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Abstract: A new integral type sliding surface (ISM) is design for sampled-data systems for
output tracking. ISM surface design is based on Output Feedback. Discrete-time control based
on ISM achieves good tracking performance while allowing the pole assignment of m poles,
where m is positive integer, which are otherwise zero in a deadbeat design. It will be shown in
this work that, the discrete-time version of the sliding mode control based on the integral type
sliding surface results in two scenarios: A tracking error of O(T 2) if the discrete-time system is
minimum-phase, and a tracking error of O(T ) if the original system does not satisfy minimum-
phaseness, but, rather a modified version of the system. In this work T is the sampling-time. A
simulation example demonstrates the validity of the proposed scheme.

1. INTRODUCTION

Sliding mode control is a very popular robust control
method owing to its ease of design and robustness to
‘matched’ disturbances. However, full state information is
required in the controller design which is a drawback since
in most practical applications only the output measure-
ment is available. To solve this problem, focus was placed
on output feedback based sliding mode control Żak et al.
(1993)-Lai et al. (2003). Two approaches arose: a design
based on obervers to construct the missing states, Edwards
and Spurgeon (1996), Slotine et al. (1987), the other design

focused on using only the output measurement, Żak et al.
(1993), El-Khazali and DeCarlo (1995). Both approaches
present certain strengths and limitations.

Computer implementation of control algorithms presents
a great convenience and has, hence, caused the research
in the area of discrete-time control to intensify. This also
necessitated a rework in the sliding mode control strategy
for sampled-data systems. Most of the discrete-time sliding
mode approaches are based on the availability of full state
information, Su et al. (2000)-Abidi et al. (2007). A few
approaches did focus on the output measurement, Lai et al.
(2003). In Lai et al. (2003), the control design was based
on the assumption that the state matrix of a discrete-time
system is invertible. This is true for sampled-data systems.
In this work we will focus on state based approaches as well
as expand upon the work of Lai et al. (2003) by focusing
on arbitrary reference tracking of a linear time invariant
system with matched disturbance.

Delays in the state or disturbance estimation in sampled-
data systems is an inevitable phenomenon and must be
studied carefully. In Abidi et al. (2007) it was shown that
in the case of delayed disturbance estimation a worst case
accuracy of O(T ) can be guaranteed for deadbeat sliding
mode control design and a worst case accuracy of O(T 2)
for integral sliding mode control. While deadbeat response
is a desired phenomenon, deadbeat control is undesirable

in practical implementation due to the overlarge control
action required. In Abidi et al. (2007) the integral sliding
mode design avoided the deadbeat response by eliminating
the poles at zero. In this work, we extend the integral
sliding mode design to output tracking problems.

A challenging issue in output tracking control is to perform
arbitrary reference tracking when only output measure-
ment is available. To accomplish the task of arbitrary
reference tracking a controller based on output feedback
with a state observer will be designed. The objective is to
drive the output tracking error to a certain neighbourhood
of the origin. For this purpose a discrete-time integral
sliding surface (ISM) is proposed. It will be shown that
this approach produces a worst case error of O(T ).

2. PROBLEM FORMULATION

2.1 System Properties

Consider the following continuous-time system with a
nominal linear-time-invariant model and matched distur-
bance

ẋ(t) = Ax(t) + B(u(t) + f (t))
y(t) = Cx(t)

(1)

where the state x ∈ ℜn, the output y ∈ ℜm, the control
u ∈ ℜm, and the disturbance f ∈ ℜm is assumed smooth
and bounded. The discretized counterpart of (1) can be
given by

xk+1 = Φxk + Γuk + dk

yk = Cxk, y0 = y(0)
(2)

where

Φ = eAT , Γ =

T
∫

0

eAτ dτB

dk =

T
∫

0

eAτ Bf ((k + 1)T − τ )dτ,
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and T is the sampling period. Here the disturbance dk

represents the influence accumulated from kT to (k +1)T ;
in the sequel, it shall directly link to xk+1 = x((k + 1)T ).
From the definition of Γ it can be shown that

Γ = BT +
1

2!
ABT 2 +

1

3!
A2BT 3 + · · ·

= BT + MT 2 + O(T 3) ⇒ BT = Γ − MT 2 + O(T 3)(3)

where M is a constant matrix. From (3), it can be
concluded that the magnitude of Γ is of the order O(T ).

