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Abstract: This paper deals with a global optimization of BMIEP (Bilinear Matrix Inequalities
Eigenvalue Problem) based on parallel UNDX (Unimodal Normal Distribution Crossover)
GA. The several efficient conventional techniques for real-coded GA are also incorporated.
Considering the BMIEP characteristic properties, we introduce a reduced-order individual
expression with alternating SDP evaluation. The alternating SDP evaluation needs much
computational burden compared to conventional eigenvalue evaluation. In order to reduce the
computational burden, we consider the parallelization of the algorithm. Numerical experiments
are carried out to confirm the effectiveness of proposed algorithms.

1. INTRODUCTION

Many control system design problems can be naturally
described by Bilinear Matrix Inequalities (BMIs) (Goh
et al., 1994; Safonov et al., 1994). Accordingly, efficient
algorithms for solving BMIs have been studied by many
researchers. Obtaining the exact solutions of BMIs is
difficult because BMI optimization problem is in the class
of NP hard. The problem becomes difficult to solve as
the number of variables becomes large. The efficiency of
currently available algorithms is not enough for solving
practical BMI problems on control system design.

In this research, we consider to develop a practical BMI
optimization algorithms based on real-coded genetic al-
gorithms (RCGA) (Davis, 1990; Wright, 1991; Eshelman
and Schaffer, 1993; Eshleman et al., 1997) for solving
controller design problems. To this end, we apply ”Uni-
modal Normal Distribution Crossover (UNDX)” (Ono and
Kobayashi, 1997; Kita et al., 1998) to our BMI algo-
rithms. The UNDX is one of the most efficient crossover
methods for RCGA. We also apply other efficient GA
techniques including ”Extrapolation-directed Crossover
(EDX)” (Sakuma and Kobayashi, 2001), ”Minimal Gen-
eration Gap (MGG) model” (Satoh et al., 1996), and
”Innately Split Model (ISM)” (Ikeda and Kobayashi, 2000)
to achieve higher optimization performance.

Considering the problem structure of BMIs, we propose
an BMI RCGA using a primary search direction with
relaxed LMI (Kawanishi and Ikuyama, 2005), reduced-
order individual expression, and alternating SDP (Semi-
definite Programming) evaluation. Since alternating SDP
evaluation for each individuals needs much computation
amount, we here also consider the parallelization of the
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algorithm. Then, finally, we confirm the effectiveness of
the proposed methods by numerical experiments.

2. PRELIMINARY

In this section, we summarize the notations and describe
the problem formulation.

2.1 BMI Problem

Given real valued vectors x ∈ Rnx and y ∈ Rny , we define
a biaffine matrix valued function F : Rnx ×Rny → Rm×m

by

F (x, y) = F00 +
nx∑
i=1

xiFi0 +
ny∑
j=1

yjF0j +
nx∑
i=1

ny∑
j=1

xiyjFij , (1)

where xi is the i-th element of x, yj is the j-th element of
y and Fij = FT

ij ∈ Rm×m. Define the sets of indices as I
:= {1, 2, · · ·, nx} and J := {1, 2, · · · , ny}.
Many control problems can be naturally described by
BMI (Bilinear Matrix Inequalities) as F (x, y) ≺ 0. So,
it is crucial to evaluate the feasibility of F (x, y) ≺
0 (BMI Feasibility Problem). It is also important to
minimize a linear objective function cT

x x + cT
y y under

BMI constraints (BMI Linear Objectives Optimization
Problem) (Goh et al., 1994; Safonov et al., 1994).

Since these BMI problems are transformed into a BMI
eigenvalue problem (BMIEP), we must obtain the optimal
solution λopt of BMIEP. Therefore, in this paper, we con-
sider the global optimization of this non-convex BMIEP.

