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Abstract: Actuator fault diagnosis problem is studied for a class of nonlinear systems with
relative degrees from the inputs to the outputs higher than one. This type of nonlinear systems
include many mechanical systems, and their actuator fault diagnosis problem can be very
challenging because of nonlinearities and high relative degrees. In this paper, in order to solve
the actuator fault diagnosis problem for the considered nonlinear systems, 2nd-order and 3rd-
order sliding mode differentiators are used and actuator fault diagnosis schemes are proposed
to achieve fault detection and isolation. Computer simulations are carried out to compare
the efficacy of the proposed fault diagnosis schemes on a laboratory 3D Crane model with
noisy measurements. The fault diagnosis schemes are further tested through experiments on a
laboratory 3D Crane in terms of actuator fault detection and isolation.

1. INTRODUCTION

Nonlinearities and unknown inputs (for example, uncer-
tainties and/or unknown disturbances) present real chal-
lenges to model based fault diagnosis. To deal with various
types of unknown inputs, one most often used strategy is
to remove the effect of the unknown inputs completely by
designing fault diagnosis schemes that are invariant to the
unknown inputs. Some unknown input observer (UIO) and
sliding mode observer (SMO) based schemes adopt this
strategy. For example, UIO based schemes can be found
in Saif and Guan (1993); Chen et al. (1996); Xiong and Saif
(1998), while SMO based ones can be found in Sreedhar
et al. (1993); Yang and Saif (1995); Xiong and Saif (2001);
Jiang et al. (2004); Floquet et al. (2004); Chen and Saif
(2005).

To deal with nonlinearities, several attempts have been
made on developing nonlinear fault diagnosis schemes.
Nonlinear UIO based schemes can be found in Yang and
Saif (1997) for bilinear systems, in Yaz and Azemi (1998);
Rajamani and Ganguli (2004); Chen and Saif (2006) for
Lipschitz nonlinear systems, and in Seliger and Frank
(1991a,b) for a more general class of nonlinear systems.
Nonlinear SMO based schemes have been proposed in
Sreedhar et al. (1993); Yang and Saif (1995); Xiong and
Saif (2001); Jiang et al. (2004); Floquet et al. (2004); Chen
and Saif (2005). High-gain observer based nonlinear fault
diagnosis scheme was designed in Hammouri et al. (1999).
Using a geometric approach, nonlinear fault diagnosis
schemes were designed in Persis and Isidori (2001); Join
et al. (2005).

Conventional UIOs and SMOs proposed for fault diagnosis
often require certain matching conditions. One matching
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condition is that the relative degrees from the unknown
and/or known inputs to the outputs be one. This require-
ment can not be satisfied by many mechanical systems.
Removing this relative degree limitation of observer based
design presents a challenge in fault diagnosis, especially
in actuator fault diagnosis. High order sliding mode tech-
niques have been found suitable for dealing with the rela-
tive degree difficulty (Levant (2003); Floquet and Barbot
(2004); Davila et al. (2005); Msirdi et al. (2006)). Because
of this, they are very promising in fault diagnosis of sys-
tems with high relative degrees. In Chen and Saif (2006)
and also in Chen and Saif (2007a), high order sliding mode
differentiators were used in actuator fault diagnosis for
uncertain linear systems with arbitrary relative degrees.
The use of high order sliding mode differentiators in ac-
tuator fault diagnosis was extended to a class of affine
nonlinear systems with unknown inputs in Chen and Saif
(2007b). Higher sliding mode observers were also used for
the purpose of fault diagnosis. In Wu and Saif (2007) and
Edwards et al. (2007), 2nd-order and/or 3rd-order sliding
mode observers were designed to achieve fault diagnosis
for systems with relative degrees of two.

In this paper, the idea of using high order sliding mode
differentiators in actuator fault diagnosis is applied to a
class of nonlinear systems with relative degrees equal to
or higher than two, and actuator fault diagnosis schemes
using 2nd-order and 3rd-order sliding mode differentiators
are proposed to achieve fault detection and isolation. The
purpose of this paper is to test and compare the efficacy of
actuator fault diagnosis schemes using high order sliding
mode differentiators through intensive computer simula-
tions and experiments on a laboratory 3D Crane.