Based on the smoothness assumption on the disturbance
f (t), several useful properties were derived in Abidi et al.
(2007):

Property 1. The discretized disturbance satisfies:

P 1.

dk =

T
∫

0

eAτ Bf ((k + 1)T − τ )dτ = Γfk +
1

2
ΓvkT + O(T 3)

, where vk = v(kT ), v(t) = d
dt

f (t). Note that the
magnitude of the mismatched part in the disturbance dk

is of the order O(T 3).

P 2. dk = O(T ).

P 3. dk − dk−1 = O(T 2).

P 4. dk − 2dk−1 + dk−2 = O(T 3).

Property 2. Assume

ek+1 = Λek + δk

where matrix Λ is asymptotically stable, the magnitude of
δk is of the order O(T 3). Then the magnitude of ek is of
the order O(T 2).

The primary control objective is to desgign an appropriate
controller uk, such that the output yk of (2) can follow
an arbitrary trajectory rk whose magnitue is of the order
O(1).

It is worth to highlight that arbitrary trajectory tracking
differs significantly from regulation or set-point control
problems. Comparing output tracking for arbitrary tra-
jectory with output regulation or set-point control, the
minimum-phase property of the plant (2) is in general a
necesary condition for the former but not so for the latter.

Let the control law be uk = −Kxk + G(q)rk, where G(q)
is a design tranfer matrix, q is a forward shifting operator.
Substituting the control law into (2) yields

yk = C (qIm − Φ + ΓK)
−1

ΓG(q)rk (4)

where Im ∈ ℜm is a unity matirx. From (4) we can see
that for the precise tracking of an arbitrary reference rk,
G(q) must be the inverse of C(qIm−Φ+ΓK)−1Γ. Since K
is selected such that (Φ−ΓK) is stable, the only concern is
that the inverse C(qIm−Φ+ΓK)−1Γ will contain the zeros
of (Φ, Γ, C) and, therefore, will require that the system
be minimum-phase. In this work it will be shown that it
is possible to avoid this constraint but with the loss of
accuracy.

Thus, we can summarize the control objective as follows:

To design a discrete-time integral sliding manifold and a
discrete-time SMC law that will stabilize the sampled-data
system (2) and achieve as precisely as possible arbitrary
output reference tracking. Meanwhile the closed-loop dy-
namics of the sampled-data system has m closed-loop poles
assigned to desired locations.

3. OUTPUT FEEDBACK OUTPUT TRACKING ISM

In this section we will discuss the output feedback based
output tracking controller.

3.1 Controller Design

In order to proceed we will first define a reference model

xr,k+1 = (Φ − K1)xr,k + K2rk+1

yr,k = Cxr,k
(5)

where xr,k ∈ ℜn is the state vector, yr,k ∈ ℜm is the
output vector, and rk ∈ ℜm is a bounded reference
trajectory. The matrices K1 and K2 are both functions of
(Φ, Γ, C) and K1 is selected such that (Φ − K1) is stable.
The selection criteria for the matrices K1 and K2 will be
discussed in detail in §4.4.

Now consider a new sliding surface

σk = D(xr,k − xk) + εk

εk = εk−1 + ED(xr,k−1 − xk−1)
(6)

where D = CΦ−1, σk, εk ∈ ℜm are the switching function
and integral vectors, E ∈ ℜm×m is an integral gain matrix.
Note that Dxk = CΦ−1(Φxk−1+Γuk−1+dk−1) = yk−1+
D(Γuk−1 + dk−1) is independent of the states.