Given a closed hyper-rectangle X × Y;

X :=X1 ×X2 × · · · × Xnx , Xi := [Lxi , Uxi ], (2)

Y :=Y1 × Y2 × · · · × Yny , Yi := [Lyi , Uyi ] , (3)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6125 10.3182/20080706-5-KR-1001.2768



where −∞ < Lxi ≤ Uxi < ∞ (i = 1, · · · , nx) and
−∞ < Lyj ≤ Uyj < ∞ (j = 1, · · · , ny), we can describe
the BMIEP (BMI Eigenvalue Problem) as

min
(x,y)∈X×Y

λ{F (x, y)} =: λopt (4)

where λ(·) denotes the maximal eigenvalue.

Defining a Linear Matrix valued function FL : Rnx×Rny×
Rnx×ny → Rm×m;

FL(x, y, W ) = F00 +
nx∑
i=1

xiFi0

+
ny∑
j=1

yjF0j +
nx∑
i=1

ny∑
j=1

wijFij , (5)

where wij denotes the (i, j)-th element of W , we obtain
the lower bound of BMIEP λLopt (≤ λopt) by

λLopt = min
(x,y,vec(W ))∈X×Y×W

λ{FL(x, y,W )} , (6)

W := { vec(W ) | (x, y) ∈ X × Y,

wij ≥ Lyj xi + Lxiyj − Lyj Lxi

wij ≥ Uyj xi + Uxiyj − Uyj Uxi

wij ≤ Uyj xi + Lxiyj − Lyj Uxi

wij ≤ Lyj xi + Uxiyj − Uyj Lxi

i = 1, · · · , nx, j = 1, · · · , ny

 , (7)

where vec(W ) indicate [w11 w21 · · · wnx1 w12 · · · wnxnx ]T
(Fujioka and Hoshijima, 1997).

The lower bound of BMIEP is described by LMI (Linear
Matrix Inequalities) optimization problem that is calcu-
lated by efficient interior point methods (Karmarker meth-
ods).

2.2 Real-coded Genetic Algorithm

Real-coded genetic algorithms (RCGA) (Davis, 1990;
Wright, 1991; Eshelman and Schaffer, 1993; Eshleman
et al., 1997) is suitable for BMIEP optimization compared
to binary-coded genetic algorithms. In this subsection, we
summarize several key notions and techniques for our BMI
RCGA.

First of all, we define an individual, i.e. a real valued
vector, as

gi = col(xi,yi) ∈ X × Y, (8)

where col(x, y) indicate [xT yT]T. We define a population
P consisting of npop individuals as

P := {g1, g2, · · · , gnpop
}. (9)

Since the generations are alternated in GA procedure, we
denote a population at the k-th generation by

P(k) := {g(k)
1 , g

(k)
2 , · · · , g(k)

npop
}. (10)

We also define an evaluation function Λ(gi) and a fitness
function fP(gi) > 0 for an individual gi as

Λ(gi) := λ{F (xi, yi)},
fP(gi) := max

gj∈P
Λ(gj) − Λ(gi). (11)

Note the value of the fitness function fP(gi) depends on
the population P. This fitness function fP(gi) is only used
for roulette wheel selection procedure.

Unimodal normal distribution crossover (UNDX) (Ono
and Kobayashi, 1997) is reported to demonstrate higher
performance than the other crossover methods in RCGA.
The UNDX procedure is summarized as follows;

(1) Select 3 individuals as parents gp1, gp2, gp3 ∈ P,
where gp1, gp2 are main parents, and gp3 is a sub
parent.

(2) Define the middle point of main parents gm :=
(gp1+gp2)

2 .
(3) Let the direction from gp1 to gp2 be primary search

direction d, i.e. d := gp2 − gp1.
(4) Define D as the distance from gp3 to the primary

search direction d.
(5) Define ei be the orthogonal basis vectors spanning the

subspace perpendicular to primary search direction d.
(6) Two children gc1 and gc2 are now generated as

follows;

gc1 = gm + ξd + D
n−1∑
i=1

ηiei, (12)

gc2 = gm − ξd − D

n−1∑
i=1

ηiei, (13)

ξ ∼ N(0, σ2
ξ ), ηi ∼ N(0, σ2

η), (14)

where n is a dimension of search space, N(a, v)
represents a normal distribution whose average is a
and variance is v, σξ and ση are constant parameters
that are recommended to be set as 1

2 |d| and 0.35D√
n

respectively. We describe the UNDX procedure as
(gc1, gc2) = UNDX(gp1, gp2, gp3). 2

The values of σξ and ση were firstly decided based on
numerical experiments heuristically in Ono and Kobayashi
(1997). After the research, the theoretical optimality of
these values is confirmed later, which preserve the stochas-
tic properties of the parent population, i.e. average, vari-
ance and covariance (Kita et al., 1998).

