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Abstract: In this paper we study conditions under which an unstable stochastic scalar linear plant with
unbounded noise can be internally stabilised using ‘zooming’-like coding and control schemes having
dynamic, finite-dimensional internal states. Such structures are known to be needed in communication-
constrained control when no bound on the plant noise is available. However, previous schemes were
based on coders and controllers starting with identical internal states. In this paper, we remove this
assumption and explicitly construct a finite-dimensional coding and control policy that yields mean
square stability of all state variables, for a random initial plant state and arbitrary initial encoder and
controller states. This holds for any bit rate down to the universal minimum of the Data Rate Theorem.
Furthermore, we show that despite the unbounded noise, the error and proportional errors between
the scaling factors of the encoder and controller tend to zero in mean square and almost sure senses
respectively. This suggests that the policy will still maintain mean square internal stability in the presence
of channel bit errors, provided the bit error rate is sufficiently low. We support these conclusions with

simulations.
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1. INTRODUCTION

Due to the rapid growth in communication technology over the
last few years, it is becoming increasingly common to employ
digital finite capacity channels for the exchange of information
between many control system components such as sensors and
actuators. Such applications arise in the broad areas of sensor
networks and industrial and defence systems. Although the total
capacity of the network may be large, each component may be
allocated only a small portion, introducing limitations on the
achievability of the control objective. As a consequence, many
papers have appeared recently in the literature which addressed
the problem of controlling an unstable plant using quantised
control schemes with limited bit rate; see Nair et al. (2007) for
an overview.

For unstable linear time-invariant (LTI) plants with no or
bounded noise, it was proven in Wong and Brockett (1999);
Baillieul (2001); Tatikonda and Mitter (2004) that memoryless
quantisers and controllers suffice to ensure boundedness of
states at any bit rate down to a universal minimum. However, in
Brockett and Liberzon (2000); Liberzon (2003), it was shown
that by employing a ‘zooming’ scheme featuring a real-valued
quantiser range that is dynamically adjusted according to the
most recent quantiser output, the state of a noiseless linear plant
could be asymptotically stabilised to the origin; this was an im-
possible feat with static coding and control laws and provided
the initial motivation for dynamically quantised control. In Nair
and Evans (2004), another dynamic quantisation scheme was
subsequently proposed and shown to mean-square-stabilise the

* The authors gratefully acknowledge the financial support of the Dept. Educa-
tion, Science and Training, the Australian Research Council and National ICT
Australia Ltd.

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

5197

states of a stochastic LTI plant with unbounded process and
measurement noise, at any rate down the the universal min-
imum. It was also proven there that with unbounded process
noise and strictly unstable plant dynamics, stochastic stability
in any sense was impossible with memoryless or bounded quan-
tisation, regardless of the number of quantiser points.

From a more general point of view, the dynamically quan-
tised schemes mentioned above are examples of of finite-
dimensional encoders and controllers that have real-valued in-
ternal states. The crucial assumption on which their analyses
rested was that the initial states of the encoder and controller
were identical. In the absence of channel bit errors, this enabled
the encoder to accurately track how the controller state evolved
with each transmitted bit. Given the unstable dynamics of the
plant and the inherently discontinuous nature of quantisation,
it was unclear if the schemes proposed above had any stability
margin with respect to initial internal state errors.

This is a matter of concern in practice, since even with channel
error correction coding, the probability of bit error will never
be exactly zero. With arbitrarily high probability, a bit will be
detected erroneously after a sufficiently long time, at which
point the controller internal state will differ from what the
encoder predicts.

In this paper, we present a preliminary study of and partial
solution to this problem, for the case of an unstable scalar LTI
plant with unbounded process and measurement noise with ‘fat’
distribution tails. We formulate the question in section 2 and
construct in section 3 a finite-dimensional coding and control
scheme. In section 4, we then prove that it achieves mean square
stability of all closed-loop state variables, under a sufficient
condition on the channel bit rate. By introducing a periodically
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time-varying scheme of sufficiently long coding cycle length,
this rate condition approaches the minimum rate expression of
Nair and Evans (2004).