The equivalent control law can be derived from σk+1 = 0.
From (6) εk = σk − D(xr,k − xk), we have

σk+1 = D(xr,k+1 − xk+1) + εk+1

= D(xr,k+1 − xk+1) + εk + ED(xr,k − xk)

= D(xr,k+1 − xk+1) + σk − D(xr,k − xk) + ED(xr,k − xk)

= Dxr,k+1 − Dxk+1 + σk − ΛD(xr,k − xk) (7)

where Λ = I − E. Substituting the system dynamics (2)
into (7) yields

σk+1 = Dxr,k+1 − D(Φxk + Γuk + dk) + σk − ΛD(xr,k − xk)

= ak − DΓuk − Ddk (8)

where ak = −(DΦ − ΛD)xk + (Dxr,k+1 − ΛDxr,k).

Letting σk+1 = 0, solving for the equivalent control u
eq
k ,

we have

u
eq

k
= (DΓ)−1(ak − Ddk) (9)

= −(DΓ)−1(DΦ − ΛD)xk + (DΓ)−1(Dxr,k+1 − ΛDxr,k )

−(DΓ)−1Ddk.

Controller (10) is not implementable as it requires a priori
knowledge of the disturbance. Thus, the estimate of the
disturbance should be used

uk = (DΓ)−1(ak − Dd̂k) (10)

where d̂k is the disturbance estimation.
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3.2 Disturbance Observer Design

Note that according to Property 1, the disturbance can be
written as

dk = Γfk +
1

2
ΓvkT + O(T 3) = Γηk + O(T 3) (11)

where ηk = fk + 1

2
vkT . If ηk can be estimated, then the

estimation error of dk would be O(T 3) which is acceptable
in practical applications.

Define the observer

xd,k = Φxd,k−1 + Γuk−1 + Γη̂k−1

yd,k−1 = Cxd,k−1
(12)

where xd,k−1 ∈ ℜn is the observer state vector, yd,k−1 ∈
ℜm is the observer output vector, η̂k−1 ∈ ℜm is the
disturbance estimate and will act as the ‘control input’ to

the observer, therefore we can write d̂k−1 = Γη̂k−1. Since
the disturbance estimate will be used in the final control
signal, it must not be overly large. Therefore, it is wise
to avoid a deadbeat design. For this reason we design the
disturbance observer based on an integral sliding surface

σd,k = ed,k − ed,0 + εd,k

εd,k = εd,k−1 + Eded,k−1
(13)

where ed,k = yk − yd,k is the output estimation error,
σd,k, εd,k ∈ ℜm are the sliding function and integral
vectors, and Ed is an integral gain matrix.

Following the similar design of (?), let σd,k = 0 we can
derive the virtual equivalent control uk−1 + η̂k−1, thus

η̂k−1 = (CΓ)−1
[

yk − Λded,k−1 − CΦxd,k−1 + σd,k−1

]

− uk−1(14)

where Λd = Im − Ed.

In practice, the quantity yk+1 is not available at the time
instance k when computing η̂k. Therefore we can only
compute η̂k−1, and in the control law (10) we use the

delayed estimate d̂ = Γη̂k−1.

The stability and convergence properties of the observer
(12) and the disturbance estimation (14) are analyzed in
the theorem 1.

Theorem 1. The observer outputs yd,k converge asymp-
totically to the true outputs yk, and the disturbance

estimate d̂k−1 converges to the actual disturbance dk−1

with the precision order O(T 2).

Proof:

Substituting (14) into (12), and using the relation ed,k−1 =
C(yk−1 − yd,k−1), yield

xd,k =
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

xd,k−1 + Γ(CΓ)−1 [yk − Λdyk−1]

+Γ(CΓ)−1σd,k−1 . (15)

Since the virtual control uk−1 + η̂k−1 is chosen such that
σd,k = 0 for any k > 0, (15) renders to

xd,k =
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

xd,k−1 + Γ(CΓ)−1 [yk − Λdyk−1].

(16)

The second term on the right hand side of (16) can be
expressed as

Γ(CΓ)−1[yk − Λdyk−1] = Γ(CΓ)−1(CΦ − ΛdC)xk−1

+Γuk−1 + Γ(CΓ)−1Cdk−1

by using the relations yk = CΦxk−1 + CΓuk−1 + Cdk−1

and yk−1 = Cxk−1. Therefore (16) can be rewritten as

xd,k = Φxd,k−1 + Γ(CΓ)−1(CΦ − ΛdC)∆xd,k−1

+Γuk + Γ(CΓ)−1Cdk−1 (17)

where ∆xd,k−1 = xk−1 − xd,k−1.