For the selection of an individual from populations, there
exist several selection methods. One of the standard se-
lection methods is Roulette Wheel Selection method. In
roulette wheel selection procedure, an individual gi is
selected from a population P by the probability P[gi];

P[gi] :=
fP(gi)∑npop

i=1 fP(gi)
. (15)

We denote an individual gi that is selected by the roulette
wheel selection as gi = RWS(P) 2

One of the most important key notions for GA is the
preservation of the diversity of the population. MGG
(Minimal Generation Gap) Model (Satoh et al., 1996) is
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appropriate for keeping the diversity of the population.
The MGG model consists of the following five steps.

(1) Generate an initial population.
(2) Select a pair of individuals randomly from the popu-

lation as parents.
(3) Generate 2ncross offspring by carrying out ncross times

crossover,
(4) Select two individuals from the family containing the

two main parents and their 2ncross offspring. One is
the best individual and the other is an individual
selected by the roulette wheel selection (Goldberg,
1989). Replace the two main parents in step (2) with
the two individuals.

(5) Repeat the procedure from step (2) to step (4) until
a stopping condition is satisfied.

There exists sampling bias on unimodal normal distribu-
tion crossover. The algorithm has the tendency to mainly
search in the center area of the search space. This property
may cause deceptive phenomena and leads to failure of GA
search in promising valley. In order to relax the sampling
bias, we introduce extrapolation-directed crossover(EDX)
(Sakuma and Kobayashi, 2001). EDX is summarized as
follows;

(1) [UNDX] step (1) and (3)～(5). In addition, suppose
Λ(gp1) < Λ(gp2).

(2) With EDX, the child gc is now generated as follows;

gc = gp1 + D

n−1∑
i=1

viei, (16)

vi ∼ N(0, σ2
η), (17)

where n is a dimension of search space, ση is also
recommended to be set by 0.35D√

n
. We describe the

EDX procedure as gc = EDX(gp1, gp2, gp3). 2

If there exists a promising solution in steep valley (V-
valley), it might be missed. This kind of search failure
is called as deceptive phenomena. In order to overcome
the deceptive phenomena, concentrative search scheme is
needed. To this end, we introduce Innately Split Model
(ISM) (Ikeda and Kobayashi, 2000) as follows.

(1) Carry out the optimization with small multi popula-
tion.

(2) Initialize each population in specified small search
area.

(3) Independently, carry out crossover and natural selec-
tion in each small population.

(4) When there exist multi populations that search the
same valley, eliminate populations except one.

(5) Eliminate the populations whose fitness function
value cannot be improved for long term.

3. GENETIC ALGORITHM FOR BMIEP

In this section, we propose a real-coded genetic algorithm
for BMIEP. The proposed algorithm is carefully designed
considering the structure of BMIEP.

3.1 GA for BMIEP with conventional techniques

In order to overcome the difficulties caused by GA-hard
structure, i.e. big-valley, UV-valley and ridge line struc-
ture, we here utilize UNDX with MGG model, EDX and
ISM techniques. A UNDX RCGA algorithm for BMIEP is
described in the following Algorithm 1;

[ Algorithm 1 ]
0 Set k = 0 and pEDX (0 < pEDX ≤ 1).
1 Set p (0 < p ≤ 1), cxi ∈ Xi and cyj ∈ Yj randomly.
2 Generate an initial population P(k) randomly.