In section 4, we also discuss the fact that if mean square sta-
bility is assured, then the internal states of the encoder and
controller must reach asymptotic agreement in mean square
and proportional almost-sure senses. This suggests that, without
requiring any channel bit error correction coding, the scheme
may also be able to achieve mean square stability over erro-
neous channels, provided that the bit error rate is much lower
than the rate at which agreement is reached. Simulation results
supporting these conclusions are presented and discussed in
sec. 5.

Although we focus here on scalar plants, similar results can be
shown to hold with vector-valued plant states by transforming
into real Jordan form [Horn and Johnson (1985)] and applying
a variant of the construction here to each decoupled plant mode.

2. FORMULATION

Consider the stochastic, discrete-time, linear time-invariant
(LTT) plant:

X(t+1)=aX(t)+bU(t)+V(t), €))
Y(t) =X (@) +W(1), )
where X (¢),U(¢),Y (¢),V(t),W(t) are the plant state, input, out-
put, process noise and measurement noise respectively. We
assume that, for some € > 0, the initial state has a finite (24 ¢€)-
th moment E{|X(0)|**¢} < oo and that the process and ob-
servation noise have uniformly bounded (2 + €)-th moments:
sup,cz_, E{|V(1)[75). sup,cz_, E{W()[2F} < oo. Such mo-
ment conditions are common in quantisation theory [Graf and
Luschgy (2000)] and admit not just exponentially-decaying dis-
tributions such as the Gaussian, but also distributions with fat
tails that diminish according to a power law.

Suppose that the plant above is controlled by means of a
feedback signal transmitted over a digital channel from the
output sensor to a controller that generates regulating inputs
U(0),U(1),.... Specifically, at time ¢ a discrete-valued symbol
S(t) belonging to a time-varying, finite alphabet § (¢) is trans-
mitted by an encoder onto the channel. We define the data rate
of the channel to be
-1

1
R:=liminf- ¥ 1 )| (bits/sampl 3
imin Tt:ZO 0g, |5 ()] (bits/sample) 3)

and assume here that R < oo; this constrains the rate at which
information can be signalled from sensor to controller.

To minimise the computational burden, we wish to restrict to
coding and control laws that can be implemented in finite-
dimensional form. That is, for some ¢ € N and any time 7, we are
interested in controllers having a dynamic, finite-dimensional
internal state W¢(r) € R° which evolves in a possibly nonlinear
way depending on the past state and the latest received sym-
bol, and such that the control signal is a (possibly nonlinear)
function of the current internal state:

(e —1),8(t— 1)) —¥(r), W) —U(r)eR. (4

Similarly, for some e € N and V¢ € Z>, the encoder has another
internal state ¥°(r) € R® which evolves as

(Pe(r—1),Y(r)) —WPe(r), Y()—S(t)es(). ()

We define a finite-dimensional encoder-controller (FDEC) by
the coding alphabet sequence {$ (¢) };° , together with the finite-
dimensional and possibly time-varying mappings (4)—(5).

Many of the of the quantised estimation or control schemes
studied in the literature Wong and Brockett (1999); Brockett
and Liberzon (2000); Liberzon (2003) can be viewed as specific
examples of FDEC’s. In Nair and Evans (2004), a FDEC was
constructed that yielded mean square stability (MSS) of a
stochastic LTI plant with an n-dimensional state vector for any
rate (3) that satisfied

R> Zmax{logQ |Ail,0}, (6)
i=1

where Aj,...A, were the eigenvalues of the open-loop plant
dynamic matrix. As this was also known to be a necessary
condition for plant mean square stabilisability, the construction
in Nair and Evans (2004) thus achieved plant MSS at any
specified bit rate down to the lowest possible.

However, a crucial assumption behind the analyses of all these
aforementioned schemes was that the initial internal states
¥¢(0),¥¢(0) be identical. If no channel errors occured, this
enabled the encoder to mimic the controller internal states ex-
actly, by running a local version of the controller’s update and
output laws (4). As discussed in the introduction, given unstable
plant dynamics and the discontinuous nature of quantisation, it
was not known if the schemes previously proposed could tol-
erate small differences in encoder and controller initialisation,
let alone the perturbation due to occasional bit errors in the
channel.