2. SYSTEM OF INTEREST AND PROBLEM
FORMULATION

Consider a class of nonlinear systems described as below
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q̇1(t) = q2(t)

q̇2(t) = f(q1(t), q2(t)) + g(q1(t), q2(t))u

y(t) = q1(t) (1)

where q1 ∈ Rn and x = (qT
1 (t) qT

2 (t))T is the sys-
tem state vector, y(t) and u(t) are the output vector
and input vector respectively. Moreover, f(q1(t), q2(t)) =
(f1(q1(t), q2(t)) · · · fn(q1(t), q2(t)))

T is an n−dimensional
function vector and g(q1(t), q2(t)) is a function matrix in
Rn×m. u(t) = (u1(t) · · · um(t))T . In the remaining part
of this paper, the dependence on time t will be dropped
off for simplicity, for example, q1(t) and f(q1(t), q2(t)) will
be written as q1 and f(q1, q2), respectively.

• Assumption A1: All the functions in f(q1, q2) and
g(q1, q2) are known.

• Assumption A2: g(q1, q2) is of full column rank in the
region of interest.

It is easy to see that all the relative degrees from the inputs
in u to the outputs in y are equal to or higher than two. If
f(q1, q2) and g(q1, q2) contain general nonlinear functions,
nonlinear observer design for (1) is quite challenging if
high order sliding mode techniques are not used. Because
of this, actuator fault diagnosis for the system is difficult
without using high order sliding mode techniques. This
is the main motivation for using high order sliding mode
differentiators in actuator fault diagnosis.

For system (1), the following problem is formulated.

Actuator Fault Diagnosis Problem:
Under the condition that assumptions A1 and A2 are
satisfied, design actuator fault diagnosis schemes for (1)
such that they can detect and isolate actuator faults.

3. HIGH ORDER SLIDING MODE
DIFFERENTIATORS

As will be seen in the next section, for system (1), if q̇2 and
q2 were known, actuator fault diagnosis would become an
easy task under assumptions A1 and A2. Therefore, the
main task of actuator fault diagnosis is to find ways to get
q̇2 and q2 based on the measurements provided by y. Note
that q2 = ẏ and q̇2 = ÿ, obtaining q̇2 and q2 is equivalent
to obtaining the estimates for the first and second order
derivatives of y.

In order to obtain the first and second order derivatives
of y, a recently developed high order sliding mode differ-
entiator in Levant (2003) is introduced in the following
subsection.

3.1 A high order sliding mode differentiator

Let f(t) = f0(t) + n(t) be a function on [0,∞), where
f0(t) is an unknown base function with the n−th deriv-
atives having a Lipschitz constant L, and n(t) is a
bounded Lebesgue-measurable noise with unknown fea-
tures. The problem of high-order sliding-mode robust dif-
ferentiator design is to find real-time robust estimations

of ḟ0(t), f̈0(t), · · · , f
(n)
0 (t) being exact when n(t) = 0. An

HOSMRD proposed in Levant (2003) takes on the follow-
ing form.

ż0 = v0

v0 =−λ0|z0 − f(t)|n/(n+1)sign(z0 − f(t)) + z1

ż1 = v1

v1 =−λ1|z1 − v0|
(n−1)/nsign(z1 − v0) + z2

...

żn−1 = vn−1

vn−1 =−λn−1|zn−1 − vn−2|
1/2sign(zn−1 − vn−2) + zn

żn =−λnsign(zn − vn−1), (2)

where λ0, λ1, · · · , λn are positive design parameters.

If we let n = 2 and n = 3, second order and third
order sliding mode differentiators can be obtained from
(2) respectively, which can provide the estimates for the
first and second order derivatives of y.

3.2 Properties of high order sliding mode differentiators

The following two theorems can be derived from the results
in Levant (2003).

Theorem 1. Assume that the 3rd order derivative of y has
a Lipschitz constant, and there is no measurement noise
and all the parameters are chosen properly, then after
a finite transient, both the 2nd-order and the 3rd-order
sliding mode differentiators can ensure

z0 = y; z1 = ẏ; z2 = ÿ. (3)

Theorem 2. Assume that the 3rd order derivative of y has
a Lipschitz constant, and the magnitude of the measure-
ment noises is less than ǫ and all the parameters are chosen
properly, then after a finite transient, the 2nd-order sliding
mode differentiators can ensure

|z1 − ẏ| ≤ µ21ǫ
2/3,

|z2 − ÿ| ≤ µ22ǫ
1/3,

(4)

and the 3rd-order sliding mode differentiators can ensure

|z1 − ẏ| ≤ µ31ǫ
3/4,

|z2 − ÿ| ≤ µ32ǫ
1/2,

(5)

where those µs are vectors of certain positive constants
depending only on the parameters of the differentiator and
|χ| is understood as (|χ1| · · · |χn|)

T .