P(k) := {g(k)
1 , g

(k)
2 , · · · , g(k)

ℓ · · · g(k)
npop},

g
(k)
ℓ := (x(k)

ℓ , y
(k)
ℓ ),

x
(k)
ℓi ∈ [pLxi − cxi pUxi − cxi ] ∩ Xi, i ∈ I

y
(k)
ℓj ∈ [pLyj − cyj pUyj − cyj ] ∩ Yj , j ∈ J

3 Select gp1, gp2, gp3 from the population P(k) ran-
domly. Suppose Λ(gp1) < Λ(gp2). Eliminate the
main parents P(k) := P(k)\{gp1, gp2}.

4 In probability pEDX, carry out EDX for nEDX times.
for i = 1 : nEDX

Calculate gc = EDX(gp1, gp2, gp3).
If Λ(gc) < Λ(gp1) holds, replace gp1 by gc.

End for. Go to Step 8.
5 Carry out UNDX for ncross times.

Initialize Pundx(k) := {gp1, gp2}
for i = 1 : ncross

(gc1, gc2) = UNDX(gp1, gp2, gp3)
Pundx(k) := Pundx(k) ∪ {gc1, gc2}

End for.
6 Replace gp1 by the best individual in Pundx(k).
7 Replace gp2 by grws = RWS(Pundx(k))
8 P(k) := P(k) ∪ {gp1, gp2} and Let k := k + 1.
9 Repeat step 3 - 8 until convergence criterion is

satisfied.
10 Repeat step 1 - 9 until stopping criterion is

satisfied. (ISM procedure)

where x
(k)
ℓi indicates the i-th element of the vector x

(k)
ℓ .

The populations P(k) and Pundx(k) consist of npop and
2ncross individuals respectively.

Steps 1-2 and 10 in Algorithm 1 are for ISM. EDX is
carried out in Steps 3-4. UNDX is executed in step 5. Steps
6-8 are for the implementation of MGG Model.

3.2 A new primal search direction with relaxed LMIs

In this subsection, we state a new primary search direction
which is proposed in Kawanishi and Ikuyama (2005). Sup-
pose P := {g1, g2, · · · , gℓ, · · · , gnpop

} and gℓ := col(xℓ, yℓ).
First, we define a region Qx ×Qy including all individuals
of the population P as follows.

Lxi := min
ℓ=1,···,npop

xℓi, Uxi := max
ℓ=1,···,npop

xℓi

Qxi
:= [Lxi

Uxi
] ⊂ Xi, i ∈ I

Qx := Qx1 ×Qx2 × · · · × Qxnx

Lyj := min
ℓ=1,···,npop

yℓj , Uyj := max
ℓ=1,···,npop

yℓj
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Qyj := [Lyj Uyj ] ⊂ Yj , j ∈ J
Qy := Qy1 ×Qy2 × · · · × Qyny

where xℓi indicates the i-th element of a vector xℓ and
yℓj indicates the j-th element of a vector yℓ. The region
Qx ×Qy represents a minimal orthogonal hyper rectangle
containing the population P. Replacing X×Y by Qx×Qy,
we define WQ by (7). Carrying out (6), we can define a
special individual glmi as follows;

glmi := arg(x,y) min
Qx×Qy×WQ

FL(x, y, W ) (18)

=: LMI(P), (19)

where arg(x,y) denotes the partial arguments (x, y) of the
entire arguments (x, y, W ). Now, considering the struc-
ture of BMIEP, a new effective primal search direction is
obtained by

dlmi := glmi − gi. (20)

In view point of preserving the diversity of populations,
we do not directly apply the new primary search direction.
Along with the procedure of MGG model that is superior
for keeping the population diversity, we utilize the new
primary search direction as follows.

[Algorithm 2]
0 [Algorithm 1] step 0 - 6
7 Replace gp2 by glmi = LMI(Pundx(k)).
8 [Algorithm 1] step 8 - 10

In the proposed algorithm, the new primary search di-
rection dlmi is exploited for generating local populations
Pundx(k). Only in case that the individual glmi is selected
in the selection procedure, the new primary search direc-
tion is applied and becomes valid.