In this paper, we present a preliminary study of, and partial
solution to, this problem. We construct a FDEC for the scalar,
discrete-time LTI plant (1)-(2) with unbounded process and
measurement noise which achieves internal closed loop stabil-
ity in a mean square sense. L.e. for arbitrary initial internal states
¥E(0), %< (0),

sup E{[X(¢)]*}, sup E{|'¥°|*}, sup E{[[¥[]*} <o,
€20 €20 1€2>0
under a suitable condition on the channel bit rate R. This rate
condition approaches the minimum rate expression of Nair and
Evans (2004) in the limit of vanishing initial internal state
uncertainty. Furthermore, we will see that the internal states of
the encoder and controller reach asymptotic agreement.

3. STABILISING SCHEME

In the absence of encoder or controller state uncertainty or
structural or memory constraints (apart from causality), it has
been established (see, e.g. Tatikonda et al. (2004); Nair et al.
(2007)) that if the plant noise is uncorrelated and Gaussian,
then the quadratic-optimal encoder-controller consists of three
stages: i) a Kalman filter that produces estimates of the plant
state from the measurements, given the control inputs, ii) a
dynamic quantiser that encodes and transmits the Kalman es-
timate, according to previously transmitted symbols and iii) a
controller which applies the certainty-equivalent LQG-optimal
control gain to the received quantised Kalman estimate. Al-
though we assume neither Gaussian nor uncorrelated noise
here, and the transmitter here does not know the exact control
input, we shall adopt this structure as the basis of our FDEC.

At time ¢, the encoder internal state is
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WE(r) 1= (R (1) — 1),X°(0), L (1), L5 (1), Ly (1) € B2 x R1(.7 |
The first component, X (|t — 1), is a prediction at time ¢ — 1
of the next plant state, the second component, X¢(¢), is the
dynamically quantised estimate of the current plant state, and
the last three components are dynamic scaling factors used in

the quantiser. The first component is updated as

X(t+1)t) = aX (t]t — 1) +bkX®(t) + k°[Y () — CX (t]t — 1)].
(®)
This is essentially a linear Luenberger observer with observer
gain k°, but with an important difference: due to the uncertainty
in the initial decoder internal state, the encoder does not pre-
cisely know the control input to be applied at time ¢, but ap-
proximates it with its own quantised estimate X°(¢) multiplied

by a certainty-equivalent gain k.

The second component, X¢(¢) is updated according to a pre-
dictive, dynamic quantisation scheme, the core of which is the
static, u”-level, non-uniform, symmetric quantiser ¢(-) of Nair
and Evans (2004) (pg. 425). The quantiser points take values in
the finite real set

gx) e{o(0)<o(l) - <o’ —1)} CR.
For each s € [0,...,u" — 1] we also define k(s) € [Kmin, Kmax]»
equal to the half-length of the quantiser interval associated with
the point ®(s);. for the semi-infinite intervals associated with
s=0and s =u" — 1, x(s) is a nominal half-length. Note that
1 1—p!

Kmin := W <K(s) <05 I p

= Kmax- (9)

The encoder proper is based on predictive differential rules
with dynamic scaling (see Liberzon (2003) or ‘adaptive’ delta
modulation in Gersho and Gray (1993)). L.e. at time ¢, the

symbol transmitted is the unique index € [0,...,u" — 1] of the
quantiser point
X(t+1]t) — (a+bk)XS(t
a(s(0) —q (FHIEEOED) ao)

The quantised encoder estimate is then updated according to

X(t+1r)

— (a+bk)X<(r)

X(t+1)=(a+bk)X () + L(t)g ( (

= (a+bK)X(t) + LS ()®(S(1)).

The quantiser scaling factor is generated by the following rules:

Le(1)

L*(1) = |a|Lg(¢) + |K°c|Lj (1) + [K°[ow, (12)
Lg(t+1) = L7 (1)x(S(0)) (13)
Lj(t+1) = |a—K°c|Lj (1) + [bk| Ly (1) +0v + [k |ow (14)
Ly (t+1) = |a+bk|Lg (1) + Lo ()[1 +x(S(1)], (15

where 6y ,ow,m > 0 are arbitrary constants. These laws differ
significantly from Nair and Evans (2004), which had a one-
dimensional update for the quantiser scaling factor.

