1

p

p
∑

i=1

(xi − x̄)(xi − x̄)T . (10)

With Rx > 0, Cholesky decomposition of Rx =
∑n

i qiq
T
i .

A choice of the regression points satisfying (10) is 2κ points
x0, n points xi and n points xn+i with

x0 = x̄, xi = x̄ +
√

p/2 qi, xn+i = x̄ −
√

p/2 qi, (11)

where κ denotes degree of freedom in the selection of the
regression points Julier and Uhlmann [1997]. Let yi =
g(xi), i = 1, 2, . . . , p, then the mean and covariance of y
and the cross-covariance with x are approximated by the
distribution of the regression points yi and xi, i = 1, . . . , p
as

ȳ =
1

p

p
∑

i=1

yi, Ry =
1

p

p
∑

i=1

(yi − ȳ)(yi − ȳ)T , (12)

Ryx =
1

p

p
∑

i=1

(yi − ȳ)(xi − x̄)T . (13)

The conditional expectation and covariance of x|y are then
given by substituting (12) and (13) in (5). An empirical
study of the performance of EKF and UKF has shown that
in general the latter approach gives better approximation
Julier and Uhlmann [1997, 2004], LaViola [2003].

From control theory it is known that the observation
y = g(x) admits the LFT model K. Zhou and Glover
[1996], Tuan et al. [2003, 2004],

[

y
y∆

]

=

[

A B
C D

] [

x
w∆

]

, (14)

w∆ = ∆(x)y∆, (15)

where A ∈ R
m×n, B ∈ R

m×p∆ , C ∈ R
p∆×n and D ∈

R
p∆×p∆ . The auxiliary variables w∆ ∈ R

p∆ and y∆ ∈ R
p∆

are related via the feedback connection ∆(x) which has a
simple structure of the form ∆(x) =

∑n

j=1
∆jx(j). The

elimination of the auxiliary variables in (14)-(15) gives the
standard LFT model K. Zhou and Glover [1996],

y =
(

A + B∆(x)
(

I − D∆(x)
)−1

C
)

x, (16)

where ∆(x) enters the relation in a highly nonlinear fash-
ion. Using either (7) or (9) to linearize y in the standard
LFT form gives an approximation that is equivalent to
EKF or UKF respectively. Instead, the representation
(14)-(15) is nonlinear in the feedback loop only. Given
the first two moments of x, the distribution of w∆ in (15)
and the cross-covariance with x can be approximated using
either (7) or (9). From (14), y is a linear transformation
of [ x, w∆ ]T , applying (5) gives the estimate of x|y.

Suppose y = f(x) + B1w where B1 ∈ R
m×p and w ∼

N (w; 0, Rw) is independent of x. Then y admits the LFT
model

y = Ax + B1w + B2w∆, (17)

y∆ = Cx + Dw∆, (18)

w∆ = ∆(x)y∆, (19)

with B2 ∈ R
m×p∆ . Let w∆i = ∆(xi)y∆i, i = 1, . . . , p

denote the transformed regression points with y∆i ≈ Cxi+
Dw̄∆ where w̄∆ = E{w∆}. Then, the first two moments
of w∆ are determined from the distribution of the points
w∆i as (12),

w̄∆ =

(

I − ∆(x̄)D

)−1
1

p

∑

i

∆(xi)Cxi, (20)

R∆ =
1

p

p
∑

i=1

(w∆i − w̄∆)(w∆i − w̄∆)T . (21)

where ∆(x̄) = 1/p
∑

i ∆(xi). The cross-covariance of w∆

and x is computed from the distribution of w∆i and xi as
(13),

R∆x =
1

p

p
∑

i=1

(w∆,i − w̄∆)(xi − x̄)T . (22)

From (17), the random variable y is Gaussian with distri-
bution N (·; ȳ, Ry) where

ȳ = Ax̄ + B2w̄∆, (23)

Ry = ARxAT + B1RwBT
1 + B2R∆BT

2 +

ART
∆xBT

2 + B2R∆xAT , (24)

and the cross-covariance of y and x is given by

Ryx = ARx + B2R∆x. (25)

The estimate of x|y then follows immediately from (5).
Based on the results (20)-(22), in the next subsection we
give a closed form solution to Bayes recursion for the LFT
representation of the state space model (1)-(2).

3.2 Closed form Bayes recursion

The state space model (1)-(2) admits the following equiva-
lent representation which is nonlinear in the feedback loop
only

xk+1 = Akxk + B1,kwk + B2,kw∆k, (26)

zk = C1,kxk + D11,kvk + D12,kw∆k, (27)

z∆k = C2,kxk + D22,kw∆k, (28)

w∆k = ∆(xk)z∆k, (29)

where Ak ∈ R
n×n, B1,k ∈ R

n×p, B2,k ∈ R
n×p∆ , C1,k ∈

R
m×n, D11,k ∈ R

m×q, D12,k ∈ R
m×p∆ , C2,k ∈ R

p∆×n,
and D22,k ∈ R

p∆×p∆ . w∆k and z∆k denote auxiliary
variables independent of the noise processes wk and vk.
Under the standard assumption that wk and vk are mutu-
ally uncorrelated and independent of xk, we propose the
following.