Further subtracting (17) from the system (2) we obtain

∆xd,k =
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

∆xd,k−1

+[I − Γ(CΓ)−1C]dk−1 (18)

where [I − Γ(CΓ)−1C]dk−1 is O(T 3) because

[I − Γ(CΓ)−1C][Γηk−1 + O(T 3)] = [I − Γ(CΓ)−1C]O(T 3) = O(T 3).

Applying the Property 2, ∆xd,k−1 = O(T 2).

From (18) we can see that the stability of the dis-
turbance observer depends only on the system matrix
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

and is guaranteed by the se-
lection of the matrix Λd and the fact that system (Φ, Γ, C)
is minimum phase. It should also be noted that the residue
term [I −Γ(CΓ)−1C]dk−1 in the state space is orthogonal
to the output space, as C[I−Γ(CΓ)−1C]dk−1 = 0. There-
fore premultliplication of (18) with C yields the output
tracking error dynamics

ed,k = Λded,k−1 (19)

which is asymptotically stable through choosing a stable
matrix Λd.

Finally we discuss the convergence property of the esti-

mate d̂k−1. Subtracting (12) from (2) with one-step delay,
we obtain

∆xd,k = Φ∆xd,k−1 + Γ(ηk−1 − η̂k−1) + O(T 3). (20)

Premultiplying (20) with C, and substituing (19) that
describes C∆xd,k, yield

η̂k−1 = ηk−1 + (CΓ)−1(CΦ − ΛdC)∆xd,k−1 + (CΓ)−1O(T 3).

(21)

The first term on the right hand side of (21) is O(T )
because ∆xd,k−1 = O(T 2) but (CΓ)−1 = O(T−1). As a
result, from (21) we can conclude that η̂k−1 approaches
ηk−1 with the precision O(T ). In terms of the relationship

d− d̂ = Γ(η − η̂) + O(T 3)

and Γ = O(T ), we conclude d̂k−1 converges to dk−1 with
the precision of O(T 2).

Remark 1: At the time k, we can guarantee the conver-
gence of η̂k−1 to ηk−1 with the precision O(T ). In other
words, we can guarantee the convergence of the distur-

bance estimate at the time k, d̂k, to the actual disturbance
at time k−1, dk−1, with the precision O(T 2). This result is
consistent with the state-based estimation presented in §3

in which d̂k is made equal to dk−1. Comparing differences
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between the state-based and output-based disturbance es-
timation, the former has only one-step delay with perfect
precision, whereas the latter is asymptotic with O(T 2)
precision.

3.3 Stability Analysis

To analyze the stability of the closed-loop system, substi-
tute uk in (10) into the plant (2) leading to the closed-loop
equation in the sliding mode

xk+1 =
[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

xk + dk − Γ(DΓ)−1Dd̂k

+Γ(DΓ)−1[Dxr,k+1 − ΛDxr,k + σk ]. (22)

The stability of the above sliding equation is summarized
in Theorem 2.

Theorem 2. Using the control law (10) the sliding mode is

σk+1 = D(d̂k − dk).

Further, the state tracking error ∆xk = xr,k − xk is
bounded if system (Φ, Γ, D) is minimum-phase and the
eigenvalues of the matrix Λ are within the unit circle.

Proof:

In order to verify the first part of theorem 2, rerwite the
dynamics of the slidng mode (8)

σk+1 = ak − DΓuk − Ddk = ak − DΓu
eq

k
− Ddk + DΓ(ueq

k
− uk)

= DΓ(u
eq

k
− uk),

where we use the property of equivalent control σk+1 =
ak − DΓu

eq
k − Ddk = 0. Comparing two control laws (10)

and (10), we obtain

σk+1 = D(d̂k − dk).