3.3 Reduced-order search with alternating SDP evaluation

Here, we consider a genetic algorithm in the reduced-order
space. Without loss of generality, we can suppose nx < ny

on variables vector x ∈ Rnx and y ∈ Rny . We here define
individuals hi by

hi = x ∈ X . (21)

Note that the search space dimension is reduced to nx from
nx + ny by this individual expression. In this case, since
the variable vector y is not specified by the individuals
hi, we cannot evaluate Λ(hi) = λ{F (x, ·)}. To evaluate
the reduced-order individuals, we must also define a new
evaluation function. To this end, we here consider to
utilize the bi-convex property of BMIEP. The following
SDP (Semi-definit programming) evaluation enables us to
evaluate the reduced-order individuals hi;

min
y∈Y,λ

λ s.t. λI − F (hi, y) ≻ 0 (22)

Moreover, in order to evaluate the individuals more ex-
actly, we consider to utilize the alternating SDP method.
A new evaluation function Γ(hi) for the reduced-order
individuals is defined as follows;

1. Fix δ > 0. Set k = 0.
2. Set (y(0), λ(k)

gi
) := arg min

y∈Y,λ
{λ : λI − F (hi,y) ≻ 0}.

3. Repeat {
4. (x(k+1), λ(k)

gi
)= arg min

x∈X ,λ
{λ : λI − F (x,y(k))≻0}

5. (y(k+1), λ(k)
gi

)= arg min
y∈Y,λ

{λ : λI −F (x(k+1),y) ≻ 0}

6. k = k + 1.
7. }until λ

(k−1)
gi − λ

(k)
gi < δ|λ(k)

gi |
8. Γ(hi) := λ

(k)
gi

Now, we are in position to state our new reduced-order
search algorithms as follows;

[Algorithm 3]
0 [Algorithm 1] step 0
1 Set p (0 < p ≤ 1) and cxi ∈ Xi randomly.
2 Generate an initial population P(k) randomly.

P(k) := {h(k)
1 , h

(k)
2 , · · · , h(k)

ℓ · · ·h(k)
npop

}, h
(k)
ℓ := x

(k)
ℓ ,

x
(k)
ℓi ∈ [pLxi − cxi pUxi − cxi ] ∩ Xi, i ∈ I

3 Select hp1, hp2,hp3 from the population P(k) ran-
domly. Suppose Γ(hp1) < Γ(hp2). Eliminate the
main parents P(k) := P(k)\{hp1, hp2}.

4 In probability pEDX, carry out EDX for nEDX times.
for i = 1 : nEDX

Calculate hc = EDX(hp1, hp2, hp3).
If Γ(hc) < Γ(hp1) holds, replace hp1 by hc.

End for. Go to Step 8.
5 Carry out UNDX for ncross times.

Initialize Pundx(k) := {hp1, hp2}
for i = 1 : ncross

(hc1, hc2) = UNDX(hp1, hp2,hp3)
Pundx(k) := Pundx(k) ∪ {hc1, hc2}

End for.
6 Replace hp1 by the best individual in Pundx(k).
7 Replace hp2 by hrws = RWS(Pundx(k))
8 P(k) := P(k) ∪ {hp1, hp2} and Let k := k + 1.
9 [Algorithm 1] step 9 - 10

In Algorithm 3, all full-order individuals gi in Algorithm
1 are replaced by reduced-order individuals hi. The evalu-
ation function Λ(·) in Algorithm 1 is also replaced by the
avaluation function Γ(·) with alternating SDP method. For
the calculation of Γ(·), many LMI iterations are needed.
The utilization of Γ(·) impose us heavy computational bur-
den compared to the conventional eigenvalue-based evalu-
ation function Λ(·). In order to reduce the computational
burden, we consider the parallelization of the algorithm in
the next section.