It is interesting to note the above two high order sliding
mode differentiators can be used as observers for (1)
because they provide the estimate for ẏ, which is q2.
However, high order sliding mode differentiators act more
than observers because they provide high order derivatives
of y as well.

When measurement noises are present and ǫ is small, it
is very interesting to note that the 3rd-order sliding mode
differentiators may provide a more accurate estimate of
ÿ and ẏ than the 2nd-order sliding mode differentiators.
However, 2nd-order sliding mode differentiators do not

require f
(3)
0 (t) to exist and be bounded as 3rd-order sliding
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mode differentiators do. Therefore, at situations where
f0(t) is smooth enough, it is expected the 3rd-order sliding
mode differentiators should perform better than the 2nd-
order sliding mode differentiators. While at situations

where f
(3)
0 (t) does not exist everywhere but f

(2)
0 (t) does,

the 2nd-order sliding mode differentiators might have a
better performance.

4. ACTUATOR FAULT DIAGNOSIS SCHEMES
USING HIGH ORDER SLIDING MODE

DIFFERENTIATORS

For (1), if q2 and q̇2 were measured, then, based on
assumption A2, u could be obtained as

u = (gT (q1, q2)g(q1, q2))
−1gT (q1, q2)[q̇2 − f(q1, q2)] (6)

Because q2 and q̇2 are not measured, they have to be
estimated if one wants to use (6). Note that q2 = ẏ and
q̇2 = ÿ, both the 2nd-order and the 3rd-order sliding mode
differentiators presented in the previous section can be
used to estimate q2 and q̇2. In this way, u can be estimated
as

û = (gT (q1, z1)g(q1, z1))
−1gT (q1, z1)[z2 − f(q1, z1)] (7)

Denote the ideal control as u∗, which can always be
computed. When there is no actuator fault, u = u∗.
However, when actuator faults are in presence, u 6= u∗.
Based on this observation and using (7), the following
residuals are defined

rj = |ûj − u∗

j |, j = 1, 2, · · · , m. (8)

In noise free situation, because high order sliding mode
differentiators are exact, one has û = u after the transient
period. If there is no actuator fault, one will have rj = 0
for all j = 1, 2, · · · , m. Similarly, if the magnitude of the
measurement noise is small, rj for all j = 1, 2, · · · , m
should also be small.

Based on the above discussions, two actuator fault diagno-
sis schemes using the 2nd order (3rd order) sliding mode
differentiators given by (2) are presented as follows.

(1) Using the 2nd order (3rd order) sliding mode differen-
tiators given by (2) to obtain z1 and z2 as the estimate
of ẏ and ÿ.

(2) Compute u∗ according to controller design.
(3) For each j = 1, 2, · · · , m, compute rj = |ûj − u∗

j |.
(4) Choose a threshold ǫThre,j for each |rj(t)|.
(5) For each 1 ≤ j ≤ m, compare the residual |rj(t)| with

the threshold ǫThre,j. If any residual goes beyond its
corresponding threshold, faults are detected.

(6) Count the number of residuals that exceed their
thresholds, and it is the number of actuator faults.
The faulty actuators are isolated as actuators corre-
sponding to those residuals exceeding their thresh-
olds.

Because measurement noises and other unconsidered un-
certainties may exist, ǫThre,j should be chosen not too
small. On the other hand, too large ǫThre,j may increase
the missed detections. Trade-off has to be made on the
choice of a suitable threshold.

Fig. 1. 3D Crane provided by the InTeCo Ltd

Remark 1. The only difference in the two fault diagnosis
schemes is that different high order sliding mode differ-
entiators are used. The reason for using two different
high order sliding mode differentiators is to compare their
effects in derivative estimation and in fault diagnosis as
well.

5. APPLICATIONS TO A LABORATORY 3D CRANE:
SIMULATIONS AND EXPERIMENTS

In this section, a brief introduction of a laboratory 3D
Crane and its nonlinear mathematical model is first pre-
sented. Then, some simulations are carried out to show
the efficacy of the proposed actuator fault fault diagnosis
schemes. Finally, some experiments are provided to test
the effect of the 3rd order scheme in practical systems.

5.1 A laboratory 3D Crane and its nonlinear mathematical
model

The experimental setup of the 3D Crane provided by the
InTeCo Ltd is shown in Figure 1.

It consists of a rail moving along the frame, a cart moving
on the rail, and a payload being shifted up and down. The
system has three control inputs.