Note that if there is no disturbance or we have perfect
estimation of the disturbance, then σk+1 = 0 as desired.
From the results of theorem 1 and Property 1

d̂k − dk = Γ ˆηk−1 − Γηk + O(T 3)

= Γ( ˆηk−1 − ηk−1) − Γ(ηk − ηk−1) + O(T 3) → O(T 2)

as k → ∞. Thus σk+1 → O(T 2) which is acceptable in
practice.

To prove the boundedness of the state tracking error ∆xk,
first derive the state error dynamics. Subtracting both
sides of (22) from the refernece model (5), and substituting

σk = D(d̂k−1 − dk−1), yields

∆xk+1 =
[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

∆xk (23)

+[I − Γ(DΓ)−1D](K2rk+1 − K1xr,k) − ζk

where

ζk = dk − Γ(DΓ)−1D(d̂k − d̂k−1 + dk−1). (24)

To verify the stability of the system we define the following
lemma:

Lemma 3. The eignvalues of [Φ − Γ(CΓ)−1(CΦ − ΛC)]
are the eigenvalues of Λ and the non-zero eigenvalues of
[Φ − Γ(CΓ)−1CΦ].

Proof See Appendix. The stability of (24) is dependent
on the system matrix

[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

. From
Lemma 1 the closed-loop poles of (24) are the eigenvalues
of Λ and the open-loop zeros of the system (Φ, Γ, D). Thus,
m poles of the closed-loop system can be selected by the
proper choice of the matrix Λ while the remaining poles
are stable only if the system (Φ, Γ, D) is minimum-phase.
Note that both rk+1 and xr,k are reference signals and are
bounded. Therefore we need only to show the boundedness
of ζk which is

ζk = Γηk + O(T 3) − Γ(DΓ)−1D[Γη̂k−1 − Γη̂k−2 + Γηk−1 + O(T 3)]

= Γ(ηk − η̂k) + Γ(ηk−1 − η̂k−1) − Γ(ηk−2 − η̂k−2)

−Γ(ηk−1 − ηk−2) + O(T 3). (25)

From theorem 1 and Property 1, all terms in the bracket
on the right hand side of (25) approach O(T 2). Note also
Γ = O(T ), thus ζk = O(T )O(T 2) + O(T 3) = O(T 3).

3.4 Reference Model Selection and Tracking Error Bound

We have established the stability condition for the closed-
loop system, but, have not yet established the tracking
error bound. From (24) it can be seen that the tracking
error bound is dependent on the disturbance estimate

d̂k as well as the selection of K1 and K2. Up to this
point, not much was discussed in terms of the selection
of the reference model (5). As it can be seen from (24)
the selection of the reference model can effect the overall
tracking error bound. Since we consider an arbitrary
reference rk, the reference model must be selected such
that its output is the reference signal rk. To achieve this
requirement, we explore two possible selections of the
reference model.

Reference model based on (Φ, Γ, C) being minimum-phase
For this reference model select the matrices K1 =

Γ(CΓ)−1CΦ and K2 = Γ(CΓ)−1 and the reference model
(5) can be written as

xr,k+1 =
[

Φ − Γ(CΓ)−1CΦ
]

xr,k + Γ(CΓ)−1rk+1

yr,k = Cxr,k = rk.
(26)

It can be easily seen from (26) that it is stable only
if the matrix

[

Φ − Γ(CΓ)−1CΦ
]

is stable, i.e., the sys-
tem (Φ, Γ, C) is minimum-phase. Substituting the selected
matrices K1 and K2 into (24) and using the fact that
[

I − Γ(DΓ)−1D
]

Γ = 0, we obtain

∆xk+1 =
[

Φ − Γ(DΓ)−1(DΦ − ΛdD)
]

∆xk − ζk (27)

where ζk = O(T 3) according to Theorem 4.