4. PARALLEL ALGORITHM

In Algorithm 3, we need to carry out many LMI opti-
mizations for evaluating individuals with alternating SDP
evaluation method. However, these calculations can be effi-
ciently parallelizable. The parallelized evaluation function
Γpara(·) is now defined as follows;

{λ1, λ2, · · · , λn} = Γpara({h1, h2, · · · , hn}), (23)

λi := Γ(hi), i = 1, 2, · · · , n, (24)
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where each evaluation Γ(hi) is calculated simultaneously
at each worker nodes. An algorithm of the master node is
summarized as follows;

[Parallelized Algorithm 3]
0 [Algorithm 3] step 0-2
3 Select hp1, hp2,hp3 from the population P(k) ran-

domly. Calculate {λp1, λp2} = Γpara({hp1,hp2}).
Suppose λp1 < λp2. Eliminate the main parents
P(k) := P(k)\{hp1, hp2}.

4 In probability pEDX, carry out EDX for nEDX times.
for i = 1 : nEDX

Calculate hci = EDX(hp1,hp2, hp3).
End for.
{λc1, · · · , λcnEDX} := Γpara({hc1,hc2, · · · ,hcnEDX}).
If min

i
λci < Γ(hp1) holds, replace hp1 by hci.

Go to Step 8.
5 [Algorithm 3] step 5
6 Replace hp1 by hbest := arg minΓpara(Pundx(k)).
7 [Algorithm 1] step 7 - 10

In step 4 and 6 in parallelized Algorithm 3, we evaluate all
individuals in the populations where the population in step
4 consists of nEDX individuals and the population Pundx(k)
in step 6 consists of 2ncross individuals. In the evaluation
function Γpara, these individuals are distributed to each
worker nodes and simultaneously evaluated at each nodes.

5. NUMERICAL EXPERIMENTS

In this section, the effectiveness of the proposed methods
is evaluated by numerical experiments.

5.1 Reduced-order search

We here consider an example of Helicopter stabilizing
problem with static output feedback control firstly de-
scribed in Keel et al. (1988). The problem is briefly sum-
marized as follows. The dynamics of the Helicopter is
represented by {

ẋ = Ax + Bu
y = Cx

, (25)

[
A B

C 0

]
=

−0.0366 0.0271 0.0188 −0.4555 0.4422 0.1761

0.0482 −1.0100 0.0024 −0.4555 3.5446 −7.5922

0.1002 0.3681 −0.7070 1.4200 −5.5200 4.4900

0 0 1 0 0 0

0 1 0 0 0 0

 .

(26)

The stabilizing problem with static output feedback is
described by BMI;

Φ(K, X) :=

[
(A + BKC)TX + X(A + BKC) 0

0 −X

]
< 0. (27)

If min
K,X

λ{Φ(K,X)} < 0 holds, the static output feedback

gain K stabilizes the closed-loop control system. By trans-
forming (27) to the standard BMI form (1), we can see
nx = 2, ny = 10 and m = 8.

The numerical parameters are set by p = 0.1, npop = 30,
pEDX = 0.5, nEDX = 30 and ncross = 15. The region of
variables is defined by Lxi = Lyj = −100 and Uxi =
Uyj = 100. If the progress in 100 generations is less

Table 1. Results for Helicopter Problem with-
out ISM (one iteration)

Alg.# Alg.1 Alg.2 Alg.3

Max 68.2060 8.4712 -12.5800

Average 32.4101 -2.6770 -12.5800

Min 5.6964 -12.2429 -12.5801

CPU time [s] 9.4 14.5 386.1

Table 2. Results for Helicopter Problem with
ISM in 650 s CPU time

Alg.# Alg.1 Alg.2 Alg.3

Max 1.06416 -11.9698 -12.5638

Average -0.6551 -12.3934 -12.5782

Min -8.2283 -12.5297 -12.5800

Convergence freq. (ISM) 26 33.6 1.9

than 10−7, we terminate the algorithm. The termination
parameter in alternating SDP evaluation method is set to
δ = 0.02. CPU of our computational environment for this
numerical experiments is 1.83 GHz AMD Sempron 2600+.
The size of memory is 512 MB. We carry out the numerical
calculations 10 times for each algorithm to evaluate the
average performance and the worst case (robustness). Our
experimental results are summarized in Table 1 and Table
2.