Proposition 1. Suppose that at time k − 1 the state xk−1

conditional on the data Zk−1 is Gaussian with distribution

xk−1|Zk−1 ∼ N (·;mk−1, Pk−1). (30)

Then, the state propagated to the next time step is also
Gaussian

xk|Zk−1 ∼ N (·;mk|k−1, Pk|k−1), (31)

with the moments

mk|k−1 = Ak−1mk−1 + B2,k−1w̄∆k−1, (32)

Pk|k−1 = Ak−1Pk−1A
T
k−1 + B1,k−1Qk−1B

T
1,k−1+

B2,k−1R∆k−1B
T
2,k−1 + Ak−1R

T
∆x,k−1B

T
2,k−1+

B2,k−1R∆x,k−1A
T
k−1. (33)

Proof. Given the estimate of xk−1|Zk−1 with mean mk−1

and covariance Pk−1, the distribution of w∆k−1 is deter-
mined from (20)-(21) and the cross-covariance of w∆k−1

and xk−1 is given by (22). From (26), xk given Zk−1
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is a sum of Gaussian random variables with mean and
covariance (32)-(33). 2

Proposition 2. Suppose that the predicted state xk condi-
tional on the data Zk−1 is Gaussian

xk|Zk−1 ∼ N (·; mk|k−1, Pk|k−1). (34)

Then, on arrival of data zk the estimate of xk|Zk−1 also
conditional on zk is given by

xk|Zk ∼ N (·; mk, Pk), (35)

where

mk = mk|k−1 + Kk(zk − ηk) (36)

Pk = Pk|k−1 − Kk(C1,kPk|k−1 + D12,kR∆x,k|k−1), (37)

with

ηk = C1,kmk|k−1 + D12,kw̄∆k|k−1 (38)

Kk =
(

Pk|k−1C
T
1,k + RT

∆x,k|k−1D
T
12,k

)(

C1,kPk|k−1C
T
1,k+

D11,kRkDT
11,k + D12,kR∆k|k−1D

T
12,k+

C1,kRT
∆x,k|k−1D

T
12,k+D12,kR∆x,k|k−1C

T
1,k

)−1
. (39)

Proof. Given the mean mk|k−1 and covariance Pk|k−1 of
xk|Zk−1, the estimate of w∆k and the cross-covariance
with xk are computed as (20)-(22). From these estimates
the distribution of zk and the cross-covariance with xk

are determined. On arrival of the data zk, the estimate of
xk|Zk follows from (5) with mean and covariance given by
(36)-(37). 2

Propositions 1 and 2 give closed form expressions for
the recursive computation of the moments of xk|Zk−1

and xk|Zk respectively under standard assumptions. The
propositions are similar to Kalman prediction and data
update steps with the addition of the terms involving
the moments of the auxiliary random variable w∆k−1 in
Proposition 1 and moments of w∆k|k−1 in Propositions 2.

4. SIMULATION RESULTS

In this section we present simulation results for two exam-
ples to demonstrate the performance of the proposed filter.
Since UKF gives a performance that is better than that
using EKF in general Julier and Uhlmann [1997, 2004],
Lefebvre et al. [2002], we consider the performance of UKF
as a benchmark in example I. For the problem considered
in example II, EKF and UKF do not converge to a solution
and a comparison is therefore not possible.

Example I Suppose xk ∈ R
2 denotes the state of a

system at time k where xk = [ xk(1) xk(2) ]T evolves in
a nonlinear fashion with time in the following manner,

xk+1 =

[

0 1
−x2

k(1) −0.1

]

xk +

[

0 0
10 0

]

wk, (40)

where wk ∼ N (·; 0, Rw) with Rw = 0.03I2 and Ia denotes
a×a identity matrix. The measurement model (4) is given
by

zk = [ 1 0 ]xk + vk, (41)

where vk ∼ N (·; 0, Rv) with Rv = 0.7. The nonlinear state
space model (40)-(41) can be represented in the LFT form
(26)-(29) with

Ak =

[

0 1
0 −0.1

]

, B1,k =

[

0 0
10 0

]

, B2,k =

[

0 0
0 −1

]

,

C1,k = [ 1 0 ] , D11,k = 1, D12,k = 0,

C2,k =

[

1 0
0 0

]

, D22,k =

[

0 0
1 0

]

. (42)

The feedback connection has the simple structure ∆(xk) =
xk(1)I2. The true trajectory of the state xk for 50 time
steps is shown in Fig. 1. For an initial estimate of x0 with
mean x̄0 = [ 0, 0 ]T and covariance Rx,0 = I2, the estimate
of the state at each time step given by the proposed filter
along with the true trajectory are shown in Fig. 2. In
Fig. 3 the covariance of the error in the estimate obtained
using the proposed method and UKF are shown. Fig. 3
(a) depicts that the error using the proposed technique
is bounded within 0.5 for the duration of the simulation
while using UKF the error repeatedly exceeds this bound.
A similar trend observed in Fig. 3 (b) suggests that the
proposed filter gives better approximation than UKF.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time step

x
k

x
k
(1)

x
k
(2)

Fig. 1. Trajectory of the state xk = [ xk(1) xk(2) ]T .