According to Property 2, the ultimate error bound on
‖∆xk‖ will be one order higher than the bound on ζk

due to convolution. Since the bound on ζk is O(T 3), the
ultimate bound on ‖∆xk‖ is O(T 2). Thus, the ultimate
bound on the output tracking error is

‖ek‖ ≤ ‖C‖‖∆xk‖ = O(T 2). (28)

From the result (28) we conclude that the output feedback
controller (10) and the reference model (26) are capable of
maintaining a similar performance to the state feedback
ISM with the added constraint of having to satisfy both
(Φ, Γ, C) and (Φ, Γ, D) minimum-phase.
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Reference model based on (Φ, Γ, D) being minimum-phase
In the case that it is only possible to satisfy (Φ, Γ, D)

minimum-phase, a different reference model needs to be
selected. For this new reference model, select the matrices
K1 = Γ(DΓ)−1DΦ and K2 = Γ(DΓ)−1. Then the refer-
ence model (5) can be written as

xr,k+1 =
[

Φ − Γ(DΓ)−1DΦ
]

xr,k + Γ(DΓ)−1rk+1

yr,k = Dxr,k = rk.
(29)

The matrix
[

Φ − Γ(DΓ)−1CΦ
]

is stable only if (Φ, Γ, D)
is minimum-phase. Substituting the selected matrices
K1 and K2 into (24), and using the property [I −
Γ(DΓ)−1D]Γ = 0, we have

∆xk+1 =
[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

∆xk − ζk. (30)

We can see from (30) that the tracking error bound is only
dependent on the disturbance estimtation ζk.

However, the disturbance observer requires (Φ, Γ, C) to be
minimum-phase, hence is not implementable in this case.
Without the disturbance estimator, noticing Property 1,
(25) becomes

ζk = dk − Γ(DΓ)−1dk−1

= dk − dk−1 + [I − Γ(DΓ)−1D](Γηk−1 + O(T 3))

= O(T 2) + O(T 3) = O(T 2). (31)

As the result, the closed-loop system is

∆xk+1 =
[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

∆xk + O(T 2).(32)

By the Proprty 2, the ultimate bound on ‖∆xk‖ = O(T ),
and therefore, the ultimate bound on the tracking error is

‖ek‖ ≤ ‖D‖‖∆xk‖ = O(T ). (33)

While this approach gives a less precise output tracking
performance, it only requires (Φ, Γ, D) to be minimum-
phase and can be used in the cases (Φ, Γ, C) is not
minimum-phase.

4. SIMULATION EXAMPLE

Consider the following SISO system

A =

[

10 1
−10 −10

]

, B =

[

4
4.2

]

, C = [ 1 0 ] .

The sampled-data system obtained at a sampling time of
T = 1ms is

Φ =

[

1.01 −0.001
−0.01 0.99

]

, Γ =

[

0.0040
0.0042

]

, C = [ 1 0 ] .

The zero of (Φ, Γ, C) is z = 0.989 while the zero of
(Φ, Γ, D) is z = 0.989 as well and, therefore, the system
satisfies both (Φ, Γ, C) and (Φ, Γ, D) minimum phase.
Controller (10) and the reference with (Φ, Γ, C) minimum
phase will be used as it achieves the best performance. The
design parameter E is selected as 0.25 to ensure that the
remaining pole is z = 0.75. The disturbance acting on the
system will be non-smooth and given by

f =

{

10 if x2 < 0
0 if x2 = 0

−10 if x2 > 0
(34)

The system is simulated under the influence of the distur-
bance f in (34) for tracking a reference rk = 1+sin(8πkT−
π/2). The result is compared to a PI controller. From
Fig.1a and Fig.1b the performance of the output feedback
approach can be seen. It is clear that the tracking error is
as much better than the PI controller. Also note from Fig.2
the the control input at close to t = 0 is much larger for
the PI control than the ISMC. Now, consider the following
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system

A =

[

−60 −10
10 −10

]

, B =

[

4
4.2

]

, C = [ 1 0 ] .

After sampling the system at T = 1ms the system
parameters become

Φ =

[

0.9417 −0.0097
0.0097 0.9900

]

, Γ =

[

0.0039
0.0042

]

, C = [ 1 0 ] .