At the other end of the channel, the controller simply runs an
exact copy of these update laws, on its own internal state

WE(r) = (X°(0), LG (1), Ly (1), Ly (1)) € R RY, (16)
the components of which, however, are not initialised to the
same values as the corresponding components of (7). It receives

the symbol S(z — 1) € [0,...,u" — 1] at time ¢ > 1 (due to the
delay in the channel) and then sets

X(t+1)=(a+bk)X () +L°(t)m(S(1)), (17)
LE(t) = |a|Lg (1) + [K°c|Lj () + [K®|ow, (18)
Lg(t+1) = LE(0)x(S(2)), (19)
Lj(t+1) = |a—k%[Lj (1) + |bk|L (1) + ov + [K°|ow, (20)
Ly (1 +1) = la+bk|Ly (1) +nLE (D)1 +x(S@)], @21
U(t) = kX*(1). (22)

We remark that the quantities L§;(¢), Lj(t) and Lj,(t) (x being
‘e’ or ‘c’) can be regarded as the nominal uncertainties associ-
ated with the errors

J@t):=X({tlt—1)—X(1), (23)
G(t):=X(t) = X(t|t — 1), (24)
H(t) =X (1) = X*(1), (25)

due to quantisation and noise. As will be seen in the next
section, the update rules (12)—(15) and (18)—(20) are designed
to closely mimic the dynamics of the corresponding terms (23)—
(25).

4. INTERNAL STABILITY ANALYSIS

Due to the dynamic quantiser in the feedback loop, it turns
out to be difficult to obtain recursive bounds directly for mean
square states. Instead, we focus on the functional introduced in
Nair and Evans (2004),

IX,L||Z :=E{L*+ X|*"*L*} € [0 (26)
defined for any random variables X € R, L > 0. This has several
useful properties: i) its square root is a pseudo-norm on the
space of random variables on R x R, ; ii) It upper-bounds the
mean square values of X and L; iii) If the quantiser g(-) with u"-
levels (briefly described in the previous section) is applied to a
random variable X with scaling factor L > 0, then the quantiser
error X — Lg(X /L) = X — L®(S) and the (nominal) quantiser
interval half-length Lk (S) > 0 satisfy

X—Lg <%> ,LK(S)

where { > 0 is a constant that depends on €, the quantiser base

27)

g
< EIIX,LH*,VV €[2,3,...),

*

(1M and another quantiser parameter, but is independent of v and

the distribution of X, L.
4.1 Proof of Stability

We first establish the mean square stability of the error terms
(23)—(25). For any t € Z>, let

Zo(t) = L(e) ~ LE(0), Z3(0) = 15() - 15(0),  29)

Zun(e) = 15,(0) ~ L5 1), 9)
o JIZ0] 0] (240)

ro=m{ G50 B0 @

oft) = su F(t (31

X(0),%¢(0),%¢(0),V(0),W(0),vV(1),W(1),...

We have the following result, the proof of which is omitted
here:
Lemma 1. Let the FDEC (7)-(22) be used on the plant (1)—

(2). Then the maximum fractional scaling error (30) decreases
monotically to a limiting random variable F, > 0 with time.
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Similarly, the worst-case maximum fractional error (31) is
nonincreasing and, if initially finite, monotonically approaches
a constant limit o, > 0. These results hold whether or not the
closed loop is stable.

In the following we assume that 1, a scaling factor parameter of
(15), (21), is set equal to a(0). It is straightforward to show that
the coupled dynamics of the random errors {(G(¢),J(¢),H (1))}
are given by

G(t+1)=aG(t)+k°cJ(t) + k°W(r)

e G(t) +k°cJ(t)—|—k°W(

e (O ) e
J(t+1)=(a—k°)J(t)+DkH(t)+V(t) — kW (1), (33)
H(t+1)=(a+Dbk)H(t)

#(E) - 0) o (O

Applying the pseudo-norm ||-,-||. to (32), (13) and using the
quantiser error bound (27), positive homogeneity and the trian-
gle inequality, we obtain