The crane model used for simulations is the 3D Crane
simulation model provided by the InTeCo Ltd, which takes
the following form

q̇1 = q2

q̇2 = f(q1, q2) + g(q1, q2)u

y = q1 (9)

where q1 = (x1 x3 x5 x7 x9)
T , q2 = (x2 x4 x6 x8 x10)

T , x1

is the distance of the cart from the center of the rail, x3

is the distance of the rail with the cart from the center of
the construction frame, x5 is the acute angle between the
lift-line of the payload and the rail, x7 is the acute angle
between the lift-line of the payload and the vertical line,
and finally x9 is the length of the lift-line. u = (u1 u2 u3)

T

with u1, u2, and u3 being control components along the
directions related to x1, x3, and x9.

f(q1, q2) = (f1 f2 f3 f4 f5)
T and g(q1, q2) = (gij)5×3 are

given as follows

f1 = −T1x2 − Tsysign(x2)

−µ1cos(x5)(−T3x10 − Tszsign(x10)),
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f2 =−T2x4 − Tsxsign(x4)

−µ2sin(x5)sin(x7)(−T3x10 − Tszsign(x10)),

f3 =−(T1x2 + Tsysign(x2))sin(x5)/x9

+ (sin(x5)cos(x5)x
2
8x9/x9 + gcos(x5)cos(x7))/x9

+
µ2sin(x5)cos(x5)sin

2(x7)(−T3x10 − Tszsign(x10))

x9

+ cos(x5)sin(x7)(T2x4 + Tsxsign(x4))/x9

− µ1sin(x5)cos(x5)(−T3x10 − Tszsign(x10))/x9

− 2x6x10/x9,

f4 =−(gsin(x7) + 2x6x8x9cos(x5))/(x9sin(x5))

+
µ2sin(x5)sin(x7)cos(x7)(−T3x10 − Tszsign(x10))

x9sin(x5)

− 2x8x10sin(x5)/(x9sin(x5))

+ cos(x7)(T2x4 + Tsxsign(x4))/(x9sin(x5)),

f5 = cos(x5)(T1x2 + Tsysign(x2))

+ x2
8x9sin

2(x5) + gsin(x5)cos(x7)

+ µ2sin
2(x5)sin

2(x7)(−T3x10 − Tszsign(x10))

+ sin(x5)sin(x7)(T2x4 + Tsxsign(x4))

+ µ1(−T3x10 − Tszsign(x10))

− µ1sin
2(x5)(−T3x10 − Tszsign(x10))

+ x2
6x9 − T3x10 − Tszsign(x10), (10)

g11 = k1, g12 = 0, g13 = k3µ1cos(x5),

g21 = 0, g22 = k2, g23 = k3µ2sin(x5)sin(x7),

g31 = k1sin(x5)/x9, g32 = −k2cos(x5)sin(x7)/x9,

g33 = k3
−µ2sin(x5)cos(x5)sin

2(x7) + µ1sin(x5)cos(x5)

x9
,

g41 = 0, g42 = −k2cos(x7)/(x9sin(x5)),

g43 =−k3µ2sin(x5)sin(x7)cos(x7)/(x9sin(x5)),

g51 =−k1cos(x5), g52 = −k2sin(x5)sin(x7),

g53 = k3(−µ2sin
2(x5)sin

2(x7) − µ1 + µ1sin
2(x5) − 1).

(11)

The parameters are

µ1 = 0.4156, µ2 = 0.1431,

k1 = 49.8636, k2 = 16.0336, k3 = −129.8258,

T1 = 11.5242, T2 = 26.3263, T3 = 217.3535,

T sy = 6.4935, T sx = 1.4903, T sz = 20.8333. (12)

5.2 Simulation results on 3D Crane model

In all simulations, noises at the level of 10−6 are added to
the five measured states, and the noisy state measurements
are sent directly to the high order sliding mode differentia-
tors to get the needed derivatives. A PID controller is used
to control the system outputs x1, x3, x9 to track three ref-
erence outputs: yr1(t) = 0.2+0.1sin(0.1πt), yr2(t) = 0.15+
0.15sin(0.1πt), yr3(t) = 0.2 + 0.1sin(0.1πt), respectively.
The λ parameters are chosen as λ0 = 10, λ1 = 20, λ2 =
30, λ3 = 40. The sampling period is 0.002.
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Fig. 2. Input estimation performance comparison of 2nd
and 3rd order sliding mode differentiators: no filter
case
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Fig. 3. Input estimation performance comparison of 2nd
and 3rd order sliding mode differentiators: filtered
case

The performance of 2nd and 3rd order sliding mode dif-
ferentiators in terms of input estimation error is presented
in Fig. 2. The figure shows that 3rd order sliding mode
differentiators provided a better input estimation on the
time interval where the system outputs are smooth.