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

time step

x
k
(1)

E{x
k
(1)}

(a)

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

time step

x
k
(2)

E{x
k
(2)}

(b)

Fig. 2. True trajectory and the estimate of the state
E{xk|Zk} given by the proposed filter.

4.1 Example II

Consider the highly nonlinear system
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0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5
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E
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k
(1
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}2 LFT model

UKF

(a)

0 5 10 15 20 25 30 35 40 45 50
0
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E
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k
(2
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E

{x
k
(2

)}
}2

(b)

Fig. 3. Covariance of the error in the estimate using the
proposed filter and UKF.

xk+1 =
(

Q0 + Q1x
3
k(1) + Q2x

3
k(2) + Q3xk(1)x2

k(2)+

Q4xk(1) + Q5xk(2)
)

xk +

[

−2 0
1 0

]

wk, (43)

zk = 100 [−1 1 ]xk + vk, (44)

where

Q0 =

[

−0.7 −1.0
0.1 −0.5

]

, Q1 =

[

0.3 0.2
0.1 0.2

]

,

Q2 =

[

0.2 0.1
0.2 0.3

]

, Q3 =

[

0.4 0.1
0.15 0.1

]

,

Q4 =

[

0.25 0.25
0.1 0.25

]

, Q5 =

[

0.25 0
0.1 0.25

]

, (45)

and wk ∼ N (·; 0, Rw) with Rw = 0.3I2 and vk ∼
N (·; 0, Rv) with Rv = 30. The system (43)-(44) admits
an exact equivalent LFT model (26)-(29) with

Ak =

[

−0.7 −1.0
0.1 −0.5

]

, B1,k =

[

−2 0
1 0

]

,

B2,k =

[

0.25 0 0.3 0 0 0.1 0.2 0.3 0 0.4 0.5
0.1 0 0.1 0.25 0 0.3 0.2 0.3 0 0.15 0.35

]

,

C1,k =

[

1 0 0 0
0 0 1 0

]

, D11,k = 1, D12,k = 0,

CT
2,k =

[

1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0

]

,

D22,k =

[

01,5 01,5 0
L 05 05,1

M N 05,1

]

, (46)

where 0a,b denotes a× b zero matrix, 0a denotes a×a zero
matrix,

L =

[

I2 02,1 02

01,2 0 01,2

02 02,1 I2

]

,M =







[

0 1
0 0

]

02,1

[

0 0
0 1

]

[ 1 0 ] 0 [ 0 0 ]
02 02,1 02






,

N =







02 02,1 02

01,2 0 02,1

02 02,1

[

1 0
0 0

]






, (47)

and the feedback connection has the form

∆(xk) = diag
(

[ xk(1), xk(1), xk(1), xk(2), xk(2),

xk(2), xk(2), xk(1), xk(2), xk(2), xk(2) ]
)

. (48)

The trajectory of the state xk as it evolves with time for 50
time steps is shown in Fig. 4. In Fig. 5 the true trajectory
and the estimate of the state at each time step using the
proposed filter are shown given an initial estimate of x0

with the first two moments x̄0 = [ 0, 0 ]T and covariance
Rx,0 = 0.5I2. The covariance of the error in the estimates
is shown in Fig. 6. The results show that the proposed
filter gives reasonably good estimates with the covariance
of the error within 0.3 for the duration of the simulation.
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Fig. 4. Trajectory of the state xk = [ xk(1) xk(2) ]T .
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Fig. 5. Trajectory of the state and the estimate E{xk|Zk}
given by the proposed filter.

5. CONCLUSION

A nonlinear filtering approach for the LFT model is intro-
duced. The LFT model gives an equivalent representation
for any smooth nonlinear mapping which makes it flexi-
ble enough to accommodate a general class of nonlinear
problems. The representation is characterized by a linear
structure and a simple feedback connection. By applying
the unscented transformation to the feedback path only
we derive a closed form solution for recursive estimation
of the moments of the state conditional on a data sequence.
Simulation results demonstrate that the proposed filter is a
promising candidate for nonlinear filtering involving highly
nonlinear models.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14514



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

time step

E
{x

k
(1

)−
E

{x
k
(1

)}
}2

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

time step

E
{x

k
(2

)−
E

{x
k
(2

)}
}2

(b)

Fig. 6. Covariance of the error in the estimate using the
proposed filter.
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