Gt +1),Lg(t+ 1)«
< ,,% (lall|G (@), LG (@)[]+ + K]l (1),

After dealing in like manner with the J and H terms, we obtain
a sublinear, nonnegative recursion

Bt +1) <EB(r) +x(t),Vt > 1p, (35)
where
B(t) == [IG(), L) |« 1T (0), L5 (1)l |1H (1), L (1)II.]", (36)
glalu Ik‘)flko | II;‘;CI|
« oi(1. 8 37)
(0)|al (”,.7) o(0)[k¢| (”,.7) |a+ bk|
and
x(t) = [CKI W (), 0w [, IV (1), 00+ KW (1), 0w |,

o(0)(1+Gu ) RIW (), 0w ] (38)

Note that y(¢) is uniformly bounded over time. Thus if &
(37) is strictly stable, then the recursion (35) yields uniformly
bounded B(z). By the upper-bound property of the pseudo-
norm, {G(t),J(t),H(r),Lg(r),L5(t),L5,(¢)} are then uniformly
bounded in mean square. By rewriting the plant dynamics as
X(t+1)=(a+bk)X(t)+bk[H(t)—G(t)—J ()] +V(t), (39)
where |a+ bk| < 1 and {V(¢)} is uniformly mean-square
bounded, it follows from the above that {X(z)} is also uni-
formly mean-square bounded. Definitions (24)—(25), Lemma
1 and the pseudo-norm triangle inequality then imply that
so too are all remaining closed loop state variables {X (¢|t —
1),X¢(t),X(t),L;(¢),L5(¢),LE(¢) }. This conclusion is sum-
marised below:

Theorem 2. Let the finite-dimensional encoder-controller (FDEC)

(7)-(22) be used on the partially observed, unstable linear plant
(1)-(2) having possibly unbounded process and observation
noise with uniformly bounded (2 + €)-th absolute moments. If
the controller gain k is selected so that |a + bk| < 1 and if the

Ly@)|l« + KW (1), 0w |+)

eigenvalues of the matrix E (37) lie inside the open unit disc,
then the plant state (1) and FDEC internal states (7) and (16)
are uniformly mean-square-bounded over time.

This leads to the question of whether there actually exists a
nonzero initial fractional scaling error bound o(0) > 0 that
leads to stability for given FDEC parameters. Looking at the
equation for the matrix E (37), observe that it becomes upper
triangular as o(0) — 0. Noting that the eigenvalues of a trian-
gular matrix are its diagonal elements and that eigenvalues vary
continuously with matrix elements [Horn and Johnson (1985)],
we immediately have the following corollary.

Corollary 3. If the number of quantiser levels u¥ > |a| and
|a + bk|,|a — k°¢c| < 1, then there exists a positive a(0) > 0
such that the FDEC (7)—(22) used on the plant (1)—(2) achieves
internal mean-square stability of all closed-loop states, for any
nonzero initial fractional scaling error (30) less than or equal to
o(0).

Though we have focused here on scalar plants, we remark that

similar results can be shown to hold with vector-valued plant
states.

4.2 Achieving Minimum Rate

.The sufficient condition u¥ > |a| of Corollary 3 is stronger than

given by the Data Rate Theorem in Nair and Evans (2004) for
stochastic plant state stabilisability due to the presence of the
factor { > 1. However, it is possible to approach the infimum

data rate by downsampling the plant, as in Nair and Evans
(2004).

Specifically, select a large T € N, divide time up into coding
cycles [jT,jt+t— 1], j € Z>¢ and sample the plant outputs
only at times ¢t = 0,7, 27, ---. The plant equations may then be
written Vj € Z>q as

X'(j+1)=aX'(j)+ba"'U'(j)+V'(j),
Y'(j) =cX'(j) +W'()),
where
Y (jT),W'(j) :=

T—1

Y a v (it).
r=0

For simplicity, set U(t) = 0 when t # 0,1,21,..., so that
U'(j) = U(jr); this choice is suboptimal in terms of perfor-
mance, but suffices to ensure stability.