Table 1 shows the results at the end of the first con-
vergence (without ISM). From this table, although Alg.
3 takes the longest time compared to other algorithms,
algorithm 3 achieves the highest performance. We can see
the improvement by the reduced-order search is larger than
the improvement by the algorithm 2 with LMI relaxation
technique which we proposed in Kawanishi and Ikuyama
(2005).

In order to compare the performance in the same time
interval, we carry out the second experiments. We compare
the performance in 650 s CPU time. The experimental
results are shown in Table 2. Algorithm 3 with reduced-
order search is resulting the highest performance in three
algorithms.

The resultant controller K and the Lyapunov variable X
that achieves the minimum eigenvalue -12.5801 are

K =
[
−18.7822
99.2710

]
, (28)

X =

 100.0000 −0.4819 13.2491 5.8518
−0.4819 41.2086 −27.5647 −0.0869
13.2491 −27.5647 45.2944 −6.3143
5.8518 −0.0869 −6.3143 25.1968

 . (29)

Closed-loop poles by the controller are -821.28, -0.09, and
-0.32±1.06i.

5.2 Parallelization efficiency

In this subsection, we confirm the parallelization efficiency
by parallelized algorithm 3. We utilize a Beowulf cluster
computer system which consists of 31 nodes. CPU of
each node is AMD AthlonXP 2500+ 2.0 GHz. The size
of memory on each nodes is 256 MB. The nodes are
connected by TCP/IP Gigabit ethernet. The algorithm
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Table 3. Results of Parallelization Efficiency

# of nodes 1 6 11 16 31

Eval. time [s] 178.4 48.80 33.60 25.73 19.51

Total time [s] 208.3 79.61 65.26 56.29 51.57

Ratio [%] 85.63 61.23 51.42 45.72 37.83

Opt. value -12.58 -12.58 -12.58 -12.58 -12.58

is implemented by C++ with MPICH, CLAPACK and
SDPA6.0 Libraries. We here evaluate the parallelization
efficiency of the proposed parallelized algorithm 3 in 100-
generation as the number of nodes increases.

Table.3 shows the result of parallelization efficiency of the
developed parallelized algorithm 3, where “Eval. time”
indicates the entire time for individuals evaluation, “Total
time” represents the total execution time of the algorithm,
“Ratio” means the ratio of “Eval. time” against “Total
time”, and “Opt. value” is the best value of the evaluation
function, i.e. BMI eigenvalue.

In the case of one node, 85.63% of the coputational power
is spent for the evaluation of individuals. The high level
of “Ratio” indicates the importance of the parallelization
of the evaluation. Comparing “Eval. time” for one node
and 31 nodes, we can see that the parallelized algorithm
3 succeeds to reduce the evaluation time to 19.51 s from
178.4 s. From the result of “Total time” in Table.3, we
can also see that the reduction of total execution time
is almost saturated at 51.57 s due to the communication
burden between the nodes.

6. CONCLUSION

In this paper, taking account of BMIEP’s character-
istic properties, we developed BMI oriented real-coded
GA algorithms. The developed real-coded genetic algo-
rithm is based on UNDX(Unimodal Normal Distribu-
tion Crossover), EDX(Extrapolation-directed Crossover),
MGG(Minimal Generation Gap) model, and ISM(Innately
Split Model). In order to utilize BMI structure charac-
teristics effectively, we introduced a new primary search
direction with relaxed LMI, reduced-order individual ex-
pression, and alternating SDP evaluation.

The alternating SDP evaluation of individuals needs much
computational burden compared to conventional BMI
eigenvalue evaluation. In order to reduce the computa-
tional burden, we considered the parallelization of our BMI
real-coded genetic algorithm and developed a parallelized
algorithm.

By the numerical experiments, we showed the utilization
of BMI characteristic can improve the performance of
general-purpose genetic algorithms. Real-coded GA ap-
proach is promissing for lage-scale practical BMIEP. The
further research is needed.
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