Since the input estimation errors provided by both 2nd
and 3rd order sliding mode differentiators in Fig. 2 are
very noisy, it is filtered in the remaining simulations and
in all experiments. After filtering the input estimation
errors, the performance of 2nd and 3rd order sliding mode
differentiators is given in Fig. 3, where a clearly better
performance of 3rd order sliding mode differentiators can
be observed.

Because the system model involves sign functions, for
the chosen reference outputs, the outputs are not smooth
enough to have third order derivatives everywhere. Around
those time constants where third order derivatives do not
exist, a comparison is also carried out and is shown in
Fig. 4, where 2nd order sliding mode differentiators clearly
outperform 3rd order sliding mode differentiators.

In terms of fault diagnosis, both schemes using 2nd and 3rd
order sliding mode differentiators are tested. Two actuator
faults both occurred at 50s are simulated, where the first
actuator is stuck at a constant, that is, u1 = 0 after
t > 50s, and the third one has a loss of effectiveness fault,
that is, u3(t) = 0.5u∗

3(t) after t > 50s.

The fault detection and isolation results using both
schemes are presented in Figure 5 to Figure 6.

The residuals are chosen according to the normal input
estimation behaviors, and the first and third residuals
have to be chosen relatively large (0.1,0.15 respectively)
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Fig. 4. Input estimation performance comparison of 2nd
and 3rd order sliding mode differentiators: no third
order derivative case
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Fig. 5. Actuator fault detection and isolation: the scheme
using 2nd order sliding mode differentiators
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Fig. 6. Actuator fault detection and isolation: the scheme
using 3rd order sliding mode differentiators

because of the existence of the sign functions in the system
model. In both Figure 5 to Figure 6, it can be seen that
faults are detected because in each figure, two residuals
exceed their thresholds. Actually, for the scheme using
2nd order sliding mode differentiators, the two actuator
faults are detected within 0.162s and 0.974s respectively.
While for the scheme using using 3rd order sliding mode
differentiators, the two actuator faults are detected within
0.182s and 0.968s respectively. Correct isolation decision
can be made within one second after the occurrence of
faults, that is, the first and the third actuators are faulty,
while the second one is normal. In fact, we have found in
simulations that, if we let Tsy = Tsx = Tsz = 0, the
thresholds can be chosen very small at the level of 0.001,
see Fig. 3 for reference.

5.3 Experimental results on 3D Crane

In order to show the applicability of the proposed fault
diagnosis schemes to real physical 3D Crane systems, they
are further tested through experiments. All the experi-
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Fig. 7. Experimental results for actuator fault detection
and isolation: the scheme using 2nd order sliding
mode differentiators
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Fig. 8. Experimental results for actuator fault detection
and isolation: the scheme using 3rd order sliding mode
differentiators

ments are carried out under the same conditions as those
in the simulations. For the actuator faults described in the
last subsection, the experimental results are presented in
Figure 7 and Figure 8, respectively.

It can be seen from Figure 7 and Figure 8 that the two ac-
tuator faults can be detected successfully by both schemes
because two residuals exceed their thresholds. Actually,
for the scheme using 2nd order sliding mode differentia-
tors, the two actuator faults are detected within 0.246s
and 1.1s respectively. While for the scheme using using
3rd order sliding mode differentiators, the two actuator
faults are detected within 0.236s and 1.168s respectively.
Correct isolation decision can be made within one and a
half second after the occurrence of faults, that is, the first
and the third actuators are faulty, while the second one is
normal. Compared with the simulation results presented
in Figure 5 to Figure 6, the experimental results are very
close to those simulation results although input estimation
performance is a little bit different and fault detection and
isolation time is a little bit longer.

6. CONCLUSIONS

Two actuator fault diagnosis schemes were proposed using
2nd and 3rd order sliding mode differentiators for a class
of nonlinear systems with relative degrees higher than one,
whose fault diagnosis problems could be very difficult. The
proposed schemes were tested through simulations and
experiments on the 3D Crane model and the real 3D Crane
system offered by the InTeCo Ltd. It is found that exper-
imental results agreed with simulation results very well.
Both simulation and experimental results demonstrate the
proposed schemes were able to work satisfactorily. It was
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observed that, at situations where f0(t) is smooth enough,
the 3rd-order sliding mode differentiators performed better
than the 2nd-order sliding mode differentiators, while at
situations where the third order derivatives do not exist
everywhere but the second order derivatives do, the 2nd-
order sliding mode differentiators had a better perfor-
mance.
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