X(J'T) Y'(j) =

Za’ (et r), VI(j) =

X'(j) = W),

Now apply the FDEC (8)—(22) to the primed plant, with param-
eters

T—1
la®+ba" "W | < 1, |a* —k°c| < 1, o}, = ) la|" "oy
r=0
log, (€lal*)

J+
log, u

noting that { is a parameter not dependent on v. As 0 <
x—|x] <1, the RH.S. above is always strictly greater than
log,(€lal*)/log, u and so all the hypotheses of Corollary 3 are
satisfied. Thus the primed system is internally mean square
stable at times t = 0,7,27,.... Using the linear time invariance

c’W:cw,v:{
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of the original plant, it is then straightforward to establish that
the plant states are mean square stable over all integer times 7.

Noting that u¥ is the number of quantiser levels, the bit rate of
this scheme averaged over each coding cycle is

_ viogp _ logy(¢laf?) +logy
oot T T

as T — oo, Thus R can be brought arbitrarily close to the
universal infimum log, |a| for mean square stabilisability by
choosing a sufficiently large T.

R — log |al,

We remark that although internal stability is guaranteed, perfor-
mance will deteriorate the closer the data rate is brought to the
infimum value. This is a universal characteristic of all encoder-
controllers; see Nair and Evans (2004); Nair et al. (2007).

4.3 Asymptotic Agreement between Encoder and Controller

We now argue briefly that once internal mean square stability
has been achieved, the differences (25) and (28)—(29) in en-
coder and controller internal states should tend to zero in mean
square.

Denote the closed loop state by W(r) = (X(¢),We(r), ¥(¢))
and observe that, with independent initial plant state and noise,
{¥(r)} is a continuous-valued Markovian process. Suppose
that the hypotheses of Theorem 2 are satisfied, so that the
matrix X in the sublinear recursion (35) is strictly stable. Thus
as time t — oo, we can find an asymptotic upper bound B >
[IB(#)]|2 which depends only on the parameters in E and an
upper bound on the noise term % (¢); it is independent of the
initial vector B(0) due to “exponential forgetting”. Defining
AS(t) := [LS(1),L5(t), L (1)]T, the pseudo-norm property (ii)
then implies that B> > limsup,_,, E{||A°(t)|3}, where B? is
independent of the distribution of ¥(0), provided that |I¢;(0) —
I&(0)| < o(0). That is, {A°(¢)} is stable in mean-square Eu-
clidean norm. From (12—(15), the dynamics of the scaling fac-
tors are bounded below as

A+ 1) > M((SO)A () +veR)  (40)
where
lalp |k°c|p 0
M(p):=| 0 a—k k|, @

nlal(1+ p) nlk°|(a+p) |a+ bk]|
V= [|k0|Gmein,GV + |k0|Gw,T](1 +Kmin)|ko|($w]'[(42)

Observe that the each component of the forcing term v in the
superlinear recursion (40) is strictly positive. By (10) and (8),
each k(S(z)) is a time-invariant function of the current closed
loop state W(¢) and furthermore, with i.i.d. noise the transitional
probability density function fiy(;1)p(,) is also time-invariant.
Under suitable technical conditions from Markov chain theory
and the Perron-Frobenius theory for products of random non-
negative matrices, it can then be shown that since the recursion
(40) is bounded above in mean square norm by a constant
independent of the initial state ¥(0),

E{ M (x(S(2))) x ---M (<(S(0)) 1(0) 3| #(0) = w(0) } 0.

(43)
for any y(0) such that |I¢;(0) — I (0)| < a(0). However, from
(12)—(15), (180—(21) and (28)—(29), the scaling error vector
Z(t) == [Z5(t),Z;(t),Z5 (t)]T evolves according to

Z(t+1) =M (k(5(1))) Z(t) =M (x(S(2))) % --

-M (x(5(0))) Z(0).

From (43), it can then be shown that Z(¢) — 0 in mean square
Euclidean norm. Noting that the quantiser ¢(-) is bounded and
that |a + bk| < 1, it then follows from (34) that X¢(r) — X°(r) —
0 in mean square norm as well. Thus, the FDEC recovers from
its initial internal state error to yield encoder and decoder states
that agree asymptotically.