For this system the zero of (Φ, Γ, C) is z = 1.001 where
as the zero of (Φ, Γ, D) is z = 0.998 and, therefore,
the output feedback approach with the reference model
with (Φ, Γ, D) minimum phase is the only option. Using
the same disturbance and reference signals, the system is
simulated. As it can be seen from Fig.3a and Fig3b, the
performance is quite good and better than that of a PI
controller. The same can be said of the control inputs as
seen from Fig.4

5. CONCLUSION

This work presents a form of the discrete-time integral
sliding control design for sampled-data systems with out-
put tracking. Proper disturbance and state observers were
presented. The closed-loop stability of the system was not
dependent on either observer and is designed seperately.
It was shown that the maximum bound on the tracking

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14215



0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t [sec]

y

Reference

ISMC

PI

(a)

0.1 0.2 0.3 0.4 0.5

−0.1

−0.05

0

0.05

0.1

0.15

t [sec]
e

ISMC

PI

(b)

Fig. 3. Performance ISMC and PI controllers

0 0.05 0.1 0.15 0.2
−250

−200

−150

−100

−50

0

t [sec]

u

ISMC

PI

Fig. 4. Control input for ISMC and PI controllers

error is O(T 2) at steady state. It was also shown that even
though the state observer produced O(T ) estimation error,
the ISM state observer approach could still produce O(T 2)
tracking error. Simulation comparison with a PI controller
suggests the effectiveness of the proposed method.
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Appendix A. PROOF OF LEMMA 1

If the matrices Φ, Γ and D are partitioned as shown

Φ =
[

Φ11 Φ12

Φ21 Φ22

]

, D = [ D1 D2 ] , and Γ =
[

Γ1

Γ2

]

where (Φ11, D1, Γ1) ∈ ℜm×m, (Φ12, D2) ∈ ℜm×n−m,
(Φ21, Γ2) ∈ ℜn−m×m and Φ22 ∈ ℜn−m×n−m. The eigen-
values of Φ̄ are found from

det
[

λIn − Φ + Γ(DΓ)−1(DΦ − ΛD)
]

= 0 (A.1)

or

det

[

λI − Φ11 + Γ′

1

(

D′

1 − ΛD1

)

−Φ12 + Γ′

1

(

D′

2 − ΛD2

)

−Φ21 + Γ′

2

(

D′

1 − ΛD1

)

λI − Φ22 + Γ′

2

(

D′

2 − ΛD2

)

]

= 0

(A.2)

where Γ′

1 = Γ1(DΓ)−1, Γ′

2 = Γ2(DΓ)−1, D′

1 =

D [ Φ11 Φ21 ]
T

and D′

2 = D [ Φ12 Φ22 ]
T
. If the top row is

premultiplied with D1 and the bottom row is premultiplied
with D2 and the the results summed and used as the
new top row, using the fact that D1Γ1 + D2Γ2 = DΓ the
following is obtained

det

[

(λIm − Λ)D1 (λIm − Λ)D2

−Φ21 + Γ′

2

(

D′

1 − ΛD1

)

λIn−m − Φ22 + Γ′

2

(

D′

2 − ΛD2

)

]

= 0

factoring the term (λIm − Λ) and premultipying the top
row with Γ2(DΓ)−1Λ and adding to the bottom row yields

det(λIm − Λ) det

[

D1 D2

−Φ21 + Γ′

2D′

1 λIn−m − Φ22 + Γ′

2D′

2

]

= 0.

(A.3)

Thus, we can conclude that m eigenvalues of the matrix
[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

are the eigenvlaues of Λ.

Note that the matrix
[

D1 D2

−Φ21 + Γ′

2D′

1 λIn−m − Φ22 + Γ′

2D′

2

]

corresponds to a design of σk+1 = Dxk = 0 whose
closed-loop is governed by the matrix [Φ − Γ(DΓ)DΦ].
It is well known that [Φ − Γ(DΓ)DΦ], thus, we conclude
that the eigenvalues of

[

Φ − Γ(DΓ)−1(DΦ − ΛD)
]

are the
eigenvalues of Λ and the eigenvlaues of [Φ − Γ(DΓ)DΦ].
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