Fractional Scaling Error Convergence  The mean square
convergence to zero of the scaling error vector Z(¢) has a
corollary which suggests that the FDEC updates (15) and (21)
can be simplified without sacrificing stability. Note that V¢ > 1,

2 Ze)| 1z za@)] O}
||Z(I)H2 Zmax{ LG(I) Vmin;, Lj(l) Vmin, LH(Z) Dmm}(44)
= F(1)* V3 > FZ V3, (45)

where Vi, > 0 is the smallest component of (42), the equality
in (45) comes from definition (30) and the last inequality is
a consequence of Lemma 1. Taking expectations, we then
have that v2, E{F?} < E{||Z(t)||3} — 0. Thus we must have
E{F2?} = 0, implying that F, = 0 with probability 1. That is,
almost all realisations of the maximum fractional scaling error
F(t) (30) decrease monotonically to zero.

As the role of the FDEC parameter 1 in the update equations
(15) and (21) is to bound the maximum fractional scaling
error |L*(¢t) — L(°(z)|/L*(¢), this suggests that 1 can be allowed
to tend to zero with time and that an arbitrarily large initial
internal state errors can be handled without losing stability.
Indeed, though we do not provide a rigorous analysis here, the
simulation results of section 5 are for a scheme with n = 0 and
with a large initial fractional scaling error.

5. SIMULATION RESULTS

In this section we present Matlab simulations that illustrate
the preceding results for initial internal state errors |/¢;(0) —
1&(0)| = [x*(0) —x°(0)| = 100 and also consider the effect of
recurring bit errors.

We initialise the internal scaling factors (12),(14),(15) of the
encoder to 1 and let [¢;(0) = 101, X°(0) = 100. On the controller
side, we initialise (18)-(21) to 1 and set X¢(0) = 0. We consider
the plant (1)-(2) with a = 1.1,b = ¢ = 1 with independent,
Gaussian process and observation noise having mean 0 and
variance 1. The initial plant state is also Gaussian with zero
mean and variance 1. The simulation results illustrated here
were done over 100 time steps and with the squared states
averaged at each time step over 1000 iterations. We set u =
2,v=24k°=1, k= —1.1, and oy = oy = 1. Figures 1-3
correspond to scenario (1), whereas figure 4 corresponds to
scenario (2).

Figures 1 and 2 show that the plant has been successfully
stabilised for 1 = 0 and 0.1. After initial transients, the average
value of the squared plant state X (¢)? roughly oscillates around
100 in the former and 325 in the latter. This suggests that system
performance is highly affected by this value and that setting
1 = 0 is in fact optimal. This is due to the fact that the fractional
error F(¢) (30) monotonically decreases to 0 with time. A more
thorough analysis of this will be pursued in the future.

Figures 3 and 4 show that the difference between /g (¢) and
I¢ (1) tends to zero in mean square and proportional senses
respectively, supporting the analysis in subsection 4.3.
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Finally, in figure 5 we establish mean-square boundedness of
the plant states for a binary symmetric channel with probability
of error p, = 0.01, which in digital communications is typically
regarded as high. We do not analyse this here, but the intuitively
it is related to the fact that the difference between encoder
and controller internal states tends to zero in the absence of
bit errors. Although each incorrect channel bit introduces an
error into the controller internal state, the difference between
the two internal states diminishes to zero. Thus if the time
constant characterising the reciprocal rate of this decay is
short compared to the average time 1/p, = 100 between bit
errors, then the system has sufficient time to recover from each
successive bit error. When p, is increased from 0.01 to 0.03,
simulations (not provided here) indicate that stability is lost;
that is, a recovery time of 33.3 is insufficient.

We remark that more thorough analyses of stabilisability over
noisy channels such as in Sahai and Mitter (2006); Matveev
and Savkin (2007) provided necessary and sufficient conditions
that related various notions of channel capacity to the open-
loop plant dynamics. However, the sufficiency of these condi-
tions was generally proven by using randomly generated chan-
nel codes. Although it is doubtful that the finite-dimensional
scheme here can achieve channel capacity, it is an explicit
construction that does not require any channel coding. A more
detailed analysis of its performance with bit errors is left as
future work.
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Fig. 2. Noiseless channel, 1 = 0.1
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